
Appendix: Derivation of the Fokker-Planck Equation

Let {X(t) : t ≥ 0} be a one-dimensional stochastic process with t1 > t2 > t3. We use P (X1, t1;X2, t2)
to denote the joint probability distribution, i.e., the probability that X(t1) = X1 and X(t2) = X2, and
P (X1, t1 | X2, t2) to denote the conditional (or transition) probability distribution, i.e., the probability that
X(t1) = X1 given that X(t2) = X2, defined as P (X1, t1;X2, t2) = P (X1, t1 | X2, t2)P (X2, t2). We will
assume X(t) is a Markov process, namely,

P (X1, t1 | X2, t2;X3, t3) = P (X1, t1 | X2, t2). [1]

For any continuous state Markov process, the following Chapman-Kolmogorov equation is satisfied (1,2):

P (X1, t1 | X3, t3) =

∫

P (X1, t1 | X2, t2)P (X2, t2 | X3, t3)dX2. [2]

In the following, we will also assume X(t) is time homogeneous:

P (X1, t1 + s;X2, t2 + s) = P (X1, t1, X2, t2), [3]

so that X is invariant with respect to a shift in time. For simplicity of notation, we use P (X1, t1− t2 | X2) ≡
P (X1, t1 | X2, t2).

We will now outline the derivation of the Fokker-Planck equation, a partial differential equation for the
time evolution of the transition probability density function. This closely follows the derivation in ref. 3.
Consider

∫

∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY, [4]

where h(Y ) is any smooth function with compact support. Writing

∂P (Y, t | X)

∂t
= lim

∆t→0

P (Y, t + ∆t | X) − P (Y, t | X)

∆t
, [5]

and interchanging the limit with the integral, it follows that
∫

∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY = lim

∆t→0

∫

∞

−∞

h(Y )

[

P (Y, t + ∆t | X) − P (Y, t | X)

∆t

]

dY. [6]

Applying the Chapman-Kolmogorov identity (Eq. 2), the right hand side of Eq. 6 can be written as

lim
∆t→0

1

∆t

[
∫

∞

−∞

h(Y )

∫

∞

−∞

P (Y,∆t | Z)P (Z, t | X)dZdY −

∫

∞

−∞

h(Y )P (Y, t | X)dY

]

. [7]

Interchanging the limits of integration in the first term of Eq. 7, letting Y → Z in the second term, and
using the identity

∫

∞

−∞
P (Y,∆t | Z)dY = 1, we have

lim
∆t→0

1

∆t

[
∫

∞

−∞

P (Z, t | X)

∫

∞

−∞

P (Y,∆t | Z) (h(Y ) − h(Z)) dY dZ

]

. [8]

Taylor expanding h(Y ) about Z gives

lim
∆t→0

1

∆t

[

∫

∞

−∞

P (Z, t | X)

∫

∞

−∞

P (Y,∆t | Z)

∞
∑

n=1

h(n)(Z)
(Y − Z)n

n!
dY dZ

]

. [9]

Defining the jump moments as

D(n)(Z) =
1

n!
lim

∆t→0

1

∆t

∫

∞

−∞

(Y − Z)nP (Y,∆t | Z)dY, [10]
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it follows that
∫

∞

−∞

h(Y )
∂P (Y, t | X)

∂t
dY =

∫

∞

−∞

P (Z, t | X)

∞
∑

n=1

D(n)(Z)h(n)(Z)dZ. [11]

Integrating each term on the right side of Eq. 11 by parts n times and using the assumptions on h, after
moving terms to the left hand side, it follows that

∫

∞

−∞

h(Z)

(

∂P (Z, t | X)

∂t
−

∞
∑

n=1

(

−
∂

∂Z

)n
[

D(n)(Z)P (Z, t | X)
]

)

dZ = 0. [12]

Now, because h is an arbitrary function, it is necessary that

∂P (Z, t | X)

∂t
=

∞
∑

n=1

(

−
∂

∂Z

)n
[

D(n)(Z)P (Z, t | X)
]

. [13]

We define the probability distribution function P (X, t) of X(t) as the solution of Eq. 13 with initial condition
given by a δ-distribution at X0 at t = 0. In this case, P (X, t) ≡ P (X, t | X0, 0) and we may write Eq. 13 as

∂P (X, t)

∂t
=

∞
∑

n=1

(

−
∂

∂X

)n
[

D(n)(X)P (X, t)
]

, [14]

with

D(n)(X0) =
1

n!
lim

∆t→0

1

∆t
〈[X(t + ∆t) − X(t)]n〉|

t=0 , [15]

which is commonly called the Kramers-Moyal expansion. Now, if we assume D(n)(X) = 0 for n > 2, then
we have the Fokker-Planck equation:

∂P (X, t)

∂t
= −

∂

∂X
[V (X)P (X, t)] +

∂2

∂X2
[D(X)P (X, t)] , [16]

where, V (X) ≡ D(1)(X) is the drift coefficient and D(X) ≡ D(2)(X) > 0 is the diffusion coefficient, which
can be written as

V (X0) =
∂〈X(t;X0)〉

∂t

∣

∣

∣

∣

t=0

, D(X0) =
1

2

∂σ2(t;X0)

∂t

∣

∣

∣

∣

t=0

, [17]

where angular brackets denote ensemble averaging, σ2 denotes the variance of X, and X(t;X0) denotes a
realization with X(0) = X0. Any stochastic process X(t) whose probability distribution function satisfies
the Fokker-Planck equation is known mathematically as a diffusion process (1).
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