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Abstract—Information propagation in social media depends
not only on the static follower structure but also on the topic-
specific user behavior. Hence novel models incorporating dy-
namic user behavior are needed. To this end, we propose a
model for individual social media users, termed a genotype. The
genotype is a per-topic summary of a user’s interest, activity
and susceptibility to adopt new information. We demonstrate
that user genotypes remain invariant within a topic by adopting
them for classification of new information spread in large-scale
real networks. Furthermore, we extract topic-specific influence
backbone structures based on information adoption and show
that they differ significantly from the static follower network.
When employed for influence prediction of new content spread,
our genotype model and influence backbones enable more than
20% improvement, compared to purely structural features. We
also demonstrate that knowledge of user genotypes and influence
backbones allow for the design of effective strategies for latency
minimization of topic-specific information spread.

I. INTRODUCTION

Trends and influence in social media are mediated by the
individual behavior of users and organizations embedded in
a follower/subscription network. The social media network
structure differs from a friendship network in that users are
allowed to follow any other user and follower links are not
necessarily bi-directional. While a link enables a possible
influence channel, it is not always an active entity, since a
follower is not necessarily interested in all of the content that
a followee posts. Furthermore, two individuals are likely to re-
gard the same token of information differently. Understanding
how information spreads and which links are active requires
characterizing the users’ individual behavior, and thus going
beyond the static network structure. A natural question then
arises: Are social media users consistent in their interest and
susceptibility to certain topics?

In this work, we answer the above question by demon-
strating a persistent topic-specific behavior in real-world so-
cial media. We propose a user model, termed genotype, that
summarizes a user’s topic-specific footprint in the information
dissemination process, based on empirical data. The social
media genotype, similar to a biological genotype, captures
unique user traits and variations in different genes (topics).
Within the genotype model, a node becomes an individual
represented by a set of unique invariant properties.

For our particular analysis, the genotypes summarize the
propensity and activity level in adoption, transformation, and
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propagation of information within the context of different top-
ics. We propose a specific set of properties based on adopting
topic-specific Twitter hashtags—tokens that annotate messages
and allow users to participate in global discussions [1]. The
model, however, applies to more general settings capturing, for
example, dissemination of urls or sentiment-charged messages.

We construct the genome (collection of user genotypes) of
a large social media dataset from Twitter, comprised of both
follower structure and associated posts. The observation of
stable genotypes (behavior) leads to natural further questions:
Can the consistent user behavior be employed to categorize
novel information based on its spread pattern? Can one utilize
the genotypes and the topic-specific influence backbone to (i)
predict likely adopters/influencers for new information from a
known topic and (ii) improve the network utility by reducing
latency of disseminated information? We explore the potential
of the genotype model to answer the above questions within
the context of Twitter.

To wvalidate the consistency of genotypes, we show
that combining genotype-based classifiers into a composite
(network-wide) classifier achieves accuracy of 87% in predict-
ing the topic of unobserved hashtags that spread in the network.
We extract and analyze topic-specific influence backbone struc-
tures and show that they differ from the static follower net-
work. We, then, turn to two important applications: influence
prediction and topic-specific latency minimization. We achieve
20% improvement in predicting influencers/adopters for novel
hashtags, based on our model, as compared to relying solely on
the follower structure. We also demonstrate that knowledge of
individual user genotypes allows for effective reduction in the
average time for information dissemination (more than 40%
reduction by modifying the behavior of 1% of the nodes).

Our contributions, in the order they are presented, include:
(i) proposing a genotype model for social media users’ be-
havior that enables a rich-network analysis; (ii) validating the
consistency of the individual genotype model; (iii) quantifying
the differences of behavior-based influence backbones from
the static network structure in a large real-world network;
and (iv) employing genotypes and backbone structure for
adopter/influencer prediction and latency minimization of in-
formation spread.

