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Abstract— With inspiration from Arthur Winfree’s idea of
randomizing the phase of an oscillator by driving its state to a
set in which the phase is not defined, i.e., the phaseless set, we
employ a Hamilton-Jacobi-Bellman approach to design a min-
imum energy control law that effectively randomizes the next
spiking time for a two-dimensional conductance-based model
of noisy oscillatory neurons. The control is initially designed
for the deterministic system through the numerical solution
of the Hamilton-Jacobi-Bellman partial differential equation
for the cost-to-go function, from which the minimum energy
stimulus can be found; then its performance is investigated
in the presence of noise. It is shown that such control causes
a considerable amount of randomization in the timing of the
neuron’s next spike.

I. INTRODUCTION

Patients with Parkinson’s disease typically suffer from
involuntary tremors in their upper limbs. One proposed cause
for these tremors is the pathological synchronization that
occurs among the spiking neurons of the basal ganglia and
the thalamus, regions of the brain that are responsible for
motor control [1]. For those patients who do not respond
to drug therapy, Deep Brain Stimulation (DBS) offers alter-
native treatment. In this FDA-approved surgical procedure,
an electrode is implanted inside the patient’s brain that
injects high frequency current pulses into the motor-control
region of the brain [2], [3]. The pulses are generated by a
pacemaker-like device that is implanted in the patient’s chest
and connected to the electrode via wires running under the
skin and along the patient’s neck [4]. This method of treat-
ment has been successful for many patients, and a working
hypothesis is that DBS desynchronizes the pathologically
synchronized motor control neurons. Researchers are now
motivated to consider alternative stimuli that can achieve
acceptable levels of desynchronization with less possible
side-effects such as tissue damage or adaptation, and with
less energy consumption.

Different control methods have been investigated and
applied to various neural models in the past. Among these,
feedback control and optimal control are more prominent.
These methods are attractive from a clinical perspective
in that the control stimulus is applied only when needed
(characterized by the feedback signal) and in an optimal way
(characterized by the optimality criteria). There are examples
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of these both on a single neuron level [5], [6], [7], [8], [9] and
on a population level [10], [11], [12], [13], [14]. Other studies
have also shown potential in desynchronizing a population
of pathologically synchronized neurons [15], [16], [17], [18],
[19].

In this article, we employ the idea proposed in [20] to
randomize the phase of an oscillator by driving the state of
the oscillator to a set in which the phase is not defined, i.e.,
the phaseless set. When in an oscillatory mode, the neuron
generates periodic action potentials in the form of voltage
spikes. As with any oscillatory system, a phase variable can
be defined to characterize the evolution of the system states
on the periodic orbit. With the idea of asymptotic phase [21],
[22], the phase concept is extended to other points in the
state domain that are not on the periodic orbit. This allows
the definition of isochrons [21], which are lines of constant
phase defined in the basin of attraction of the periodic orbit,
each presenting the locus of all initial conditions that result in
trajectories that asymptotically converge to the same point on
the periodic orbit. These isochrons converge at the phaseless
set which is on the boundary of the stable periodic orbit’s
basin of attraction.

The idea is that once the state of the system is at the
phaseless set, it could, under the influence of the intrinsic
background noise, be kicked onto a random isochron and
spiral out to the periodic orbit and land at a different
phase than what it would have been without the control
application. As a proof of concept, Fig. 1 shows the voltage
traces and spike time histogram for a neuron described by
a two-dimensional reduction of the Hodgkin-Huxley model
(more formally introduced in the next section) driven by 100
different realizations of zero-mean Gaussian white noise with
variance 2D = 2, and initialized at its phaseless point. It is
seen that the noise can cause the next spike time for the
neuron to be totally randomized.

This idea is employed in [23] to achieve desynchronization
in minimum time using level set methods where an event-
based strategy has been considered for the two-dimensional
reduction of the Hodgkin-Huxley equations. The authors use
a Hamilton-Jacobi-Bellman (HJB) formulation to design an
optimal control law that would desynchronize a population in
minimum time. Here we use a similar setup but solve for an
optimal control that uses minimum energy instead. The min-
imum energy design of the controller is of clinical interest
as it can result in longer battery life for neurostimulators.

