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Abstract
We propose a novel, closed-loop approach to tuning deep brain stimulation (DBS) for Par-

kinson’s disease (PD). The approach, termed Phasic Burst Stimulation (PhaBS), applies a

burst of stimulus pulses over a range of phases predicted to disrupt pathological oscillations

seen in PD. Stimulation parameters are optimized based on phase response curves

(PRCs), which would be measured from each patient. This approach is tested in a computa-

tional model of PD with an emergent population oscillation. We show that the stimulus

phase can be optimized using the PRC, and that PhaBS is more effective at suppressing

the pathological oscillation than a single phasic stimulus pulse. PhaBS provides a closed-

loop approach to DBS that can be optimized for each patient.

Author Summary

Deep brain stimulation (DBS) is effective at treating motor symptoms of patients with
medication-refractory Parkinson’s disease (PD). Currently, high frequency stimulation
(>100 Hz) is tuned for each patient using a trial-and-error process. A systematic approach
to tuning stimulation parameters based on patient physiology has the potential to improve
patient quality of life. We present a novel closed-loop approach to DBS, termed Phasic
Burst Stimulation, where the timing of stimulus pulses is optimized using an algorithm
based on patient physiology. A closed-loop approach has the potential to improve thera-
peutic efficacy, extend battery lifetime by decreasing power consumption, decrease nega-
tive side effects by more selectively stimulating, and adjust as motor symptoms fluctuate.

Introduction
Deep brain stimulation (DBS) is a neuromodulation therapy effective at treating motor symp-
toms of medication-refractory Parkinson’s disease (PD). Tuning stimulation parameters is
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currently done using a time intensive trial-and-error process [1]. Implantable DBS devices
have been developed for research that can simultaneously deliver stimulation while recording
the neural response [2]. Soon these devices will enable a closed-loop approach to setting stimu-
lation parameters. A closed-loop tuning algorithm has the potential to reduce time spent in the
clinic setting stimulation parameters and may result in more robust and effective tuning. Fur-
thermore, a closed-loop device can continuously tune parameters to maintain maximal efficacy
as motor symptoms fluctuate.

Dynamic changes in the basal ganglia network are thought to lead to motor symptoms of
PD. A loss of dopaminergic inputs results in changes in firing rates and patterns of neurons
within the basal ganglia. The emergence of synchronous activity, particularly in the beta range
(12–35 Hz), is hypothesized to give rise to motor symptoms of PD [3–8]. While the role of beta
oscillations is debated, therapeutic DBS has been shown to disrupt the oscillation [9–11]. Fur-
thermore, closed-loop adaptive stimulation approaches, where high frequency stimulation is
turned on when the amplitude of the beta oscillation is high, have been shown to produce
greater improvement in akinetic/rigid motor symptoms while using less battery power [12].
This suggests that the beta oscillation may be a good biomarker for closed-loop stimulation.

Delivering electrical pulses at a specific phase of the ongoing pathological oscillation has the
potential to more efficiently disrupt this activity than the high frequency periodic stimulation
used currently. High frequency DBS,>100 Hz, is more therapeutically effective than low fre-
quency [13] or random stimulation [14]. This may be because periodic stimulation at certain
frequencies results in more stimulus pulses occurring at phases that desynchronize neurons
generating the beta oscillation [15, 16]. Therefore, applying closed-loop stimulation where
stimulus pulses are locked to a specific phase of the oscillation may be more effective at disrupt-
ing the pathological beta oscillation than high frequency open-loop stimulation. In essential
tremor patients, phase dependent modulation of the tremor amplitude is seen when stimulus
pulses to the thalamus are locked to specific phases of the tremor [3, 15]. There has not yet to
our knowledge been an experiment that delivers stimulation pulses phase locked to the beta
oscillation in the basal ganglia.

Provided a real-time estimation of the phase of a pathological oscillation, it is necessary to
develop an algorithm that can determine the optimal phase to deliver the stimulus. In order to
identify this optimal phase we propose to use a measure called the phase response curve (PRC).
A PRC is a simple measure that describes how the phase of the oscillation is affected by the
phase at which a perturbation, such as an external stimulus, is delivered. The PRC can be used
to predict conditions in which coupled oscillators, such as periodically firing neurons, will syn-
chronize or desynchronize [17]. PRCs have been used to predict stimulus parameters, such as
frequency and amplitude [18] as well as non-pulsatile stimulus shapes [19] to synchronize or
desynchronize model neurons.

