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Abstract— We present a new approach to the problem of
desynchronization of a population of all-to-all coupled oscil-
lators. Motivated by Deep Brain Stimulation treatment of
Parkinson’s Disease, the objective is to break this synchrony
in the fullest measure by means of a control input only applied
to one of the oscillators. Specifically, nonlinear hybrid control
is proposed as a novel method for robust global asymptotic
stabilization of the splay state. The problem setup is presented
in a general way, and a simple example is solved that gives an
idea of how this method might be applied in practice.

I. INTRODUCTION

Populations of periodically firing neurons in the brain are

often modeled as networks of coupled oscillators, e.g. [1],

[2]. Pathological synchrony of these neurons in the motor

control region of the brain sometimes results in Parkinson’s

disease, for which, Deep Brain Stimulation (DBS) has been

proven to be an effective treatment. In DBS, an electrical

stimulus is injected into the brain to desynchronize the firing.

Recently, the use of phase models has become more common

in studies related to controlling neurons [3], [4], [5], [6].

However, these studies have primarily been on a single-

neuron level [4], [6], or else, at the population level, they

have allowed multiple control inputs to the system [5]. In

this study, nonlinear hybrid control [7] is proposed as a new

approach to controlling a population of neurons with only a

single control input. However, at this early stage, we have

made two simplifying assumptions: observability of phases

of all neurons and simple additive control.

II. MODEL SETUP

We consider a phase model for a network of N coupled

oscillators, subject to one control input that, without loss of

generality is applied to the N th oscillator in the network:

θ̇i = ω +
N∑

j=1

αijf(θj − θi) + δiNu, θi ∈ [0, 2π), (1)

for i = 1, 2, ..., N . θi is the phase of oscillator i, ω is the

oscillators’ natural frequency, αij is the coupling strength

from oscillator j to oscillator i, f(·) is the 2π-periodic

coupling function, δ is the Kronecker delta function, and u is

the control input. By convention, neuron i fires when θi = 0.
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We note that all oscillators are assumed to have identical

ω, and that the functional form of the coupling between

any pair of neurons is identical, although the strength of

such coupling can differ. We can simplify this system by

defining ψi = θN − θi for i = 1, 2, .., N − 1, to obtain

the N − 1 dimensional system ψ̇i = Ωi(ψ) + u where

ψ = (ψ1, ψ2, ..., ψN−1)
T is the vector of phase differences

and Ωi(ψ) is the resulting uncontrolled vector field. Our

objective here is to not only break the in-phase synchrony

between the oscillators, but to break it to the fullest measure

and stabilize the splay state, for which the oscillators’ phases

are distributed evenly on the unit phase circle, every two

neighboring oscillators being 2π
N

radians apart. That is, we

want to stabilize ψi = (N − i) 2π
N

. Performing a coordinate

transformation to move the splay state to the origin, we get

the following ξ system:

ξ̇i = Ωi(ξ) + u, i = 1, 2, ..., N − 1, (2)

where ξ = (ξ1, ξ2, ..., ξN−1)
T and Ωi(ξ) is the uncontrolled

vector field. Now, if we apply the coordinate transformation

x2i−1 = cos(ξi) and x2i = sin(ξi), we get the following

2(N − 1) dimensional system:

ẋ2i−1 = −(Ωi(ξ)+u)x2i ẋ2i = (Ωi(ξ)+u)x2i−1, (3)

with N−1 constraints: x2

2i−1
+x2

2i = 1, for i = 1, 2, · · · , N−
1. Stabilizing ξi = 0 in (2) corresponds to stabilizing

(x2i−1, x2i) = (1, 0) in (3). This is in fact, a problem of

stabilization of N − 1 points on a circle.

To investigate the control strategy for this system, we

consider the following example. We emphasize that the

control strategy taken in this example should not be viewed

as a definite approach towards controlling such systems, but

it is suggestive that there might be a way to control networks

of coupled oscillators with only one input.

III. EXAMPLE AND CONTROL STRATEGY

We consider N = 3, the coupling function f(x) =
sin(3x), and symmetric coupling with αij = αji. When

one does the aforementioned coordinate transformations, one

obtains (3) with i = 1, 2, where here, x1 = cos(ξ1),
x2 = sin(ξ1), x3 = cos(ξ2), and x4 = sin(ξ2). The goal

is to stabilize the ξi = 0, or equivalently X = (1, 0, 1, 0)T

for this system. We will apply a series of different control

laws to accomplish our goal, hence the name hybrid control.

The control strategy for this example is as follows. We

first restrict our attention to one of the oscillators, say ξ1.

