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Abstract— Deep brain stimulation (DBS) is a widespread
method of combating tremors associated with Parkinson’s
disease, but whose mechanisms are not fully understood.
One hypothesis, supported experimentally, is that some
symptoms of Parkinson’s are associated with pathological
synchronization of neurons in the basal ganglia. For this
reason, there has been interest in recent years in finding
efficient ways to desynchronize neurons that are both fast-
acting and low-power. Recent results on coordinated reset
and periodically forced oscillators suggest that forming
distinct clusters of neurons may prove to be more effective
than achieving complete desynchronization by promoting
plasticity effects that might persist after stimulation is
turned off. Existing proposed methods for achieving clus-
tering frequently require either multiple input sources or
precomputing the control signal. We propose here a control
strategy for clustering, based on an analysis of the reduced
phase model for a set of identical neurons, that allows for
real-time, single-input control of a population of neurons
with low-amplitude, low total energy signals.

I. INTRODUCTION

Deep brain stimulation (DBS) is a proven method of
reducing certain symptoms related to Parkinson’s disease
(PD), most notably tremors and dyskinesia, wherein an
electrode is implanted in either the subthalamic nucleus
(STN) or global pallidus internus (GPi) [1], [2]. De-
spite its proven effectiveness, the mechanisms by which
DBS alleviates the symptoms are poorly understood.
Additionally, there are risks associated with DBS, both
related to the surgical procedure and hardware as well
as to the chronic usage in combating the symptoms of
PD [1], [3]. For these reasons, there have been various
attempts in recent years at not only better understanding
the processes that allow for the success of DBS, but
also understanding ways to reduce the possible negative
side-effects.

Recent work [4]–[8] suggests that symptoms of
Parkinson’s are associated with elevated synchrony of
neurons in the basal ganglia, and there has been ex-
perimental and theoretical evidence [9]–[11] that the
reduction of this synchrony is correlated to the alle-
viation of symptoms. One approach to achieve partial
desynchronization is to split the neurons into clusters,
in which only a subpopulation of the neurons are spike-

synchronized. In fact, [10] suggests that the standard
DBS protocol leads to clusters.

One promising approach to clustering, coordinated
reset, involves using a network of electrode implants
delivering a series of identical impulses separated by
a time delay between implants. This has been studied
extensively [9], [12]–[14] with preliminary clinical suc-
cess [15]. The method, however, relies on a number of
electrodes equal to the number of clusters desired. This
may not always be physically feasible in practice. It also
requires the powering of multiple electrodes simultane-
ously, which additionally limits its energy efficiency.

Another approach is to design the control to maximize
the desynchronization of the neurons. In [16], this is
done using a high-amplitude input to drive neurons close
to the unstable fixed point in the interior of the stable
limit cycle. [17] develops an optimal control strategy
that is more energy-efficient than the “phaseless set”
method proposed in [16] but requires more frequent
application of the control signal. In both cases, the
energy cost represents a substantial improvement over
conventional DBS and requires only a single input; total
desynchronization, however, may not be preferable, as
it returns to a synchronous state more quickly than in
clustering (for comparison, see [17] and [14]). Addition-
ally, clustering behavior may contribute to longer-term
reduction in pathological synchronization via increased
plasticity in the relevant neural regions [18].

[17], [19]–[21] all employ precomputed signals to
achieve their control objectives. Like [17], [19] and
[20] use optimization principles to derive lowest-energy
control strategies for populations of neurons. In [21],
heterogeneity in the natural frequencies of the neurons
is exploited to entrain clustering of neurons. The use of
precomputed, open-loop control signals in these methods
reduces their flexibility in real-time application; there
is no capacity for adjustment to error in the model.
Additionally, the reliance on heterogeneity makes the
control scheme highly model-specific, requiring a com-
plete recalculation in the event of alterations to the
model or neuron population.

In this paper we develop a control strategy that pro-
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vides a low-energy, single-input solution with minimal
requirement for precomputed information. This strategy
can be easily applied to any neuron model to drive the
population to a K-cluster state, where K is an arbitrary
positive integer as desired for the control objective. The
control strategy is designed based on a population of
identical neurons subject to a single input; we note that
modifications can be made to the strategy to accommo-
date heterogeneities as well. We will begin in Section II
by demonstrating that, provided certain assumptions are
made about the neuron population, the population may
always be stabilized to a desired control state. With this
established, we develop the control strategy in Section
III; the strategy is then applied to a neuron population
in Section IV.