II. RELATED WORK

The network structure has been central in studying in-
fluence and information dissemination in traditional social
network research [2], [3]. Compared to them, large social
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media systems exhibit a relatively denser follower structure,
non-homogeneous participation of nodes, and topic specializa-
tion/interest of individual users. Twitter, for example, is known
to be structurally different from human social networks [4], and
the intrinsic topics of circulated hashtags are central to their
adoption [5].

A diverse body of research has been dedicated to un-
derstanding influence and information spread on networks,
from theories in sociology [6] and epidemiology [7], leading
to empirical large-scale studies enabled by social web sys-
tems [5], [8], [9], [10]. Here, we postulate that the influence
structure varies across topics [11] and is further personalized
for individual node pairs. Lin and colleagues [12] also focus on
topic-specific diffusion by co-learning latent topics and their
evolution in online communities. The diffusion that the authors
of [12] predict is implicit, meaning that nodes are part of
the diffusion if they use language corresponding to the latent
topics. In contrast, we focus on topic-specific user genotypes
and influence structures concerned with passing of observable
information tokens and their temporal adoption properties.

Earlier data-centered studies have shown that sentiment [8]
and local network structure [5] have an effect on the spread
of ideas. The novelty of our approach is the focus on content
features to which users react. Previous content-based analyses
of Tweets have adopted latent topic models [13], [14]. We tie
both content and behavioral features to network individuals.

With regards to influence network structure and authori-
tative sources discovery, Rodriguez and colleagues [15] were
able to infer the structure and dynamics of information (influ-
ence) pathways, based on the spread of memes or keywords.
Bakshy et al. [16] focus on Twitter influencers who are roots
of large cascades and have many followers, while Pal et
al [17] adopt clustering and ranking based on structural and
content characteristics to discover authoritative users. Although
the above works are similar to ours in that they focus on
influence structures and user summaries, our genotype targets
capturing the invariant user behavior and information spread
within topics as a whole, involving a collection of topically
related information parcels.

III. GENOTYPE MODEL

Here we define our genotype model that captures the topic-
specific behavior of a single user (node) within a social media
network. Our main premise is that, based on observed network
behavior, we can derive a unique signature of a user. Hence,
the genotype model is a user model, by definition, in the sense
that it is an abstract representation of a social network user. For
our analysis, this signature captures adoption and reposting of
new information, activity levels, and latency of reaction to new
information and influential neighbors. Although other behavior
traits can be incorporated as well, we seek to summarize user
behavior with respect to a set of predefined topics.

A social media network N (U, E) is a set of users (nodes)
U and a set of follow links E. A directed follow link
e = (u,v),e € E is connects a source user u (followee)
to a destination user v (follower). The network structure
determines how users get exposed to information posted by
their followees. The static network does not necessarily capture
influence as users do not react to all information to which they
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are exposed. To account for the latter, we model the behavior
of individual users within the follower network within their
genotypes.

In its most general form, a user’s genotype G, is an
entity embedded in a multi-dimensional feature space that
summarizes the observable behavior of user u with respect
to different topics. It is up to the practitioner to define the
different dimensions of the topic feature space, and an observ-
able behavior in the network locality of a node. Each genotype
value can be viewed as an allele that the user introduces to the
process of message propagation through a network.

In our study, we focus on hashtag usage within Twitter,
since hashtags are simple user-generated tokens that annotate
tweets generated by either a social group or a specific social
phenomenon, and are often “learned” from others on the social
network [1]. In this context, a hashtag serves as a genetic
parcel of cultural information, just like alleles of a gene within
a biological context. Hashtags can be associated with topics
such that an individual’s response to a collection of hashtags
within a topic indicates a user’s propensity to respond to other
hashtags within that same topic.

We consider a set of predefined hashtags H = {h}, each
associated with a topic 7; € 7. To obtain the genotype, we
analyze the social media message (tweet) stream produced
by a user u, with respect to H. Let us define m(-) to be
a function that maps each occurrence of (u,h) to a real
values m : {(u,h)} — R. Let Hy, 1,y = {h}r, N {h}u,
then the *" element of the user genotype G, is the set of
{m(u,h) | h € Hy, 1)} values. We remark that this set of
values may also be reduced to their average value or some
approximated distribution function if one wishes to have a
coarser representation of the data.

