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Abstract— In this article, we devise two related control
algorithms to change the degree of synchrony of a population
of noise-free, identical, uncoupled neural oscillators using a
single control input. The algorithms are based on phase reduc-
tion, and use a population-level partial differential equation
formulation to change the phase distribution of the neurons as
desired. Motivated by the pathological neural synchronization
hypothesized to be present in patients suffering from essential
and parkinsonian tremor, we take our control objective to
be the desynchronization of an initially synchronized neural
population. Through numerical simulations, we are able to
show that our algorithms work for both Type I and Type II
neural populations. To demonstrate the versatility of our control
algorithms, we also show that they can be applied to synchronize
an initially desynchronized neural population as well. For the
systems considered in this paper, the control algorithms can
be applied to achieve any desired traveling-wave neural phase
distribution, as long as the combination of initial and desired
phase distributions is non-degenerate.

I. INTRODUCTION

Synchronization of neural activity holds significant biolog-
ical relevance. It is crucial for visual and odor processing [1],
[2], and also in learning and memory recall [3], [4]. However,
synchronization can be detrimental as well. For example,
pathological neural synchronization in the thalamus and the
STN brain region is hypothesized to be one of the causes
of motor symptoms for essential and parkinsonian tremor,
respectively [5], [6]. Therefore, a number of researchers
have proposed control techniques to either synchronize or
desynchronize neural activity; see, e.g., [7], [8], [9], [10],
[11].

Phase reduction, a classical reduction technique based
on isochrons [12], has been instrumental in the develop-
ment of many of these control algorithms. Phase reduction
reduces the dimensionality of a dynamical system with a
periodic orbit to a single phase variable, and captures the
oscillator’s phase change due to an external perturbation
through the phase response curve (PRC). This can make the
analysis of high dimensional systems more tractable, and
their control [13], [11], [14], [15], [16], [17] experimentally
implementable; see e.g., [18], [19], [20], [14].
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Motivated by the pathological synchronization present in
patients suffering from parkinsonian and essential tremor,
in this article we devise and compare two closely related
control algorithms to desynchronize a neural population. We
note that previously proposed algorithms based on individual
neuron models [13], [21], [22], [11] can face implementation
challenges if they require observability of phases of all
neurons at all times [22], or demand initial phases to be
sufficiently close [11], [15]. There are also population-level
algorithms for desynchronization in the literature which use
multiple inputs [23], [9], [15], making experimental imple-
mentation difficult because they require multiple electrodes
to be implanted in a small region of brain tissue.

Our algorithms overcome these difficulties, as they are
based on a population-level model, and require a single
control input. They use a partial differential equation (PDE)
formulation to change an initial probability distribution of
phases of a neural population as desired. Thus, to desyn-
chronize an initially synchronized neural population, we
start with a single-hump probability distribution, and set the
final distribution to be a uniform probability distribution.
We demonstrate this for both Type I and Type II neural
populations. Note that our algorithms are very versatile, and
are not dependent on the choice of an initial distribution: they
can be applied to obtain any desired traveling-wave neural
phase probability distribution, as long as the combination
of the initial and the desired phase distributions is not
degenerate. Therefore, our algorithms can work in the other
direction, i.e., they can be used to synchronize an initially
desynchronized neural population as well.

This article in organized as follows. In Section II, we give
background on phase reduction and the partial differential
equation for the phase probability distribution. In Section
III, we devise the control algorithms to achieve the desired
neural population distribution. In Section IV we compare
the simulation results of our control algorithms. Section V
concludes the article by highlighting the implications of the
results.

II. BACKGROUND

In this section, we give background on the key concepts
of phase reduction, phase response curves, and the partial
differential equation for the evolution of the phase density.
These will be crucial for the formulation of our control
algorithms in Section III.
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A. Phase Reduction

Phase reduction is a classical technique to describe the
dynamics near a periodic orbit. It works by reducing the
dimensionality of a dynamical system to a single phase
variable θ [24], [25]. Consider a general n-dimensional
dynamical system given by

dx

dt
= F (x), x ∈ Rn, (n ≥ 2). (1)

Suppose this system has a stable periodic orbit γ(t) with
period T . For each point x∗ in the basin of attraction of the
periodic orbit, there exists a corresponding phase θ(x∗) such
that

lim
t→∞

∣∣∣∣x(t)− γ (t+ T

2π
θ(x∗)