As in some of the previously cited papers, we will
make use of the phase model reduction for the dynamical
system in designing our control strategy. The firing
neuron oscillates via a fixed, stable limit cycle; following
the work in [22]–[24] we can therefore reduce the
dynamics when the neuron’s state is near the limit cycle
to the representation:

θ̇j = ω + Z (θj)u (t) , (1)

where θ̇j describes the evolution of the jth neuron and
the control input, u (t), is proportional to the applied
current I and is common to all neurons. Z (θ) is known
as the phase response curve, and describes the sensitivity
of the phase to a stimulus. The two models in this paper
are examples of Type I and Type II neurons [25], respec-
tively. For both models, the phase response curve was
calculated by solving the appropriate adjoint equation
using the dynamical modeling program XPPAUT [26].

II. GENERAL STABILIZABILITY OF N IDENTICAL
NEURONS

We demonstrate that any order-preserving clustering
scheme for uncoupled, identical neurons is asymptot-
ically stabilizable with an appropriate control input.
To do this, it must be shown that the control system
is passive with a radially unbounded positive definite
storage function and zero-state observable [27]. We will
define the storage function, show its passivity, and then
show its zero-state observability. We demonstrate this
for the case of N identical, uncoupled neurons in the
reduced phase model formulation. We label the neurons
such that, at time t = 0, the neuron phases are ordered as
θ1 < θ2 < θ3 < ... < θN . Note that if the phases of two
neurons are exactly the same, because the neurons are
identical and receive identical inputs they are impossible
to separate; therefore, we exclude the possibility of two
phases being equal by assumption. Furthermore, since
the neurons are identical, the response of a neuron is
bounded by the neurons of phase initially less than the

neuron and those greater than the neuron, so for t > 0, it
follows from these assumptions that θ∗1 < θ∗2 < ... < θ∗N
(here we do not use the modulo 2π value for θj , so θj
is allowed to be greater than 2π) [20].

Because we are attempting to stabilize to a target
trajectory instead of a target state, it is natural to define
our storage function in terms of the differences between
the phases of neurons rather than the individual phases
(which are constantly evolving). More precisely, we
construct our storage function as the linear combination
of positive semidefinite functions, each prescribing the
target separation for the phases of two neurons:

vi = vi (θj − θk) , V (θ1, ..., θN ) =

l∑
i=1

βivi, (2)

with βi > 0 and where θj and θk are the phases of any
two neurons whose separation is to be prescribed by the
function vi. The value of l is arbitrary in this context; in
Section III, for the specific problem of clustering l = K.
The individual storage function candidates have three
properties:

1) At the target separation θj−θk = ∆θ∗, vi (∆θ∗) =
0;

2) For θj − θk 6= ∆θ∗, vi (θj − θk) > 0 and grows
unbounded away from ∆θ∗ within the interval θj−
θk ∈ (0, 2π);

3) ∂vi
∂∆θ

∣∣∣∣
∆θ∗

= 0.

We now calculate the value of V̇ . As each individual
storage function is dependent on only one phase differ-
ence, we write V̇ as:

V̇ =

l∑
i=1

βi
∂vi
∂∆θi

∆̇θi =

l∑
i=1

βi
∂vi
∂∆θi

(
θ̇j − θ̇k

)
. (3)

Substituting in from (1), V̇ can be rewritten as:

V̇ = u

l∑
i=1

βi
∂vi
∂∆θi

(Z (θj)− Z (θk)) . (4)

Recalling the definition of passivity [27], the system is
passive if the observable is chosen such that uT y ≥
V̇ . We choose our observable to be a vector y =
[y1, y2, · · · , yl]T such that:

yi = βi
∂vi
∂∆θi

(Z (θj)− Z (θk)) (5)

Since all neurons receive an identical input, uT =
[u, u, · · · , u], it follows that uT y ≥ V̇ everywhere in
the state-space (as uT y = V̇ ). Therefore, the system as
constructed is not only passive but also lossless. Addi-
tionally, y is zero-state observable: at the target state,
∂vi
∂∆θi