The organization of the paper is as follows. We first
describe the model used for the neuron in Section II. Then in
Section III, we derive the HJB equation and, in Section IV,
give a brief description of the essentials of the numerical
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Fig. 1. Voltage traces and spike time histogram for a two-dimensional
reduction of the Hodgkin-Huxley model driven by 100 different realizations
of a zero-mean Gaussian white noise with variance 2D = 2, and initialized
at its phaseless point.

approach used to solve these equations. Results are presented
and discussed in Section V. Finally, in Section VI some
ongoing work is highlighted.

II. MODEL

We consider the two-dimensional reduced Hodgkin-
Huxley model, analyzed, for example, in [24], [25]. In the
absence of noise, this model is represented by the following
equations:

V̇ = (Ib + I(t)− ḡNa[m∞(V )]3(0.8− n)(V − VNa)

−ḡKn4(V − VK)− ḡL(V − VL))/c , (1)
ṅ = an(V )(1− n)− bn(V )n ,

m∞(V ) =
am(V )

am(V ) + bm(V )
,

am(V ) = 0.1(V + 40)/(1− exp(−(V + 40)/10)) ,

bm(V ) = 4 exp(−(V + 65)/18) ,

an(V ) = 0.01(V + 55)/(1− exp(−(V + 55)/10)) ,

bn(V ) = 0.125 exp(−(V + 65)/80) ,

VNa = 50 mV , VK = −77 mV , VL = −54.4 mV ,

ḡNa = 120 mS/cm2 , ḡK = 36 mS/cm2 ,

ḡL = 0.3 mS/cm2 , c = 1 µF/cm2.

In this model, V ∈ R is the voltage across the neuron
membrane and n ∈ R[0,1] is the gating variable which
corresponds to the state of the membrane’s ion channels.
Ib ∈ R is the baseline current, which represents the effect
of other parts of the brain on the neuron under consideration
and can be viewed as a bifurcation parameter that controls
whether the neuron is in an excitable or an oscillatory regime.
I(t) : R 7→ R is the stimulus current and ḡNa, ḡK , and ḡL
are the conductances of the sodium, potassium, and leakage
channels, respectively. Also, VNa, VK , and VL represent the
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Fig. 2. Periodic orbit (thick solid), V -nullcline (thin dashed), and n-
nullcline (thick dashed), and fifty isochrons equally spaced in phase for the
two-dimensional Hodgkin-Huxley model. The location of the unstable fixed
point (phaseless point) for this system is at the intersection of the nullclines.

respective reversal potentials for these channels. c ∈ R+ is
the constant membrane capacitance.

For this study, we consider Ib = 10 µA/cm2 to ensure
stable oscillatory (periodic spiking) behavior for the neuron.
With this Ib, the period of spiking for the neuron is Ts =
11.85 ms. This oscillatory behavior is seen as a periodic
orbit in the V −n phase plane of the system, shown in Fig. 2
as the thick solid line. In the case of the present system, the
phaseless point is the unstable fixed point [26]. The isochrons
for the two-dimensional Hodgkin-Huxley system are shown
in Fig. 2 as gray lines. As can be seen, these lines all
converge at the unstable fixed point (or the phaseless point)
where the V− and n−nullclines intersect. By convention, the
isochron that passes through the spiking point (maximum V )
is the θ = 0 isochron, where θ ∈ [0, 2π) is the phase of the
neuron. The phase difference between every two neighboring
isochrons in this figure is the same.

For simplicity, we rewrite (1) as

V̇ = fV (V, n) + u,
ṅ = fn(V, n),

(2)

where, u = I(t)/c is the control input and

fV = (Ib − ḡNa[m∞(V )]3(0.8− n)(V − VNa)

−ḡKn4(V − VK)− ḡL(V − VL))/c, (3)
fn = an(V )(1− n)− bn(V )n

are the state dynamics in the absence of external input. In
the presence of noise, the system (2) is modified to

V̇ = fV (V, n) + η(t) + u,
ṅ = fn(V, n),

(4)
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where the noise η(t) =
√

2DN (0, 1) is a zero-mean white
noise with variance 2D. For the simulations presented in this
article, we have taken D = 1.