To construct each user’s topic-genotype from empirical
data, we consider a variety of metrics m(-) for (u,h) pairs,
listed in Table I. These metrics serve the purpose of quantifying
a user’s response to a hashtag by defining the data values that
are used to estimate the topic distributions. While TIME and
N-USES are intuitively obvious metric choices, LAT and LOG-
LAT are novel to this manuscript. N-PAR and F-PAR have been
previously studied in a different context [5], and are included
here for comparison.

IV. DATASETS

We chose Twitter to analyze user behavior via our genotype
model, since Twitter has millions of active users and messages
have a known source, audience, time stamp, and content.
Similar analysis can be performed in other social media
networks with a known follower structure and knowledge of
the shared content (memes, urls and buzz words) in time.

A. Twitter follower structure and messages

We use two datasets from Twitter: a large dataset SNAP [9]
including a 20% sample of all tweets over a six-month
period and the complete follower structure [4]; and a smaller
CRAWL dataset containing all messages of included users that
we collected using Twitter’s public API in 2012, where we
started from initial seed nodes (members of the authors’ labs)
and crawled the follower structure and related posts. SNAP
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Metric Function definition

Notes

Time TIME(u, h) =

min(y, n)(t(u, h)) — minyev, (t(v,h)), where
t(u, h) is the time (u, h) occurs and V,, is the set of followees of w.

The absolute amount of time between a users first exposure to the given hashtag
and his first use of that same hashtag.

Number of Uses

N-USES(u, h) = [{(u, h)}|, where | - | is the cardinality function.

The total number of occurrences of the (u, k) pair.

Number of Parents | N-PAR(u,h) = [{v € V,, | t(v, h) < t(u, h)}]

The number of followees to adopt before the given user.

Fraction of Parents | F-PAR(u,h) = [{v € V,, | t(v,h) < t(u,h)}| /| V]

The fraction of a user’s followees who have adopted the hashtag prior to the user.

Latency

LAT(u, h) = (|[{h; € Hr, | Hr; > h, and t(u, hy) < t(u, h)}[) "

The inverse of the number of same-topic hashtags posted to the user’s time-line
between his first exposure to the hashtag and his first use of the hashtag.

Log-latency

LOG-LAT(u, h) = log (LAT(u, h) /Avg(LAT(w, h) s.t. w € U)).

The logarithm of each latency value after each latency value has been divided by
the mean latency value for that hashtag.

TABLE I: Behavior-based metrics that are components of the topic-specific user genotype.

SNAP (users=42M,tweets=467M) CRAWL (users=9K tweets=14.5M)
Topic Hashtags | Users Uses/HT Hashtags | Users Uses/HT
Business 27 20k 1,155 19 1,493 88
Celebrities 32 26k 1,009 - - -
Politics 485 349k 2,020 121 5,480 49
Sci/Tech 33 415k 6,889 63 4,982 100
Sports 98 76k 3,274 24 320 14

TABLE II: Statistics of the SNAP and CRAWL data sets.

includes a network-wide view for a 6 month period, while
CRAWL provides longitudinal completeness for a smaller sub-
network of users. Statistics of the two datasets are summarized
in Table II and further discussed in the Supplement [18].

B. Grouping hashtags into topics

While hashtags present a concise vocabulary to annotate
content, they are free-text user-defined entities. Hence, we
need to group them into topics in order to summarize user
behavior at the topic level. In this work we assume a 1:1
mapping of topics to hashtags, while in a more general
framework disseminated hastags (urls, memes, etc.) can be
“softly” assigned to more than one topic. We work with five
general topics as dimensions for our user genotypes: Sports,
Politics, Celebrities, Business and Science/Technology. We
obtain a set of 100 high-confidence hashtag annotations from a
recent work by Romero and colleagues [5], further augmented
by a set of curated business-related hashtags [19]. We combine
this initial set of annotated hashtags with a larger set based on
text classification.