We apply the same approach as in Example 34 of [7] for

robust global stabilization of a point on a circle. We make

sure that we apply a control that would steer this oscillator
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to (x1, x2) = (1, 0) regardless of what the other oscillator

is doing. To this end, we introduce u = −Ω1(ξ) − x2 as

the main control law that achieves almost global asymptotic

stabilization for (x1, x2) = (1, 0) (by almost, we mean that

there is a measure zero set for which this control is not

effective). To see this, we look at the first two equations in

(3). If we replace this u in these equations we get:

ẋ1 = x2

2
, ẋ2 = −x1x2. (4)

We can prove asymptotic stabilization of (x1, x2) =
(1, 0) or equivalently, ξ1 = 0, using the Lyapunov function

V1(x1, x2) = 1

2
(x1 − 1)2 + 1

2
x2

2
. The derivative of this

Lyapunov function along the trajectories of the system is

V̇1 = −x2

2
≤ 0. In accordance with Barbashin-Krasovskii-

LaSalle invariance principle, we argue that V̇ ≡ 0 implies

x2 ≡ 0, which considering (4) and the fact that x2

1
+x2

2
= 1,

further implies that x1 = ±1. Therefore, u = −Ω1(ξ) − x2

asymptotically stabilizes (x1, x2) = (1, 0) for ∀(x1, x2) 6=
(−1, 0). (x1, x2) = (−1, 0) is a fixed point for the closed

loop system (4), i.e., at this point we need another control,

namely an auxiliary control to steer the system out of this

state before switching to the main controller. This auxiliary

control is taken to be u = −Ω1(ξ) − x1, resulting in

ẋ1 = x1x2, ẋ2 = −x2

1
. (5)

The time derivative of the Lyapunov function

V2(x1, x2) = 1

2
x2

1
+ 1

2
(x2 + 1)2 along the trajectories

of (5) is V̇2 = −x2

1
≤ 0, implying local asymptotic stability

for (x1, x2) = (0,−1). This implies that the state is pushed

down on the circle and away from (x1, x2) = (−1, 0).
The domain of applicability of this auxiliary control is

taken to be a small neighborhood of (−1, 0), and the

domain of applicability of the main control is taken to be

everywhere on the circle except for a smaller neighborhood

of (−1, 0). There is a hysteresis region between the domains

of applicability of the two controls to avoid chattering in

the system. The combination of the two controllers globally

asymptotically stabilizes (1, 0) for the first oscillator. Fig. 1

shows the phase plane of the system in the ξ coordinates

under u = −Ω1(ξ) − x2.

Now we turn our attention to the second oscillator ξ2. We

see that for this example, depending on the initial conditions,

(x3, x4) asymptotically approach (1, 0) or (−0.5,±
√

3/2),
which is equivalent to ξ2 = 0,±2π/3. If not at (1, 0), we

apply u = −Ω2(ξ)− x3 to (3) to force the second oscillator

away from these points and towards (0,−1). This control

ensures asymptotic stability of (x3, x4) = (0,−1) by similar

Lyapunov function arguments as before. However, upon

application of this control, considering (2) one can verify

that ξ̇1 becomes strictly positive, resulting in continuous

CCW rotation of ξ1 on the circle. With ξ2 asymptotically

close to 3π/2 and ξ1 continuously increasing, in finite

time, the overall state of the system falls in the region of

π < ξ1 < 3π/2 and ξ2 ≈ 3π/2 where the main control

u = −Ω1(ξ) − x2 could be switched on again to steer both

ξ1 and ξ2 to the desired location, as can be seen from Fig. 1.

This method of control robustly and globally stabilizes the

splay state for our network of three oscillators. The results

are shown for the in-phase initial condition in terms of the

original θ variables introduced in (1). Fig. 2 shows the phase

differences and the overall control law and the instances in

time that the control law has been changed.
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Fig. 1. Phase space of ξ1 − ξ2 system under u(X) = −Ω1(X) − x2.
We stabilize (ξ1, ξ2) = (0, 0)(or equivalently, (ξ1, ξ2) = (2π, 2π)).

0 5 10 15 20 25 30 35 40
−2

0

2

4

6

t

 

 

θ
2
−θ

1
θ

3
−θ

1

0 5 10 15 20 25 30 35 40

−2

0

2

t

 

 

control cont. switch

Fig. 2. Simulation result for the in-phase initial condition, (top) θ2 and
θ3 relative to θ1 are shown to converge to 2π/3 and 4π/3, respectively;
(bottom) the control input and the number of control switches are shown.

IV. FUTURE WORK

The example presented here suggests that there may be

potential for this method of control for more general net-

works of coupled oscillators. However, one would need to

address the problem for arbitrary coupling functions f(·),
coupling strengths αij , and oscillator numbers N , and it

would be desireable to relax the observability condition.

There is also potential for research in optimizing the hybrid

control method based on the total input energy or the total

time.
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