The objective is to find the optimal control stimulus that,
when applied to this system, drives the system to its phaseless
set. As mentioned before, since the isochrons all emerge
out from this point, the intrinsic background noise could
then cause the system to fall on a random isochron, thereby
randomizing the phase of the neuron. To this end, we first
design the optimal control for the deterministic system (2)
and analyze its performance when applied to the noisy
system (4).

In order to achieve more stability in our numerical method
described later, we scale down the V dimension in (2) by a
factor of K = 100 so that the two states are of same order
of magnitude. We note that this scaling is done only for the
sake of numerical stability for the deterministic system. The
results that we present are in the original V −n coordinates.
With the change of variables z ≡ (x, y) = ( 1

KV, n), we get

ż = F (z) +Bu, (5)

where B = [ 1
K , 0]T and

F (z) =

[
fx(z)
fy(z)

]
=

[
1
K fV (Kx, y)
fn(Kx, y)

]
. (6)

III. OPTIMAL CONTROL

Consider the deterministic system (2). The objective is to
find the minimum energy control law that would take the
system to the phaseless set in some prespecified length of
time [0, Tend]. The cost function that must be minimized is

J =

∫ Tend

0

u2dt+ γq(z(Tend)), (7)

where q(z(Tend)) is the end point cost and γ is a penalizing
scalar. We consider bounded inputs, i.e., |u| ≤ umax, to
account for hardware and tissue endurance restrictions that
are relevant in practice. Employing an HJB approach, we
define the cost-to-go function (also known as the value
function) from state z and time τ , for all t ∈ [τ, Tend], to be

V(z(τ), τ) = min
|u|≤umax

J

= min
|u|≤umax

(∫ Tend

τ

u2dt+ γq(z(Tend))

)
. (8)

With this definition, following classical optimal control
theory [27], we arrive at the well-known HJB equation

−∂V
∂τ

(z(τ), τ) =

= min
|u|≤umax

[
u2+

(
∂V
∂z

(z(τ), τ)

)T
(F (z(τ))+Bu(τ))

]
,(9)

with the boundary condition

V(z(Tend), Tend) = γq(z(Tend)). (10)

One can write (9) as

∂V
∂t

+ min
|u|≤umax

H(z,∇V, u) = 0, (11)

where

H(z,∇V, u) = u2 + (∇V(z(t), t))T (F (z(t)) +Bu(t)),
(12)

is the Hamiltonian for the system and ∇V is the gradient
of the value function with respect to z, i.e., (∂V∂x ,

∂V
∂y )T . The

optimal control that globally minimizes H is obtained as

u∗(t) = argmin
|u|≤umax

[u2 +(∇V(z∗(t), t))T (F (z∗(t))+Bu(t))],

(13)
which yields

u∗(t) = − 1
2K∇xV |∇xV| ≤ 2Kumax,

u∗(t) = −sign(∇xV)umax |∇xV| > 2Kumax,
(14)

where z∗(t) represents the optimal trajectory and ∇x = ∂
∂x .

With this optimal control, the Hamiltonian can be written as

H=∇VTF (z)− 1
4K2 [∇xV]2 |∇xV| ≤ 2Kumax,

H=∇VTF (z) + u2max − |∇xV|umaxK |∇xV| > 2Kumax.

IV. NUMERICAL APPROACH

In this section we briefly describe the numerical approach
taken to solve the HJB equation. The HJB equation is special
form of a broader class of partial differential equations
(PDEs) known as the Hamilton-Jacobi (HJ) equations which
are generally written as,

∂V
∂t

+H(t, z,V,∇V) = 0. (15)

These equations frequently appear in many different areas
like optimal control theory, image processing and compu-
tational physics [27], [28], [29]. As such, a great body of
work has been devoted to the development of the theory
and the numerical algorithms required for solving these
equations over the past decades. Some of the initial efforts
and developments include the seminal works of Crandall and
Lions [30], [31], and Osher and Sethian [32]. For a more
complete list of references, one may consult standard texts
such as [28] and [29].