)∣∣∣∣ = 0, (2)

where x(t) is the flow of the initial point x∗ under the
given vector field. The function θ(x) is called the asymptotic
phase of x, and takes values in [0, 2π). For neuroscience
applications, we typically take θ = 0 to correspond to the
neuron firing an action potential. Isochrons are level sets of
this phase function, and it is typical to define isochrons so
that the phase of a trajectory advances linearly in time both
on and off the periodic orbit, which implies that

dθ

dt
=

2π

T
≡ ω (3)

in the entire basin of attraction of the periodic orbit. Now
consider the system

dx

dt
= F (x) + U(t), x ∈ Rn, (4)

where U(t) ∈ Rn is an infinitesimal control input. Phase
reduction can be used to reduce this system to a one
dimensional system given by [26]:

θ̇ = ω + U(t)TZ(θ). (5)

Here Z(θ) ≡ ∇γ(t)θ ∈ Rn is the gradient of phase variable
θ evaluated on the periodic orbit and is referred to as the
(infinitesimal) phase response curve (PRC). It quantifies the
effect of an infinitesimal control input on the phase of a
periodic orbit.

B. Phase density equation

Given a population of noise-free, identical, uncoupled
oscillators all receiving the same control input, it is con-
venient to represent the population dynamics in terms of its
probability distribution ρ(θ, t), with the interpretation that
ρ(θ, t)dθ is the probability that a neuron’s phase lies in the
interval [θ, θ + dθ) at time t. This evolves according to the
advection equation [26], [15]

∂ρ(θ, t)

∂t
= − ∂

∂θ

[(
ω + U(t)TZ(θ)

)
ρ(θ, t)

]
. (6)

The desired final probability distribution ρf (θ, t) will be
taken to be a traveling wave which evolves according to

∂ρf (θ, t)

∂t
= −ω∂ρf (θ, t)

∂θ
. (7)

Note that (7) is of the same form as (6) with U = 0.
In the next section, we will show how these two equations

can be used to devise our control algorithms.

III. CONTROL ALGORITHM

In this section, we devise two related control algorithms
to change synchrony of a neural population. We do this by
directly working with the partial differential equation (6)
which governs the evolution of the phase distribution of the
population. Although we focus on desynchronization in this
article, the algorithms are not restricted to achieving this
particular control objective. The algorithms can be applied
to a network of noise-free, identical, uncoupled oscillators to
achieve any desired traveling-wave probability distribution.

Our approach is to select the control U(t) at each time
instant so that the L2 difference between the current density
ρ(θ, t) and the final target density ρf (θ, t) is instantaneously
decreased as much as possible subject to the control limits.
This method is similar in spirit to approaches used in optimal
mixing of fluids. For example, [27] considers the problem
of selecting a velocity field that will instantaneously mix a
given tracer density as rapidly as possible toward a uniform
tracer density. They do this by computing the time derivative
of the square of L2 norm of the spatial derivative of the
concentration field, and minimizing this quantity. In discrete
time, [28] considers fixed aperiodic advective dynamics and
asks how to push a given tracer density as close as possible
toward a target density by optimally selecting local stochastic
perturbations at each time step. This problem is posed as
a convex quadratic optimization problem, minimizing the
square of the L2 distance between the target density and
the tracer density one time unit in the future.

To devise our control laws, we define the L2 norm of the
probability distribution difference as

V (t) =

∫ 2π

0

(ρ(θ, t)− ρf (θ, t))2 dθ. (8)

The L2 norm is positive over the range of all probability
distributions, except being zero when ρ(θ, t) = ρf (θ, t). Its
time derivative is given as

V̇ (t) =

∫ 2π

0

∂

∂t
(ρ(θ, t)− ρf (θ, t))2 dθ

=

∫ 2π

0

2(ρ(θ, t)− ρf (θ, t))
(
∂ρ

∂t
− ∂ρf

∂t

)
dθ (9)

= −2
∫ 2π

0

(ρ(θ, t)− ρf (θ, t))

× ∂

∂θ

[
(ω + U(t)TZ(θ))ρ(θ, t)− ωρf (θ, t)

]
dθ

= −2ω
∫ 2π

0

(ρ(θ, t)− ρf (θ, t))
∂

∂θ
(ρ(θ, t)− ρf (θ, t)) dθ

− 2

∫ 2π

0

(ρ(θ, t)− ρf (θ, t))UT (t)
∂

∂θ
(Z(θ)ρ(θ, t)) dθ

= 2

∫ 2π

0

(
∂ρ

∂θ
− ∂ρf

∂θ

)
U(t)TZ(θ)ρ(θ, t)dθ. (10)

2809



Here, the first equality follows from the Leibniz rule from
elementary calculus, and the last equality follows from the
previous line by applying integration by parts and imposing
periodic boundary conditions. Therefore,