= 0; y = 0 otherwise only if Z (θj)−Z (θk) = 0,
but no such pair of neurons can stay indefinitely in the
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set y = 0. We can see this by considering:

d

dt
(Z (θj)− Z (θk)) =

∂Z

∂θ

∣∣∣∣
θj

θ̇j −
∂Z

∂θ

∣∣∣∣
θk

θ̇k, (6)

which, given θ̇j = θ̇k instantaneously, would require the
partial derivative evaluations to be equal for this second
derivative to be equal to 0. To remain in the domain
where y = 0, this would further imply that this equality
must hold over the entire period, i.e. ∃δx ∈ (0, 2π) |
∂Z
∂θ

∣∣∣∣
x

= ∂Z
∂θ

∣∣∣∣
x+δx

∀x. Since ∂Z
∂θ

∣∣∣∣
0

= ∂Z
∂θ

∣∣∣∣
2π

and Z (0) =

Z (2π), this is true if and only if Z (θ) = const, which
is physically not realized. Therefore, as the system is
both passive with an unbounded storage function and
zero-state observable, we can conclude that the system
can be stabilized by the choice of u = −φ (y) where
φ (y) is locally Lipschitz and yφ (y) > 0 [27].

III. CONTROL STRATEGY FOR K CLUSTERS OF
NEURONS

The goals of developing a control strategy for clus-
tering are threefold:

1) Create a flexible method such that the strategy
functions in a way that is agnostic both to the
specific neuron model used and the desired number
of clusters K;

2) Require as little precomputing as possible so the
method is robust to inaccuracies in modeling; and

3) Allow for the control to be easily tuned for param-
eters of interest, such as maximum input amplitude
and speed with which clustering is achieved.

These three conditions can be seen as measures of
robustness for the method. A control scheme that meets
these three criteria can be altered on the fly by changing
only a small number of target parameters, allowing the
input to rapidly be tuned to the performance specifi-
cations desired. Additionally, deviations from expected
results can be compensated for if the input is not
constrained to precomputed values, as would be the
case with optimal control strategies derived from, for
example, variational principles.

The approach proposed here consists of considering
the input of maximal instantaneous efficiency (IMIE)
rather than precomputed data. Although not necessarily
as efficient as true optimization strategies, IMIE requires
only knowledge of the phase response curve of the
neurons and the current state of the system.

The rest of this section will be structured as follows:
first, we will define the two necessary functions for
IMIE: a state function and a cost function. Next, we
will lay out the details of the control strategy. Lastly,
we will see how the reduction of the model for special
cases returns results that agree with intuition and past
results.

Control of a system of N neurons into K clusters
requires the direct control of 2K neurons, split into pairs
of 2, with each pair of neurons adjacent to each other
in phase order. The control is generated in such a way
that each pair is driven apart to a target separation of 2π

K
radians. In this way, K clusters are formed by exploiting
the boundedness of response described in Section II. For
example, if we wished to subdivide a population of 16
identical neurons into 4 clusters and the neurons were
ordered by initial phase (θ1 < θ2 < ... < θ16), the K
control pairs would be {2, 3}, {6, 7}, {10, 11}, and {14,
15}, and the final clusters would be {15, 16, 1, 2}, {3,
4, 5, 6}, {7, 8, 9, 10}, and {11, 12, 13, 14}. We define a
positive semidefinite function ri,j for each control pair;
this function is dependent only on the phase difference
∆θi,j = θj − θi and is identically zero at ∆θi,j = 2π

K .

To allow for consistency in the definition of ri,j across
choices of K, the value of ∆θi,j is mapped by the
function g (∆θi,j) such that g

(
2π
K

)
= π. This is done

using the piecewise definition:

g (∆θi,j) =

{
K
2

∆θi,j 0 ≤ ∆θi,j ≤ 2π
K

(2π+1)K−2π
2(K−1)

(
∆θi,j − 2π

K

)
2π
K
< ∆θi,j ≤ 2π

.

(7)
With this mapping, we define the positive-definite func-
tion for each pair as follows:

ri,j =

{
1

g(∆θi,j)p −
1
πp 0 < ∆θi,j ≤ 2π

K
1

(2π−g(∆θi,j))p −
1
πp

2π
K < ∆θi,j < 2π

, (8)

which is continuous and differentiable everywhere on the
domain (0, 2π) except at ∆θi,j = 2π

K . p is a parameter
whose value can be adjusted to meet control objectives;
in the simulations in Section IV, p = 0.7. The function
can be made first-order differentiable by the replacement
of the constant 1

πp with a term that is linear in g,
though in practice this is not necessary. It does, however,
serve as a valid storage function candidate in (2), while
maintaining derivatives with the same sign as in (8).
Clearly, (8) is greater than zero for all choices of p with
∆θi,j 6= 2π

K and grows unbounded as ∆θi,j → 0 or 2π.

