Appendix: Derivation of the Fokker-Planck Equation

Let $\{X(t): t \geq 0\}$ be a one-dimensional stochastic process with $t_{1}>t_{2}>t_{3}$. We use $P\left(X_{1}, t_{1} ; X_{2}, t_{2}\right)$ to denote the joint probability distribution, i.e., the probability that $X\left(t_{1}\right)=X_{1}$ and $X\left(t_{2}\right)=X_{2}$, and $P\left(X_{1}, t_{1} \mid X_{2}, t_{2}\right)$ to denote the conditional (or transition) probability distribution, i.e., the probability that $X\left(t_{1}\right)=X_{1}$ given that $X\left(t_{2}\right)=X_{2}$, defined as $P\left(X_{1}, t_{1} ; X_{2}, t_{2}\right)=P\left(X_{1}, t_{1} \mid X_{2}, t_{2}\right) P\left(X_{2}, t_{2}\right)$. We will assume $X(t)$ is a Markov process, namely,

$$
\begin{equation*}
P\left(X_{1}, t_{1} \mid X_{2}, t_{2} ; X_{3}, t_{3}\right)=P\left(X_{1}, t_{1} \mid X_{2}, t_{2}\right) \tag{1}
\end{equation*}
$$

For any continuous state Markov process, the following Chapman-Kolmogorov equation is satisfied (1,2):

$$
\begin{equation*}
P\left(X_{1}, t_{1} \mid X_{3}, t_{3}\right)=\int P\left(X_{1}, t_{1} \mid X_{2}, t_{2}\right) P\left(X_{2}, t_{2} \mid X_{3}, t_{3}\right) d X_{2} \tag{2}
\end{equation*}
$$

In the following, we will also assume $X(t)$ is time homogeneous:

$$
\begin{equation*}
P\left(X_{1}, t_{1}+s ; X_{2}, t_{2}+s\right)=P\left(X_{1}, t_{1}, X_{2}, t_{2}\right) \tag{3}
\end{equation*}
$$

so that X is invariant with respect to a shift in time. For simplicity of notation, we use $P\left(X_{1}, t_{1}-t_{2} \mid X_{2}\right) \equiv$ $P\left(X_{1}, t_{1} \mid X_{2}, t_{2}\right)$.

We will now outline the derivation of the Fokker-Planck equation, a partial differential equation for the time evolution of the transition probability density function. This closely follows the derivation in ref. 3 . Consider

$$
\begin{equation*}
\int_{-\infty}^{\infty} h(Y) \frac{\partial P(Y, t \mid X)}{\partial t} d Y \tag{4}
\end{equation*}
$$

where $h(Y)$ is any smooth function with compact support. Writing

$$
\begin{equation*}
\frac{\partial P(Y, t \mid X)}{\partial t}=\lim _{\Delta t \rightarrow 0} \frac{P(Y, t+\Delta t \mid X)-P(Y, t \mid X)}{\Delta t} \tag{5}
\end{equation*}
$$

and interchanging the limit with the integral, it follows that

$$
\begin{equation*}
\int_{-\infty}^{\infty} h(Y) \frac{\partial P(Y, t \mid X)}{\partial t} d Y=\lim _{\Delta t \rightarrow 0} \int_{-\infty}^{\infty} h(Y)\left[\frac{P(Y, t+\Delta t \mid X)-P(Y, t \mid X)}{\Delta t}\right] d Y \tag{6}
\end{equation*}
$$

Applying the Chapman-Kolmogorov identity (Eq. 2), the right hand side of Eq. 6 can be written as

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\int_{-\infty}^{\infty} h(Y) \int_{-\infty}^{\infty} P(Y, \Delta t \mid Z) P(Z, t \mid X) d Z d Y-\int_{-\infty}^{\infty} h(Y) P(Y, t \mid X) d Y\right] \tag{7}
\end{equation*}
$$

Interchanging the limits of integration in the first term of Eq. 7, letting $Y \rightarrow Z$ in the second term, and using the identity $\int_{-\infty}^{\infty} P(Y, \Delta t \mid Z) d Y=1$, we have

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\int_{-\infty}^{\infty} P(Z, t \mid X) \int_{-\infty}^{\infty} P(Y, \Delta t \mid Z)(h(Y)-h(Z)) d Y d Z\right] \tag{8}
\end{equation*}
$$