V̇ (t) = UT (t)I(t), (11)

where I(t) ∈ Rn is given by the integral

I(t) = 2

∫ 2π

0

(
∂ρ(θ, t)

∂θ
− ∂ρf (θ, t)

∂θ

)
Z(θ)ρ(θ, t)dθ. (12)

Then by taking control input U(t) = −KI(t), where K ∈
Rn ×Rn is a symmetric positive definite matrix, we get the
time derivative of the L2 norm, V̇ (ρ, ρf , t) = −I(t)TKI(t)
as negative definite. Thus, the control law U(t) = −KI(t)
will decrease the L2 norm until the current probability
distribution becomes equal to the desired distribution. Note
that we have assumed I(t) 6= 0, unless ρ(θ, t) = ρf (θ, t).
We do not consider degenerate cases where I(t) = 0 for
ρ(θ, t) 6= ρf (θ, t) in this paper. Such degeneracy can be
avoided by modifying the initial or the desired distribution
slightly, without compromising the control objective.

For both experimental and numerical reasons, it is more
practical to have a bounded control input, so we take a
“clipped” proportional control law

Up(t) = max (min (Umax,−KI(t)) , Umin) . (13)

Here Umax and Umin are column vectors whose elements
are the upper and lower bounds of the control input vector,
respectively. The max, and min operators find the maximum
and minimum of 2 vectors element-wise, respectively.

We can also define a bang-bang control law

Ub,i(t) =

{
Umin,i, Ii(t) > 0
Umax,i, Ii(t) < 0

, i = 1, 2, . . . , n . (14)

Here Ub,i, Umin,i, Umax,i, and Ii(t) represent the ith ele-
ments of the corresponding vectors. Thus for a bang-bang
control law, the control input is always at its maximum or
minimum allowable limit.

Note that for both of these control laws (equations (13)
and (14)), the time derivative of the L2 norm is still negative
definite. But with the bang-bang control, the decay rate of the
L2 norm is more negative than that in proportional control.
So in theory, one expects the L2 norm to converge to 0
faster with the bang-bang control. However, as we will see
in Section IV, this is not the case, as bang-bang control can
lead to a rapidly changing control input when the problem
is discretized for numerical simulations.

IV. SIMULATION RESULTS

In this section, we apply the control laws devised in the
previous section to desynchronize an initially synchronized
neural population. To demonstrate the versatility of our
algorithms, we will also show that our control algorithms
work in the other direction as well, i.e., in synchronizing an
initially desynchronized neural population.

Here we consider underactuated dynamical systems with
only one degree of actuation: the control input vector is

U(t) = [u(t), 0, . . . , 0]T . We make this assumption because
in most conductance-based models of neurons, we can only
give a single control input in the form of a current to one
of the elements of the state vector, which corresponds to the
voltage across the cell membrane. This assumption reduces
the control vectors (KI(t), Up(t), Ub(t), Umax, Umin) from
Section III into the corresponding scalars (kI(t), up(t),
ub(t), umax, umin), respectively. Note that, only the first
component of PRC Z1(θ) comes into picture in the control
input. From here onward, whenever we refer to the PRC, we
mean only the first component of the n-dimensional PRC.

The initial probability distribution is taken to have a single
hump, corresponding to (partial) synchronization; since this
needs to be periodic in θ, we take it to be a von Mises
distribution

ρ(θ, 0) =
eb cos(θ−µ)

2πI0(b)
, (15)

with I0(b) the modified Bessel function of first kind of
order 0. We take b = 26, and the mean µ = π in
our simulations. The desired final distribution is taken as
ρf (θ, t) = 1/(2π), i.e., a uniform distribution, corresponding
to complete desynchronization.

To numerically compute the solution of the PDEs (6)
and (7), the former with control inputs given by (13) and
(14), we use a method of lines type approach, where the
spatial derivative (right hand side of equation (6) and (7))
is discretized by a backward difference scheme, and the
resulting ODEs are solved by a 3rd order total variation
diminishing Runge-Kutta method [29], [30]. We use periodic
boundary conditions at the boundaries of the spatial domain.
For the proportional control, we choose an optimum value
of k, giving best numerical results.