To increase the number of considered hastags, we adopt
a systematic approach for annotating more hashtags based on
urls within the tweets. We pair non-annotated hashtags with
web urls, based on co-occurrence within posts. We extract
relevant text content from each url destination (most commonly
news articles from foxnews.com, cnn.com, bbc.co.uk) and
build a corpus of texts related to each hashtag. We then classify
the url texts in one of our 5 topics using the MALLET [20] text
classification framework trained for our topics of interest. As a
result, we get a frequency distribution of topic classification for
frequent (associated with at least 5 texts) hashtags. The topic
annotation of the hashtag is the topic of highest frequency. The
number of hashtags and their usage statistics in our final topic-
annotated set are presented in Table II (columns Users and
Uses/HT). The Celebrities hashtags do not occur frequently
enough in the CRAWL dataset and hence we exclude them
from our analysis.

V. GENOTYPE MODEL VALIDATION IN TWITTER

To qualify the genotype model as a meaningful representa-
tion of social network users, we demonstrate that the genotype

238

Training error

o

) Random mm
© F-PAR =
o LAT wes
051 LOG-LAT we= -
I N-PAR

= N-USES

w TIME

0.0
SciTech

Business Celebrities  Politics

Testing Error

Error rate

SciTech

Business Celebrities Politics

Fig. 1: Training and testing accuracy of hashtag classification
in a leave-one-out Linear Discriminant classification.

model is capable of capturing stable individual user behavior
for a given topic. We seek to evaluate the stability of configura-
tion of multiple users’ genotype values within a topic, and use
a classification task and the obtained (training/testing) accuracy
as a measure of consistency for our genotype model. Within
this context, we compare different genotype dimensions and
evaluate the level to which each of them captures characteristic
invariant properties of a social media user.

A. Topic consistency for individual users

Our hypothesis is that individual users exhibit consistent
behavior of adopting and using hashtags (stable genotype)
within a known topic. If we are able to capture such invariant
user characteristics in our genotype metrics then we can turn
to employing the genotypes for applications. We compute
genotype values according to our collection of hashtags with
known topics by training a per-user Linear Discriminant (LD)
topic classifier to learn the separation among topics. Consider,
for example, the LOG-LAT genotype metric: for a user u, we
have a set of observed LOG-LAT values (based on multiple
hashtags) that are associated with the corresponding topics.
If the user u is consistent in her reaction to all topics, then
the LOG-LAT values per topic will allow the construction
of a classifier with low training and testing error. It is also
noted that each hashtag does end up having a topic distri-
bution, but for the scope of this study, a sufficient hashtag
classification should at least agree in the topic of greatest
probability/likelihood, which is what is presented here.

The consistency of user responses is evaluated using a
leave-one-hashtag-out validation: given the full set of (u,h)
response values, we withhold all pairs including a validation
hashtag h and employ the rest of the pairs involving hashtags
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Bus. Celeb. Poli. Sci./Tech. Sport E[x]
Random Error | 0.96 0.95 0.28 0.85 0.95 0.45
F-PAR 0.50 0.88 0.61 0.15 0.09 0.41
LAT 0.09 0.46 0.18 0.19 0.25 0.21
LOG-LAT 0.05 0.13 0.19 0.12 0.03 0.13
N-PAR 0.09 0.50 0.88 0.09 0.03 0.40
N-USES 0.45 0.42 0.90 0.22 0.56 0.54
TIME 1.0 1.0 0.01 0.92 0.88 0.61

TABLE III: Error rates of the NB consensus topic classifica-
tion. F[z] is the expected error across topics.

of known topic to estimate the individual user’s topic genotype.
We repeat this for all genotype metrics. The training and testing
error rate for this experiment are presented in Fig. 1, and their
similar error rates demonstrate how consistent users are at
classifying hashtags into topics. In both cases, our genotype
metrics enable significantly lower error rates as compared to
a Random model (i.e. random prediction based on number
of hashtags within a topic), demonstrating that, in general,
genotype metrics capture consistent topic-wise behavior. One
exception is the Politics topic as it has comparatively many
more hashtags than other topics, skewing the random topic
distribution resulting in slightly lower error. Across genotype
metrics, we observe that normalized latency of adoption (LOG-
LAT) is more consistent per user than alternatives.