From here we can define a full-state storage function
of the system as:

r =
1

K

K∑
l=1

r2l−1,2l. (9)

Note that here we have omitted the neurons that are
not being directly controlled, and as such our control
pairs are relabelled as {1,2}, {2,3},...,{2K − 1,2K}.
Since each component of the summation is greater than
zero everywhere except at the desired target state, the
combined function is also positive-definite and only
equal to zero when all pairs of neurons achieve the target
separation.
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With the state function defined, we turn our attention
to the cost function. While any cost function can be
used, we select one that penalizes energy usage and
the time required to reach the target state. This can be
accomplished by defining the cost function:

C (t) =

∫ t

0

[
u (τ)

2
+ αr (τ)

]
dτ. (10)

The value of α can be adjusted to increase or decrease
the relative importance of driving the state quickly to its
target. The instantaneous cost associated with the state
and input at a given time t can be given by taking the
derivative and evaluating:

dC

dt
= u (t)

2
+ αr (t) . (11)

With these two functions defined, the input of maxi-
mal instantaneous efficiency can be generated as follows.
An optimal path is one that minimizes C (t) as t→∞.
While to truly optimize, the time-dependent input would
need to be computed in advance, IMIE aims to produce
a near-optimal input by minimizing the cost incurred at
each time step instead. We rewrite C (t) in terms of the
value of r, which in the uncoupled case monotonically
decreases at all times with the appropriate choice of u.
Then the total cost as t→∞ is equal to:

lim
t→∞

C (t) =

∫ 0

r(0)

dC

dr
dr; (12)

by exploiting the chain rule, we equate dC
dr to:

dC

dr
=

dC/dt
dr/dt

. (13)

In this formulation, the input we choose is designed so
that, at all times, the instantaneous magnitude of dC

dr is
minimized. This can be interpreted as the input that is
most efficient in terms of cost relative to change in r.
The value of dC

dt is given by (11). Differentiating r with
respect to time yields:

dr

dt
=

2K∑
l=1

∂r

∂θl

dθl
dt
. (14)

As in (4), we can reorganize this and express it as:

dr

dt
= u

K∑
l=1

∂r

∂θ2l
(Z (θ2l)− Z (θ2l−1)) , (15)

which has the characteristic form −a (θ1, ..., θ2K)u (t).
Therefore, dCdr is equal to:

dC

dr
= −u

2 + αr

au
, (16)

where the dependence of a and r on the state Γ =
[θ1, ..., θ2K ] is omitted from the equation for simplicity.

From this, the extrema can be found by differentiating
with respect to u; the input used is then set equal to
this calculated minimum. Differentiating and rearranging
yields:

u (t) =

√
a2αr (t)

a
= sign (a)

√
αr (t). (17)

Note here the positive root is taken because dC
dr is

negative (since dC
dt is always positive and dr

dt is negative
by construction), and therefore the quantity au must be
positive for the entire expression to be negative.

Recalling the definition of r (t), u evolves as a func-
tion of the average separation ∆̄θ of the control pairs as
approximately

√
α∆̄θ

−p/2. From this it can be seen that,
holding p constant, increasing α corresponds to a

√
α

increase of the maximum amplitude of the input signal.
This in turn decreases the response time of the system at
the cost, generally, of increasing total power usage and
maximum amplitude. In contrast, increasing the value
of p while holding maximum amplitude constant (by
adjusting α accordingly) will cause a sharper decline in
the input signal, reducing power usage but increasing
response time. As such, the system can be tuned to
meet the desired control specifications– power usage,
maximum amplitude, response time– simply by varying
α and p accordingly, regardless of the neuronal model
being used.

We now turn our attention to the case where α = 0
and demonstrate that the method returns a result that
is consistent with intuition. With α = 0, the original
formulation of dC

dr can be simplified greatly, yielding:

dC

dr
=
−u
a
. (18)

Unlike the case where α 6= 0, this is linear and
therefore has no minimum; since the only constraint
is that −ua should be positive, a lower-cost control is
always achieved by decreasing the magnitude of u. It
can be seen that, as predicted by this result, using a
bang-bang controller of constant amplitude takes longer
(but requires less energy) the smaller an amplitude is
used, thereby agreeing that the optimal control from an
energy perspective is to use as small an input as possible.