Taylor expanding $h(Y)$ about Z gives

$$
\begin{equation*}
\lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left[\int_{-\infty}^{\infty} P(Z, t \mid X) \int_{-\infty}^{\infty} P(Y, \Delta t \mid Z) \sum_{n=1}^{\infty} h^{(n)}(Z) \frac{(Y-Z)^{n}}{n!} d Y d Z\right] \tag{9}
\end{equation*}
$$

Defining the jump moments as

$$
\begin{equation*}
D^{(n)}(Z)=\frac{1}{n!} \lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t} \int_{-\infty}^{\infty}(Y-Z)^{n} P(Y, \Delta t \mid Z) d Y \tag{10}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\int_{-\infty}^{\infty} h(Y) \frac{\partial P(Y, t \mid X)}{\partial t} d Y=\int_{-\infty}^{\infty} P(Z, t \mid X) \sum_{n=1}^{\infty} D^{(n)}(Z) h^{(n)}(Z) d Z . \tag{11}
\end{equation*}
$$

Integrating each term on the right side of Eq. 11 by parts n times and using the assumptions on h, after moving terms to the left hand side, it follows that

$$
\begin{equation*}
\int_{-\infty}^{\infty} h(Z)\left(\frac{\partial P(Z, t \mid X)}{\partial t}-\sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial Z}\right)^{n}\left[D^{(n)}(Z) P(Z, t \mid X)\right]\right) d Z=0 \tag{12}
\end{equation*}
$$

Now, because h is an arbitrary function, it is necessary that

$$
\begin{equation*}
\frac{\partial P(Z, t \mid X)}{\partial t}=\sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial Z}\right)^{n}\left[D^{(n)}(Z) P(Z, t \mid X)\right] \tag{13}
\end{equation*}
$$

We define the probability distribution function $P(X, t)$ of $X(t)$ as the solution of Eq. 13 with initial condition given by a δ-distribution at X_{0} at $t=0$. In this case, $P(X, t) \equiv P\left(X, t \mid X_{0}, 0\right)$ and we may write Eq. 13 as

$$
\begin{equation*}
\frac{\partial P(X, t)}{\partial t}=\sum_{n=1}^{\infty}\left(-\frac{\partial}{\partial X}\right)^{n}\left[D^{(n)}(X) P(X, t)\right] \tag{14}
\end{equation*}
$$

with

$$
\begin{equation*}
D^{(n)}\left(X_{0}\right)=\left.\frac{1}{n!} \lim _{\Delta t \rightarrow 0} \frac{1}{\Delta t}\left\langle[X(t+\Delta t)-X(t)]^{n}\right\rangle\right|_{t=0} \tag{15}
\end{equation*}
$$

which is commonly called the Kramers-Moyal expansion. Now, if we assume $D^{(n)}(X)=0$ for $n>2$, then we have the Fokker-Planck equation:

$$
\begin{equation*}
\frac{\partial P(X, t)}{\partial t}=-\frac{\partial}{\partial X}[V(X) P(X, t)]+\frac{\partial^{2}}{\partial X^{2}}[D(X) P(X, t)] \tag{16}
\end{equation*}
$$

where, $V(X) \equiv D^{(1)}(X)$ is the drift coefficient and $D(X) \equiv D^{(2)}(X)>0$ is the diffusion coefficient, which can be written as

$$
\begin{equation*}
V\left(X_{0}\right)=\left.\frac{\partial\left\langle X\left(t ; X_{0}\right)\right\rangle}{\partial t}\right|_{t=0}, \quad D\left(X_{0}\right)=\left.\frac{1}{2} \frac{\partial \sigma^{2}\left(t ; X_{0}\right)}{\partial t}\right|_{t=0} \tag{17}
\end{equation*}
$$

where angular brackets denote ensemble averaging, σ^{2} denotes the variance of X, and $X\left(t ; X_{0}\right)$ denotes a realization with $X(0)=X_{0}$. Any stochastic process $X(t)$ whose probability distribution function satisfies the Fokker-Planck equation is known mathematically as a diffusion process (1).

References

1. Gardiner, C. W. (2004) Handbook of Stochastic Methods. (Springer, Berlin).
2. Risken, H. (1996) The Fokker-Planck Equation: Methods of Solution and Applications. (Springer, Berlin).
3. Coffey, W. T, Kalmykov, Y. P, \& Waldron, J. T. (2004) The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry, and Electrical Engineering. (World Scientific, Singapore).