B. Topic consistency within the network

While individual users may exhibit some inconsistencies in
how they behave w.r.t. hashtags within a topic, an ensemble of
users’ genotypes remain more consistent overall. To demon-
strate this effect, we extend our classification-based evaluation
to the the network level. We implement a network-wide
ensemble-based Naive Bayes (NB) classifier that combines
output of individual user classifiers to achieve network-wide
consensus on the topic classification of each validation hashtag.
Details on the network level classifier are available in the
Supplement [18].

Table III summarizes the testing error rate of our NB
scheme for classifying hashtags into topics in a leave-one-
hashtag-out validation. The consensus error rate decreases
compared to local classifiers (Fig. 1), demonstrating that the
genotypes, as a complex, are more stable and consistent than
individual users. The lowest error rate of 0.13 is achieved when
using the LOG-LAT metric.

The latency genotype metrics that are most invariant (LAT
and LOG-LAT) implicitly normalize their time scales of re-
sponse with respect to the user’s own frequency of activ-
ity, which is a feature not captured by the absolute TIME
metric, or any of the other metrics. Furthermore, both of
these metrics incorporate the network structure, measuring
the message offset since the earliest exposure to the hashtag
via a followee. LOG-LAT has a slight advantage over LAT
because it suppresses the background noise of each hashtag
measurement. However, LOG-LAT has the disadvantage that
it is dependent on a network-wide latency measurement for the
same hashtag, which might be harder to obtain in practice. In
this sense, LAT is a more practical genotype dimension when
summarizing individual user behavior in real time.

While the system of all user genotypes exhibits significant
consistency (high classification accuracy), it is interesting to
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Fig. 2: Accuracy of the network classification as a function of
the number of local classifiers (SNAP). Logistic function is fit
to each topics accuracy.

understand how many user genotypes are needed to obtain a
good classification (i.e. detect a network-wide topic-specific
spread). We observe an increasing classification accuracy with
the number of users included in the NB scheme. Figures 2a
and 2b show the dependence of accuracy on number of local
LD classifiers included per topic. All curves increase sharply,
indicating that variability within individuals is easily overcome
by considering a small subset of users within the network. The
accuracy of LOG-LAT increases “faster” to its optimal level
for increasing number of local classifiers, since the LOG-LAT
metric features a network wide normalization and thus contains
global information.

VI. TOPIC-SPECIFIC INFLUENCE BACKBONES

As we demonstrate in the previous section, user behavior
remains consistent within a topic. A natural question inspired
by this observation is whether topics propagate within similar
regions of the shared medium that is the follower network
structure. By observing the behavior of agents (adoption,
reposting, etc.) one can reveal the underlying backbones along
which topic-specific information is disseminated. In this sec-
tion, we study the propagation of hashtags within Twitter
to identify ropical influence backbones — sub-networks that
correspond to the dynamic user behavior. We superimpose
the latter over the static follower structure and perform a
thorough comparative analysis to understand their differences.
The topical backbones in combination with the individual user
genotypes will then enable various applications as we show in
the subsequent section.

An influence edge e;(u,v) connects a followee u who
has adopted at least one hashtag h within a topic 7; before
the corresponding follower v. Hence, the influence network
N; (U, E;) for topic T; is a subnetwork of the follower network
N(U, E) (including the same set of nodes U and a subset of the
follower edges E; € E). We weight the edges of the influence
network by the number of hashtags adopted by the followee
after the corresponding follower within the same topic.