Note that the proportional control input is large initially,
when the desired and current phase distributions are quite
different. With time, control input becomes small, as the
two distributions become more similar. So if we choose a
small k value, the proportional control would be effective in
decreasing the L2 norm only initially. If we choose a large
k value, the proportional control would behave more like
the bang-bang control initially due to clipping of the large
control input, which makes the control less effective (we will
see later on that bang-bang control is less effective than the
proportional control). So we settle for an “in between” k
value, which overall does a good job of reducing the L2

norm.
If the PRC is positive for all values of θ, i.e., a positive

perturbation always advances the phase of the oscillator, the
PRC is labeled as being Type I [31]. On the other hand,
if a positive perturbation can both delay and advance the
phase, i.e., the PRC has both negative and positive regimes,
the PRC is classified as Type II. Type I and Type II PRCs
are associated with Type I and Type II neuron models
respectively, which are known to have distinctive dynamics
[26]. With this in mind, we will test our algorithm for both
Type I and Type II neural populations.
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Fig. 1. Proportional control for a Type I neural population going from
a synchronized to a desynchronized state; here k = 10000. In the top
left panel, the colored (resp., black dashed) lines shows the probability
distribution ρ(θ, t) (resp., ρf (θ, t)) at various times. The top right panel
shows the PRC, while the bottom panels show the control input and the L2

norm (8) for the difference between the actual and desired distributions on
a logarithm scale. The period T = 0.2 s.

A. Type I neural population

Type I neuron models typically bifurcate to an oscillatory
regime through a Saddle Node on an Invariant Circle (SNIC)
bifurcation [31]. As the PRC is known to be proportional to
1 − cos(θ) for a SNIC bifurcation [31], we take the PRC
to be (1 − cos(θ))/(2π) as an example. Note that the PRC
is always positive. We take the time period of the oscillator
as T = 0.2 s, spatial grid size dθ = π/200 rad, and time
grid size dt = 0.0005. We simulate equations (6) and (7)
with both proportional control (13) and bang-bang control
(14), with k = 10000, umax = −umin = 26. Results for
proportional and bang-bang control are shown in Figures 1
and 2, respectively.

We see that the both proportional and bang-bang control
are able to transform the probability distribution into a
uniform distribution over 10 time periods of the oscillator.
To reach an L2 norm of 0.001 for the difference between the
real and desired distributions, the proportional control takes
1.9995 s, and 482.79 units of energy (defined as

∫ τ
0
u(t)2dt,

where τ is the duration of control), whereas the bang-bang
type control takes 2 s and 1351.83 units of energy. Bang-
bang control requires significantly more energy as the large
control input causes the probability distribution to overshoot
the desired distribution when it is close to the uniform
distribution. This results in rapid switches in the control
input, as seen in the bottom left panel of Figure 2.

B. Type II neural population

Type II neuron models typically bifurcate through a Hopf
bifurcation into the limit cycle regime. As an prototypical
Type II neuron, here we consider the famous Hodgkin
Huxley model [32], which undergoes a subcritical Hopf
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Fig. 2. Bang-bang control for a Type I neural population going from
a synchronized to desynchronized state. In the top left panel, the colored
(resp., black dashed) lines shows the probability distribution ρ(θ, t) (resp.,
ρf (θ, t)) at various times. The top right panel shows the PRC, while the
bottom panels show the control input and the L2 norm (8) on a logarithm
scale. The period T = 0.2 s.

bifurcation with the periodic solution branch gaining stability
through a saddlenode bifurcation of periodic orbits. We take
the parameters from Chapter 2 in [33], with a constant
applied current taken as 10mA. This results in a limit cycle
with period T = 14.638 ms. We take the spatial grid size
dθ = π/200 rad, and time grid size dt = 0.036595 ms.
We simulate equations (6) and (7) with both proportional
control (13) and bang-bang control (14), with k = 400,
umax = −umin = 1.3. Results for proportional and bang-
bang control are shown in Figures 3 and 4, respectively.

We see that the both proportional and bang-bang control
are able to transform the probability distribution into a
uniform distribution over 5 time periods of the oscillator.
To reach an L2 norm of 0.001, the proportional control
takes 52.59 ms, and 34.73 units of energy, whereas the
bang-bang type control takes 142.1 ms and 240.11 units of
energy. Bang-bang control requires significantly more energy
and time to reach a desired L2 norm, as the large control
input again causes the probability distribution to overshoot
the desired distribution when it is close to the uniform
distribution. This results in rapid switches in the bang-bang
control input, as can be seen in the bottom left panel of
Figure 4.

