Appendix: Derivation of the Fokker-Planck Equation

Let {X(t) : t > 0} be a one-dimensional stochastic process with t; > t5 > t3. We use P(X1,t1; Xo,t2)
to denote the joint probability distribution, i.e., the probability that X (¢;) = X; and X (t2) = Xs, and
P(X1,t1 | Xa,t2) to denote the conditional (or transition) probability distribution, i.e., the probability that
X(tl) = X1 given that X(tg) = )(27 defined as P(Xl,tl;XQ,tQ) = P(Xl,tl ‘ XQ,tQ)P(XQ,tQ). We will
assume X (t) is a Markov process, namely,

P(X1,ty | Xo,t2; X3,t3) = P(X1,t1 | Xo,t2). (1]

For any continuous state Markov process, the following Chapman-Kolmogorov equation is satisfied (1,2):
P(X1,t1 | X3,t3) = /P(Xlatl | Xo,t2) P(Xa,t2 | X3,t3)dXo. 2]

In the following, we will also assume X (¢) is time homogeneous:
P(X1,t1 + 8; Xo,ta + 8) = P(Xy,t1, Xo, ta), [3]

so that X is invariant with respect to a shift in time. For simplicity of notation, we use P(X1,t; —to | X2) =
We will now outline the derivation of the Fokker-Planck equation, a partial differential equation for the
time evolution of the transition probability density function. This closely follows the derivation in ref. 3.
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where A(Y) is any smooth function with compact support. Writing
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and interchanging the limit with the integral, it follows that
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Applying the Chapman-Kolmogorov identity (Eq. 2), the right hand side of Eq. 6 can be written as

lim é [/o; h(Y) /o; P(Y,At | Z)P(Z,t | X)dZdY — /O; h(Y)P(Y,t | X)dY] . 7]
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Interchanging the limits of integration in the first term of Eq. 7, letting Y — Z in the second term, and
using the identity [~ P(Y, At | Z)dY = 1, we have

lim { / T Pzt X) / T P, AL Z2) (h(Y) — h(Z))deZ} . 8]
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Taylor expanding h(Y) about Z gives

A?EOAL‘ / PZt\X/ P(Y,At| Z2) g h deZ [9]
Defining the jump moments as
1 1 [
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it follows that

/ h(Y Yt|XdY / Zt|X)§:D(")(Z)h(")(Z)dZ. [11]
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Integrating each term on the right side of Eq. 11 by parts n times and using the assumptions on h, after
moving terms to the left hand side, it follows that
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Now, because h is an arbitrary function, it is necessary that

OP(Za,f|X) _ c- (_a%)n[D(")(Z)P(Z,tX)}. [13]
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We define the probability distribution function P(X,t) of X (t) as the solution of Eq. 13 with initial condition
given by a J-distribution at Xy at ¢ = 0. In this case, P(X,t) = P(X,t | Xo,0) and we may write Eq. 13 as
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with ! 1
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which is commonly called the Kramers-Moyal expansion. Now, if we assume D) (X) = 0 for n > 2, then
we have the Fokker-Planck equation:

OP(X,t) 0 02
—ar = " ax VEX)PX O+ 555 [DX)P(X, 1], [16]
where, V(X) = DM (X) is the drift coefficient and D(X) = D®(X) > 0 is the diffusion coefficient, which
can be written as BIX (1 X B02(t X
t; 1 0o“(t;
(X (t; Xo)) D(Xy) = = ( _0> , [17]

X =
V(o) a |y 2 At |,

where angular brackets denote ensemble averaging, 0% denotes the variance of X, and X (¢; X) denotes a
realization with X (0) = Xo. Any stochastic process X (t) whose probability distribution function satisfies
the Fokker-Planck equation is known mathematically as a diffusion process (1).
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