First, we seek to understand the differences between the
influence backbones and the static follower network. Figure 3
presents the overlap among influence backbones and their cor-
responding follower network. For this comparison, we augment
an influence network with all follower edges among the same
nodes to obtain the corresponding follower network. In the
figure, each network is represented by a node whose size is
proportional to the network size (in edges). Connection width
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Fig. 3: Overlap among topic influence and corresponding
follower subnetworks (in SNAP). Each network is represented
as a node, with every topic represented by an influence
(encircled in the middle) and a follower network. Node sizes
are proportional to the size of the network (ranging from 120k
for Celebrities to 42m for Politics Follower). Edge width is
proportional to the Jaccard similarity of the networks (ranging
from 10~ inter-topic edges to 10~! between corresponding
influence-follower networks).

is proportional to the Jaccard Similarity (JS) (measured as the
relative overlap |E; () E;|/|E; |J E;|) of the edge sets of the
networks. The Jaccard similarity for influence and follower
networks varies between 0.16 for Sports to 0.3 for Celebrities.
The influence networks across topics do not have high overlap
(JS values not exceeding 0.01), with the exception of Sci/Tech
and Politics with J.S = 0.07. This may be explained partially
by the fact that these are the largest influence networks (5 and
11 million edges respectively). Another reason could be that
there are some “expert” nodes who are influential and active in
both topics. The degree distribution within the topic backbones
also changes (w.r.t. the static structure) with highest impact on
low degree nodes and significantly lower fraction of reciprocal
links between users (see Supplement [18]).

Beyond network sizes and overlap, we also quantify the
structural differences of the influence backbone in terms
of connected components. A strongly connected component
(SCC) is a set of nodes with directed paths among every pair,
while in a weakly connected component (WCC) connectivity
via edges regardless of their direction is sufficient. Figure 4
compares the sizes of the largest SCC and WCC in the
topic-specific networks as a fraction of the whole network
size. When ignoring the direction (i.e. considering WCC),
both the influence and follower structures have a single large
component amounting to about 99% of the network. The com-
munities that are active within a topic are connected, showing
a network effect in the spread of hashtags, as opposed to
multiple disjoint groups which would suggest a more network-
agnostic adoption. When, however, one takes direction into
consideration (SCC bars in Fig. 4), the size of the SCC reduces
drastically in the influence backbones. Less directed cycles
remain in the influence backbone, resulting in a structure that
is close to a directed acyclic graph with designated root sources
(first adopters), middlemen (transmitters) and leaf consumers.
The reduction in the size of the SCC is most drastic in the
Celebrities topic, indicative of a more explicit traditional media
structure: sources (celebrity outlets or profiles) with a large
audience of followers and lacking feedback or cyclic influence.
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Fig. 4: Largest weakly and strongly connected component
(WCC and SCC) sizes as a fraction of the network size (top);
and Kendall 7 rank correlation of node importance measures
for the influence and follower networks (bottom) (SNAP).

How does a user’s importance change when comparing
influence to following? In Figure 4 (bottom) we show the
correlation of node ranking based on number of followers,
followees and PageRank [21] in the influence and follower
networks. The correlation of each pair of rankings is computed
according to the Kendall T rank correlation measure. The
correlation is below 0.5 for all measures and topics. Global
network importance (PageRank) is the most distorted when
retaining only influence edges (0.4 versus 0.5 on average),
while locally nodes with many followers (or followees) tend
to retain proportional degrees in the influence network.

Our comparative analysis of the influence and follower
structure demonstrates that the influence backbone is quantita-
tively different from the overall follower network. The explana-
tion for this lies in the fact that the influence backbone is based
on the dynamic behavior of users (information dissemination
on specific topics), while the follower structure represents
the static topic-agnostic media channels among users. Not all
followees tend to exert the same amount of influence over
their audiences in the actual information dissemination process,
giving rise to distinct topic-specific influence backbones. We
obtain similar behavior in the smaller Twitter data set CRAWL
(omitted due to space limitation).