In practice, we do not want the state to be reached
in infinite time. If we abstract away from the physical
representations of the phase model (which breaks down
at high amplitudes of u) and consider only what will
allow us to reach the target state in as little time as
possible, we would expect that the solution would be to
allow the input signal to be as large as possible for all
times. We can model this by removing u2 from the cost
function so that C∗ (t) = αr (t). Now, dCdr is given as:

dC

dr
=
−αr
au

. (19)
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As in the case where α = 0, this has no minimum,
and instead approaches 0 as u → ∞. Therefore, IMIE
correctly predicts that for the fastest possible response,
u should be allowed to be as large as allowed by the
constraints on the system at all times. This trend, as
well as the minimal-energy trend, are demonstrated in
simulation and shown as solid lines in Fig. 2. While we
do not propose IMIE as a fully optimal control strategy,
this demonstrates that the method matches basic sanity
checks in its application.

IV. PHASE MODEL RESULTS

We conclude by demonstrating that IMIE is both
effective in the phase model regime and also an im-
provement over constant-amplitude control strategies,
which require similarly little precomputing. Two neuron
models (N = 50,K = 4 with clusters of (13,13,12,12))
were tested, the reduced Hodgkin-Huxley model (a type
II neuron model) [28], [29] and the thalamic model (a
type I neuron model) [30]. Fig. 1 shows the characteristic
evolution of both systems as well as the input magnitude.
As can be seen, both achieve strong clustering over the
course of the simulation, demonstrating that the control
scheme is capable of adequately clustering the neuron
population. Furthermore, the choice of the distribution
of neurons among the clusters was made to be roughly
equal, but need not be– to achieve asymmetrical cluster
sizes, it is only necessary to change which pairs of
neurons are being controlled and similar results can
be achieved. Perhaps most importantly, IMIE achieves
clustering both quickly and cheaply; Fig. 2 shows a
comparison between the response to constant-amplitude
control and IMIE. For a given maximum input strength,
IMIE is typically both more energy-efficient and faster,
and for a given response time, IMIE is always at least as
energy-efficient as constant-amplitude control and, for
larger amplitudes, significantly more efficient. In par-
ticular, IMIE is a dramatic improvement over constant-
amplitude control when the objective is to rapidly reach
the target state.

V. CONCLUSION

We have outlined a potentially effective, real-time
strategy for controlling neurons via a single electrode
using only present-time information. While precomputed
strategies may be ultimately more optimal, the control
method described can be applied to an arbitrary phase
model with no changes to the underlying control scheme,
making it ideal for controlling neuron populations with-
out resorting to costly computations and still providing
a low-energy solution that could prove effective in
reducing the syptoms of PD.

(a)

(b)

Fig. 1: Evolution of reduced Hodgkin-Huxley (a) and
thalamic (b) phase models at three times. (a), (b), and
(c) show the projection of the phases onto the unit circle
at times t = 0, t = 125, and t = 500 ms (0, 187.5, and
750 for thalamus), respectively. (d) Shows the absolute
value of the input over the length of the simulation. For
both models, α = 0.1 and p = .7.
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[24] P. Sacré and R. Sepulchre, “Sensitivity analysis of oscillator
models in the space of phase-response curves: Oscillators as open
systems,” IEEE Control Systems, vol. 34, no. 2, pp. 50–74, 2014.

[25] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience, vol. 35 of Interdisciplinary Applied Mathemat-
ics. New York, NY: Springer New York, 2010.

[26] B. Ermentrout, Simulating, Analyzing, and Animating Dynam-
ical Systems. Philadelphia: Society for Industrial and Applied
Mathematics, 2002.

[27] H. Khalil, Nonlinear Control. New York, NY: Pearson, 1 ed.,
2015.

[28] J. Keener and J. Sneyd, Mathematical Physiology. Interdisci-
plinary Applied Mathematics, New York, NY: Springer New
York, 2009.

[29] A. Hodgkin and A. Huxley, “A Quantitative Description of Mem-
brane Current and Its Application to Conduction and Excitation
in Nerve,” Journal of Physiology, no. 117, pp. 500–544, 1952.

[30] J. E. Rubin and D. Terman, “High frequency stimulation of
the subthalamic nucleus eliminates pathological thalamic rhyth-
micity in a computational model,” Journal of Computational
Neuroscience, vol. 16, no. 3, pp. 211–235, 2004.

2810