Starting from given initial data, V(z, 0), the procedure for
finding the solution, V(z, t), to the HJ PDE may at first
seem trivial: At each time step, it is enough to evaluate the
Hamiltonian function H and carry out a forward integration
to find the function V(z, t) at the subsequent time step. The
only issue here would be that the solution gradient, ∇V(z, t),
which is needed to evaluate the Hamiltonian, is not explicitly
given, which may simply be fixed by incorporating a finite
difference approximation to evaluate ∇V on a grid.
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Although this idea is conceptually correct, there are non-
trivial challenges involved that cause such a simple approach,
like the aforementioned, to fail and not provide correct or
even convergent results. Without going into the details, which
may be found in the appropriate articles and texts mentioned
above, an accurate and convergent algorithm for solving the
HJ equation consists of three separate steps.

1) Computing the solution gradient: If one starts from
sufficiently smooth initial data V(z, 0), solutions to
HJ equation are usually continuous but could have
discontinuities in their gradients [28]. As a result,
if simple, classical finite difference approaches are
taken to evaluate the gradients, numerical solutions
may show unphysical oscillations near these disconti-
nuities which can even cause the numerical algorithm
to diverge. A fix to this problem is to use the so-
called “essentially non-oscillatory” (ENO) [33], [34] or
“weighted essentially non-oscillatory” (WENO) [35]
schemes for computing the gradient term. Although
these are a subclass of finite difference methods, they
are designed such that they do not produce oscillatory
results when evaluating the gradients close to the
discontinuities.

2) Computing the Hamiltonian: Once the gradients are
computed through either ENO or WENO methods, the
next step is to evaluate the Hamiltonian function. For
linear problems, i.e., problems for which the Hamilto-
nian function is linear in ∇V , this is straightforward.
However for nonlinear problems, special care must be
taken to guarantee that “shocks” and “rarefactions”
phenomena are well approximated. In particular, it is
essential that the numerical method guarantees con-
vergence to the correct viscosity solution. A simple
evaluation of the Hamiltonian, H, would lead to in-
correct results. To address this problem the so-called
“numerical” Hamiltonian function must be designed
(see Ĥ in [36]). The essence is to add the right
amount of numerical dissipation (or viscosity) to avoid
converging to an entropy violating solution, while
avoiding excessive smearing of important features.

3) Integrating in time: Finally, once the Hamiltonian
function is evaluated at each grid point, it is necessary
to integrate the solution V(z, t) forward in time. Not
every integration method is suitable for solving the
semi-discrete HJ equation. Like before, a careless
choice usually leads to oscillatory and even non-
convergent result. Only a subclass of methods that
have the “total variation diminishing” (TVD) property
are suitable for this task [37], [38]. Similar to usual
integration schemes, TVD schemes include methods
from both Runge-Kutta and linear multistep families.

In this work we use the Level Set Methods Matlab toolbox
developed by Ian Mitchell [39] and utilize a solver with
the third-order accurate ENO method for discretizing the
spatial gradients accompanied with a third-order accurate
TVD Runge-Kutta time integration method to solve (11).
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Fig. 3. The end point cost for the HJB equations on a 321×321 grid. Only
the region around (xpl, ypl) of the domain is shown for better visualization.
The value of the cost in the rest of the domain is 1000.

The numerical Hamiltonian is computed from the local Lax-
Friedrichs (LLF) method.

We set Tend = 7 ms and use a 321×321 grid for the states
(x, y) on a rectangular domain −1 ≤ x ≤ 1 and 0 ≤ y ≤ 1
to solve the HJB equation (11) for the cost-to-go function
V(z, t). The control bound is set to be umax = 10 µA/µF.
We also set the end point cost (10) to be

V(z(Tend), Tend) = γ

(
1− e

−
(

(x−xpl)
2

σ2x
+

(y−ypl)
2

σ2y

))
,

(16)
where γ = 1000, σ2

x = σ2
y = 0.001, and

(xpl, ypl) = ( 1
KVpl, npl) where K = 100 and (Vpl, npl) =

(−59.6, 0.403) is the phaseless target point. This Gaussian
end point cost function (shown in Fig. 3) has a minimum
of zero at the phaseless point that encourages the evolution
of the controlled system towards this point. We note that we
solve the HJB equation backward in time and treat this end
point cost as the initial condition for the equations.

