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We propose a design for an energy harvester which has the potential to harvest vibrational energy

over a broad range of ambient frequencies. The device uses two flexible ceramic piezoelectric

elements arranged in a buckled configuration in the absence of vibrations. Experimental data show

that this design allows enhanced harvesting of energy relative to a comparable cantilever design,

both for periodic and stochastic vibrations. Moreover, the data suggest that this harvester has its

peak energy generation when it responds with chaotic vibrations. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4729875]

Energy harvesters are a promising technology for cap-

turing useful energy from the environment or a machine’s

operation. Typical vibrational energy harvesters are com-

posed of a mass-spring system with a transducer,1 where

vibrations in the surrounding environment act as inputs and

cause the spring-mass system to oscillate. The oscillations of

the device are converted into electric energy by electrostatic,

piezoelectric, or electromagnetic transduction.1 Proposed

harvesters of vibrational energy are often based on linear me-

chanical principles. Such devices give appreciable response

amplitude only if the dominant ambient vibration frequency

is close to the resonance frequency of the harvester. In order

to achieve maximum conversion efficiency, the dominant

ambient vibration frequency must therefore be known prior

to the design process. For a broadband or time-varying ambi-

ent vibration spectrum, only a small fraction of the available

ambient vibration energy can be extracted by such devices.

There have been attempts to overcome such bandwidth limi-

tations while staying within the linear mechanical system

framework, e.g., Ref. 2.

Recently, attempts have been made to utilize nonlinear

systems to harvest energy, typically with the goal of allow-

ing appreciable energy harvesting for a broader range of

forcing frequencies. There are two main approaches: (1)

Design a harvesting system to have a hardening frequency

response when periodically forced.3–10 (2) Design a harvest-

ing system to have a double well potential, that is, a bistable

system which can jump between the wells due to periodic or

stochastic forcing.9,11–23 The bistability could arise due to

the appropriate placement of magnets11,13–15,19,20 or using a

compressive load to buckle a beam.17 A variation is to design

the system to have an essential nonlinearity in which the lin-

ear stiffness vanishes, so that the system is, in a sense,

between a monostable and bistable regime.24

Here, we report on a design for an energy harvester in

which the elements are buckled in the absence of vibrations

to give a double well potential. This harvester uses two flexi-

ble ceramic piezoelectric elements from Advanced Cerame-

trics, Inc., as shown in Figure 1: a single layer element

(catalog #PFC-W14) and a bimorph element (catalog

#PFCB-W14), each of which is 132 mm long and 14 mm

wide, and 0.3 mm and 1.3 mm thick, respectively. The

bimorph has two piezo layers separated by a core. The

bimorph element has approximately 40 times the stiffness of

the single layer element. The elements are bonded together

as shown in Figure 1(b) with a B¼ 6 mm overlap, and the

other ends fixed to an aluminum mount so that at equilib-

rium, the single layer element is slightly buckled, as shown

in Figure 1(a). Our harvesting results have proved to be ro-

bust to small changes in overlap length, B, overall length, D,

and bimorph length, L but are very sensitive to the amount of

buckling, as measured by d. The mount is attached to a

voice-coil shaker and shaken vertically with the instantane-

ous acceleration measured by an accelerometer. The shaker

has been characterized to provide a constant power output

through the frequency range of interest. The relative power

input to the device is calculated as the variance of the accel-

erometer signal divided by the shaking frequency, which rep-

resents the root mean square (RMS) velocity times the RMS

acceleration to provide RMS power.

The power output of the bimorph layer is connected to a

linear load resistance of 2.2 kX. The output of the single

layer element has been found to be negligible compared to

the bimorph and is ignored in this discussion. It was found

that, depending on the vibrational power and frequency, the

voltage across this resistor can be periodic, quasi-periodic, or

FIG. 1. (a) Sketch of experimental device. (b) Zoom-in on bond, not drawn

to scale. Here D¼ 235 mm, d � 6.3 mm, L¼ 116 mm, and B¼ 6 mm. A

short length of each piezo is used to clamp it to the mount.
a)Electronic mail: moehlis@engineering.ucsb.edu.
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chaotic in time. Appreciable power is only generated when

the beam responds by moving between the two equilibrium

positions.