VII. APPLICATIONS OF GENOTYPES AND BACKBONES

In this section, we employ the user genotypes and the
topic-specific backbones for two important applications: (i)
prediction of hashtag adopters and influencers and (ii) la-
tency minimization of topical information spread. In both
applications knowledge of individual genotypes and influence
backbones enables superior performance compared to the static
network structure on its own.

Topic-specific influence prediction. We employ the influ-
ence structure and the user genotypes to predict likely influ-
encers/adopters for a hashtag. We aim to answer the following
question: Which followees are likely to influence a given user
to adopt a hashtag of a certain topic and analogously which
followers are likely to adopt a hashtag? This question is
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of paramount importance from both research and practical
perspectives. On one hand, uncovering the provider-seeker
influence will further our understanding of the global network
information dynamics. On the other hand, the question has
practical implications for social media users offering guidelines
on following high-utility sources or keeping the follower
audience engaged.

In this experiment, we consider (h,u) pairs, for users who
have at least 10 followees and have used the hashtag at least
once. The goal is to predict the subset of all followees who
have used the hashtag prior to the user in question and similarly
all adopting followers who are likely to use the hashtag later.
We construct three predictors utilizing the follower structure
that rank influencers/adopters by Followees, Followers and
Reciprocal links. We also construct three activity-based pre-
dictors utilizing genotypes and influence edges and ranking
influencers/adopters by their activity Act, topic-specific activ-
ity Topic Act and activity combined with centrality in the
corresponding backbone RW+Act. All predictors do not have
information about the spread of the specific hashtag. More
details on the predictors are available in the Suppplement [18].

A prediction instance is defined by a user w and an
adopted hashtag h. Only a subset I(u,h) of all structural
followees/followers of the user are true influencers/adopters
(positives for the prediction task). Our goal is to predict
the subset of true influence neighbors using their features
and local influence structure (excluding information about the
same hashtag h). A good predictor ranks the true neighbors
first. In order to overcome the effect of sparsity in the data,
we consider prediction of instances for which at least one
candidate followee is not isolated in the influence network
after removing the links associated with the target hashtag.
We measure true positive and false positive rates for increasing
value of k (the maximal rank of predicted influencers/adopters)
and compute the average area under the curve (AUC) as
a measure of the predictor quality. We report this measure
within each topic in Figure 5 for the SNAP (top) and CRAWL
(bottom) datasets and for influence followees (left) and adopter
(right) prediction. Overall, in both datasets, the genotype-
based predictors outperform the structure-only counterparts.
The existence of a reciprocal follow link is the best structure-
only predictor implying the importance of bi-directional links
which often may correspond to a friendship relationship [5].
The genotype-based predictors relying on topic specific ac-
tivity, overall activity and the influence structure allow over
20% improvement with respect to the reciprocity predictor
and above two-fold improvement compared to number of fol-
lowees/followers predictors. Although node information alone
(Act and Topic Act) provides a good accuracy, this effect
is even stronger when combining them with the knowledge
of the topic influence network in the composite RW+Act
predictor. The RW+Act increases the rank of followees who
have influenced the same user or other users within the same
topic for different hashtags.

The predictor performance is similar in the CRAWL dataset
(Fig. 5), showing the generalization of our models to different
types of data. The smaller improvement in CRAWL (compared
to SNAP) can be explained partially by sparser usage of our
analysis hashtags or due to possibly evolving genotypes of
users over longer time frames, a hypothesis we are planning
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Fig. 5: Influential followee and adopter prediction accuracy.
We consider several predictors of a user’s influencers by a
hashtag in a known topic. Genotype-based predictors (Act,
Topic Act and RW+Act) perform better than follower structure-
only counterparts (Follower, Followee and Reciprocal).

to evaluate as future work.