Once the solution V(z, t) is computed, the optimal control
is found as a function of the state at all time steps (see (14)).
Given this data in time and space, we set the initial condition
for the system (2) to be the spiking point (V0, n0) =
(44.8, 0.459) ≡ (Vs, ns), and find the associated optimal
control sequence u(t) through forward integration of (2). A
fourth order Runge-Kutta method is used for this integration.
It should be noted that since the optimal control data is found
on spatial grid points, an interpolation scheme is needed to
obtain the input off grid points while the forward integration
is carried out. A simple bilinear interpolation was found to be
adequate in this study. This optimal control sequence is then
applied to the noisy system (4) to evaluate its performance in
randomizing the noisy neuron’s spiking time. A second-order
stochastic Runge-Kutta method [40] was selected to perform
the forward integration in time for the stochastic system (4).
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Fig. 4. Top: Minimum energy control law obtained for the deterministic
single neuron system with the spiking point as the initial condition. The
control is bounded to |u| ≤ 10 µA/µF. Middle: the time evolution of the
states of the system (V solid and n dashed). The starting point is the spiking
state where (Vs, ns) = (44.8, 0.459) and the target point is the phaseless
point where (Vpl, npl) = (−59.6, 0.403). We see that the control is able
to take the system close to the phaseless point. Bottom: the state space
representation of the trajectory of the system under the control shown in
top panel.

V. RESULTS AND DISCUSSION

The top panel in Fig. 4 shows the minimum energy control
law for the deterministic neuron. We set the initial condition
to be the spiking state as this is a practical observable which
can be used as a trigger for the control, hence producing an
event-based control. As can be seen in Fig. 4, the control
has saturated at the bound value umax = 10 µA/µF. Fig. 4
also shows the system trajectories in time and in the state
space when driven by the control.

When the control shown in Fig. 4 is applied to the system
in the presence of noise, it randomizes the next spiking
instant of the neuron. Fig. 5 shows the results obtained
for this case for 100 different numerical realizations. For
comparison, we have included three different cases in this
figure. The top panel shows the case where we have omitted
both the noise and the control and have only considered the
natural dynamics of the neuron. As expected, the neuron
spikes at its natural period Ts = 11.85 ms for all 100
different trials. The second panel in Fig. 5 shows the case
where noise is active, but the control is not. As can be seen,
the spiking instant of the neuron varies due to the effect of
different noise realizations. In the third panel, both noise and
the control are acting on the neuron. We see that applying
the control causes the next spiking instant of the neuron to
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Fig. 5. Results for 100 different simulations for the system (2) with initial
condition (Vs, ns) = (44.8, 0.459). First panel, voltage trace (left) and
histogram (right) for the case of without noise and without external control;
second panel, voltage trace (left) and histogram (right) for the case of 100
different noise realizations, without control; third panel: voltage trace (left)
and histogram (right) for the case of 100 different noise realizations, with
one cycle of control; fourth panel: the control input applied to the system.
The input noise is η =

√
2DN (0, 1) with D = 1.

randomize over a considerable time interval. Finally, we note
that the control has only been applied for one cycle as can
be seen from the fourth panel in this figure. Fig. 6 shows the
state space trajectories for these three cases. The dashed line
shows the periodic orbit for the deterministic system without
control. The light shade trajectories are those of the system
with noise but without control. These trajectories follow the
periodic orbit closely. The dark shade trajectories are for the
case where both the noise and the control are applied. The
phaseless point is shown with an asterisk marker.

VI. FUTURE WORK

The control found here can be applied to a population of
pathologically synchronized neurons to desynchronize them
by randomizing the phase of each neuron. In addition, one
can include the states along the V -nullcline as part of the
target set for the control algorithm as these points make a
region in which the isochrons are densely populated [26]. If
the state of the system is driven to this region, then, under the
influence of noise, it can fall on either side of the V -nullcline
resulting in different spike times.

REFERENCES

[1] J. Volkmann, M. Joliot, A. Mogilner, A. A. Ioannides, F. Lado,
E. Fazzini, U. Ribary, and R. Llinàs, “Central motor loop oscillations
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