Figure 2 shows the rich variety of responses that can

occur for periodic forcing of this device. These plots demon-

strate the transition from periodic to quasi-periodic to chaotic

response. The range of forcing frequencies in this transition

is quite small, spanning approximately 6 Hz in going from a

period-5 periodic orbit to a fully chaotic response. Transi-

tions such as the one shown here occur throughout the exam-

ined range of frequencies and can be interpreted in terms of

Arnold tongues in the amplitude-frequency parameter space,

with the transition to chaos showing the hallmarks of a torus

which wrinkles until it loses its form, giving chaos, as has

been observed in Refs. 25 and 26. The time series and broad

power spectrum of a different chaotic response for forcing at

167 Hz, producing 0.4 mW, is shown in Figure 3.

Investigations of this energy harvester were focused on

the frequency range of 20–500 Hz, as dictated by the charac-

teristics of the beams and the range of frequencies over

which we could acceptably control the shaker. This range

was examined as a set of 175 discrete frequencies recorded

in hertz with approximately even logarithmic spacing. A

simple cantilevered beam has been subjected to the same se-

ries of tests for comparison; this cantilever was configured as

a bimorph element of equal dimension as used in the buckled

device but clamped approximately in the middle and allowed

to vibrate on both ends, with resonant frequencies in the

neighborhood of 80 Hz. Figure 4 demonstrates the increased

bandwidth our design produces compared to the linear canti-

lever. Cantilever data are plotted as dashed lines, while the

buckled device data is plotted as solid lines. The RMS input

power is 13 W at the highest level, drawn as red with dots,

7.5 W at the intermediate level, drawn as green with x

markers, and 3.2 W at the lowest level, drawn as blue with

no markers. Observe that the two halves of the cantilever

have slightly different resonances, and the peaks are located

at approximately 60 and 100 Hz, providing a maximum out-

put power of 1.0 and 0.3 mW, respectively, for the highest

power input. The first snap-through mode of the buckled

beam design has been experimentally determined to be

approximately 21 Hz. Due to the nonlinearity associated with

snap-through dynamics, linear resonance is not observed in

the examined range of frequencies and power levels.

Note that the largest peak in the power output of the

buckled device is close in magnitude to the resonant peak of

the cantilever, and that the location of this peak increases in

frequency as the input power is increased. For example, at

the lowest input power level, the largest peak occurs at about

153 Hz producing 0.4 mW of power and maintains power

generation over 0.1 mW from 130 to 250 Hz and from 400 to

475 Hz. The cantilever produces peaks of 0.23 and 0.12 mW,

and the output is only maintained over 0.1 mW near the reso-

nant peak. At the highest input power level, the maximum

peak of the buckled device shifts to 213 Hz with power out-

put of 1.1 mW. Power generation is maintained over 0.2 mW

from 165 Hz to 285 Hz and from 380 to 475 Hz. The cantile-

ver produces peaks of 1.0 and 0.3 mW, with no appreciable

power generation away from resonance. Note also that the

peak of highest power generation for the buckled device is

followed closely by a dip, and a second peak, where none of

these frequencies are necessarily multiples of the resonant

frequency. This shape remains consistent at all tested input

power levels.

While observing the system, it can be seen that the oscil-

lations of the beam shift between periodic, quasi-periodic,

and chaotic response as the forcing frequency is varied.

Observations indicate that regions which produce a chaotic

voltage output result in significant power generation. An

interesting viewpoint for understanding the large response

over a broad frequency range is the following: suppose we

have an oscillator which can undergo chaotic oscillations,

which could be transient or attracting. It is known that em-

bedded within a chaotic set are an infinite number of unsta-

ble periodic orbits, each of which generically has a different

frequency.27 Indeed, chaos can be viewed as the system

“bouncing around” amongst these unstable periodic orbits;

this is an interpretation for why the power spectrum for a

FIG. 2. Poincaré maps demonstrating a typical transition from a periodic orbit to chaotic oscillations as the forcing frequency is varied. The dots indicate in-

stantaneous values of voltage (V) and rate of change of voltage ( _V ) once per forcing cycle. (a) shows a period-5 periodic orbit. (b) shows a quasi-periodic orbit,

which wrinkles and folds, as seen in (c), until all recognizable order is lost and a chaotic response is achieved, as seen in (d).

FIG. 3. (a) Example chaotic time series for shaking frequency 167 Hz, pro-

ducing 0.4 mW of power. (b) Power spectrum for time series shown above;

the broad spectrum is characteristic of chaotic behavior.
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chaotic signal is broadband.28 The response of oscillators in

the chaotic regime might be related to resonances between

the drive frequency and the various unstable periodic orbits

embedded in the chaotic set.

In addition to the single frequency tests, our design and

the reference cantilever were subjected to a series of inputs

with a wide energy spectrum. A representative input fre-

quency response can be seen in Figure 5(a), with a compari-

son of the output of the buckled design and the cantilever

arrangement in the lower portion. This input shape was

selected to mimic a vibration spectrum that might be avail-

able for harvesting, rather than a specific single frequency

input as was used in the prior experiments. Tests were con-

ducted through the same frequency range but with reduced

frequency resolution. The buckled device harvested more

energy over the range from 150–200 Hz than the cantilever

device was able to harvest when excited near its resonant fre-

quency(s). This can be explained by the effects of spreading

power over a range of frequencies and the chaotic tendencies

of the new design. Many unstable periodic orbits are able to

exist in the chaotic regime, allowing the experimental device

to respond to many different frequency components, which

makes the total effective power being used to excite the sys-

tem larger than the input power at any specific frequency.

The cantilever only responds to input power at its resonant

frequency and thus effectively ignores a large portion of the

input power.

A variety of environments produce considerable vibra-

tional energy which can potentially be harvested; further-

more, many mechanical and electronic systems such as

sensor networks require bulky batteries and/or power sup-

plies for their operation. We believe that energy harvesters

based on the design presented in this paper, which operate in

nonlinear and chaotic regimes, could prove to be very useful

for such environments.
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