Network latency minimization. Another important problem
that can be addressed given knowledge of topic-specific user
behavior is that of improving the speed of information dissem-
ination. Fast information dissemination is critical for social-
media-aided disaster relief, large social movement coordination
(such as the Arab Spring of 2010), as well as time-critical
health information distribution in developing regions. In such
scenarios, genotypes and the influence structure among users
are critical for improving the overall “latency” of the social
media network. In this subsection, we demonstrate the utility
of our individual user models for latency minimization.

Consider a directed path in a topic-specific influence back-
bone N, defined by a sequence of nodes P = (u1, ua...uk).
The path latency 1(P) is defined as the sum of topic-
specific latencies (Time measure of the genotype) [(P) =
>j—1. k1 Lime(u;),u; € P of all nodes except the
destination. The source-destination latency (or just latency)
l(ur,ur) = minp.y,, s, [(P) is defined as the minimum
path latency considering all directed paths between the target
nodes. The concept of latency is similar to that of shortest
path length, except that “length” is measured according to the
responsiveness of traversed nodes (i.e., minimal time until u’s
adoption of a hashtag introduced by ;). The average network
latency is defined as the mean of all node pair latencies. Given
a directed network N(V, E) and latency for every node, we
define the problem of k Latency Minimization (k-LatMin) as
finding the % best target nodes, whose latency reduction leads
to the largest average network latency decrease. We assume
that specific nodes could be targeted to reduce their individual
latency. In real application scenarios, node latency can be
reduced by timely and relevant content recommendation to
target nodes and/or financial incentives. For our analysis we
optimistically assume that every node’s latency could be re-
duced to 0, however, node-wise constraints can be incorporated
according to known limitations of users.

One can show (via a reduction from the Set cover problem)
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Fig. 6: Comparison of three heuristics for Latency Minimiza-
tion in the SNAP dataset. The traces show the relative (w.r.t.
the original) average network latency as a function of the
number of targeted nodes k.

that k-LatMin is NP-hard. We consider three heuristics: Max
Lat targets nodes in descending order of their latency values;
Max BC targets nodes in decreasing order of their structural
node betweeness-centrality measure; and Greedy targets nodes
based on their maximal decrease of average latency combining
both structural (centrality) and genotype (latency) information.

Figure 6 shows the performance of the three heuristics
in minimizing the average latency in subgraphs (of size 500
nodes) of the largest strongly connected components within
the influence backbones of our SNAP dataset. Considering the
node genotypes (Max Lat) or the influence backbone (Max
BC) on their own is less effective than jointly employing both
(Greedy) across all topics. The Greedy heuristic enables about
2-fold reduction of the overall network latency by targeting as
few as 1% (5 out of 500 nodes) of the user population. It is
interesting to note that in Sports and Celebrities, since there
are central nodes of large degrees, the betweeness-centrality
criterion performs almost as good as Greedy.

VIII. CONCLUSION

We introduced the social media genotype—a genetically-
inspired framework for modeling user participation in social
media. Features captured by the user genotypes define the
actual topic-specific user behavior in the network, while the
traditionally analyzed follower network defines only what is
possible in the information dissemination process. Within our
genotype model, each network user becomes an individual with
a unique and invariant behavioral signature within the topic-
specific content dissemination. In addition, we demonstrated
that users are embedded in topic-specific influence backbones
that differ structurally from the follower network.

We instantiated our topic-based genotype and backbone
framework within a large real-world network of Twitter and
employed it for the tasks of (i) discovering topic-specific
influencers and adopters, and (ii) minimizing the network-wide
information dissemination latency. The genotype framework,
when combined with the topic-specific influence backbones,
enabled good influence predictive power, achieving improve-
ment by more than 20% over using the follower structure
alone. In the latency minimization application, we demon-
strated that the knowledge of topic backbones and genotypes
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can enable 2-fold reduction of the overall network latency by
reducing the latency of appropriately selected 1% of the user
population.
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