To show the versatility of our control algorithm, we also
include results for a Type II neural population, where the
goal is to achieve a synchronized neural population from an
initially desynchronized population. Here we take the initial
distribution as ρ(θ, 0) = 1/(2π), and desired distribution
as the von Mises distribution with b = 26. To implement
the control algorithm, we consider the same parameters for
Hodgkin Huxley model, but for numerical stability reduce
the spatial grid size to dθ = π/500 rad, and use the time
grid size dt = 0.014638 ms. We simulate equations (6) and
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Fig. 3. Proportional control for a Type II neural population going from a
synchronized to desynchronized state; here k = 400. In the top left panel,
the colored (resp., black dashed) lines shows the probability distribution
ρ(θ, t) (resp., ρf (θ, t)) at various times. The top right panel shows the
PRC, while the bottom panels show the control input and the L2 norm (8)
on a logarithm scale. Here T = 14.638 ms.

(7) with bang-bang control (14), with umax = −umin = 0.9.
Results are shown in Figure 5.

We see that the bang-bang control is able to transform
the initial uniform distribution into the desired probability
distribution over 15 time periods of the oscillator. To reach an
L2 norm (8) of 0.01, the bang-bang control takes 212.24 ms,
and 171.91 units of energy. Here again, the large control
input causes the probability distribution to overshoot the
desired distribution when it is close to the desired distri-
bution, resulting in rapid switches in the control input. We
also see that the L2 norm does not monotonically decrease
with time, in contrast to the theory in Section III. This can be
explained by the fact that the theory in Section III is valid for
a continuous spatial and time domain, whereas our numerical
results were obtained for a discretized domain, where the
overshoots caused by the control input can momentarily
increase the L2 norm before eventually decreasing it. These
overshoots can be decreased to some extent by decreasing
the grid size.

V. CONCLUSIONS

In this article, we devised two related control algorithms
which use proportional control and bang-bang control to
change the synchrony properties of a poplulation of noise-
free, identical, uncoupled neural oscillators all receiving the
same control input. The algorithms are based on phase reduc-
tion, and use a population-level partial differential equation
formulation to change the phase distribution of the neurons
as desired. Motivated by the pathological neural synchroniza-
tion present in patients suffering from essential and parkin-
sonian tremor, we used the algorithms to desynchronize
initially synchronized populations of both Type I and Type II
neurons. We also briefly showed that the algorithm can work
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Fig. 4. Bang-bang control for a Type II neural population going from
a synchronized to desynchronized state. In the top left panel, the colored
(resp., black dashed) lines shows the probability distribution ρ(θ, t) (resp.,
ρf (θ, t)) at various times. The top right panel shows the PRC, while the
bottom panels show the control input and the L2 norm (8) on a logarithm
scale. Here T = 14.638 ms.

in the other direction as well, i.e., in going from an initially
desynchronized neural population to a synchronized one.
This would be useful for applications mentioned in Section
I, and also in control algorithms based on coordinated reset
[9] in which neurons are synchronized within subpopulations
but out of phase with other subpopulations.

In theory, the bang-bang control should decrease the L2

norm more rapidly than the proportional control, since the
time derivative of L2 in bang-bang control is always less
than that in proportional control. But since our numerical
computations require discretization, the control input over-
shoots the probability distribution, resulting in rapid switches
in the bang-bang control input. This not only results in slower
decay rates of L2 norm for the bang-bang control, but also
leads to a non-monotonic decrease of L2 norm in going
from an initially desynchronized to a synchronized neural
population. This inconsistency with theory can be reduced
by decreasing the grid size, but that occurs at expense of an
increased computational cost.

The algorithms described in this paper are quite flexible;
for the systems considered in this paper, they have the
potential to drive a system of neural oscillators from any
initial phase distribution to any traveling-wave final phase
distribution, as long as the combination of those distributions
is non-degenerate. We conclude with remarks about the
experimental implementation of these algorithms. Since they
require knowledge of the current neuronal phase distribution,
one would need to measure neuronal activity in order to back
out this distribution in real time. This measurement would
require good spatial and temporal resolution, so for both in
vitro and in vivo experiments we suggest that the use of
Micro-Electrode arrays (MEA) would be a good fit. Note
that for in vivo experiments, fMRI and EEG are unlikely to
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Fig. 5. Bang-bang type control for a Type II neural population going
from a desynchronized to a synchronized state. In the top left panel, the
colored (resp., black dashed) lines shows the probability distribution ρ(θ, t)
at various times (resp., ρf (θ, t) at t = 15T ). The top right panel shows
the PRC, while the bottom panels show the control input and the L2 norm
(8). Here T = 14.638 ms.

be the right tools since FMRI has poor temporal resolution,
while EEG is susceptible to noise and poorly measures neural
activity beneath the cortex. This work lays the foundation
for a similar approach to neural control for more general
models which include effects due to coupling, noise, and/or
heterogeneity, topics which we are currently pursuing.
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