The oscillatory activity seen in Parkinson’s disease is seen in the neural field activity. We
have previously shown that the PRC measured from a population oscillation in a computa-
tional model of the subthalamopallidal network can be used to predict the effect of stimulation
frequency on the oscillation amplitude [20]. This model, developed by Hahn &McIntyre [21],
produces an emergent 34 Hz population oscillation in the PD state. In this paper we show it is
possible to accurately predict the effects of phasic stimulation on the amplitude of the popula-
tion oscillation in the Hahn &McIntyre model using the PRC.

While a single pulse delivered at the optimal phase may suppress oscillations with high effi-
cacy, we hypothesize that delivering multiple pulses over a range of phases may be even more
effective. Here we propose a phasic burst stimulation protocol (PhaBS) optimized using the
PRC. The PRC can be used to determine both the stimulus phase and burst duration to sup-
press the oscillation.
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This paper demonstrates three points: 1) there is a phase dependent effect of stimulation on
the population oscillation, 2) the population PRC can be used to predict these effects, and 3) a
burst of stimulus pulses over a range of phases is more effective at disrupting the oscillation
than a single stimulus pulse. While the focus of this paper is on designing stimulation to sup-
press oscillations in this particular computational model, this approach may be generalized to
other population oscillations.

Methods

Computational Model
In this paper we test the effects of closed-loop phasic stimulation on the amplitude of a popula-
tion oscillation in a computational model of the subthalamopallidal network developed by
Hahn &McIntyre [21]. We chose this model because it exhibits an emergent 34 Hz population
oscillation in the PD state [20], shown in Fig 1, that is modulated with stimulation to the sub-
thalamic nucleus (STN).

The Hahn &McIntyre model consists of 500 single compartment conductance-based neu-
rons: 100 globus pallidus internal neurons (GPi), 100 STN neurons, and 300 globus pallidus
external (GPe) neurons. Excitatory cortical synaptic drive to STN is simulated as a 16 Hz sto-
chastic bursting input. Inhibitory striatal synaptic drive is delivered to GPi and GPe. Parame-
ters for the parkinsonian state were fit using in vivomicroelectrode recordings from non-
human primates [22–24]. The model was tuned to replicate the mean firing rates and bursting
rate within each population (STN, GPe, and GPi) as well as their shifts in the parkinsonian
state using a least squares error optimization [21].

While the original Hahn & McIntyre paper focused on the bursting rates of different popu-
lations, we previously demonstrated that a 34 Hz population oscillation emerges in the par-
kinsonian state due to neurons in the STN and GPe resonating better with each other [20].
This oscillation can be seen in the power spectrum calculated from the summation of phases
of the GPe population (Fig 1). Importantly, this population oscillation is reduced with high
frequency stimulation to the STN, a common target for DBS in patients with PD. While this
pathological oscillation occurs at a higher frequency than commonly seen in PD patients, it
offers a biomarker not present in the healthy state that is modulated by the simulated DBS

Fig 1. Hahn and McIntyre model displays an emergent 34 Hz parkinsonian population oscillation. Left: Connectivity of the Hahn and
McIntyre model consisting of 300 conductance based neurons in the globus pallidus external (GPe), 100 neurons in the subthalamic nucleus
(STN), and 100 neurons in the globus pallidus internal (GPi). Right: Power spectrum showing the emergence of a 34 Hz pathological oscillation in
the parkinsonian state (red), which is not present in the healthy state (black) and is suppressed with 136 Hz DBS (dotted). The peak at 16 Hz is
caused by the cortical input into the network model.

doi:10.1371/journal.pcbi.1005011.g001
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therapy (unlike the 16 Hz input from the cortex). Therefore, the Hahn &McIntyre model pro-
vides a platform to test the effects of optimized closed-loop stimulation on an emergent patho-
logical oscillation.

While there are many effects of STN DBS, the focus of the Hahn &McIntyre model is on
targeting efferent activity. In the model, DBS is simulated by activating neurons in the efferent
target. To model antidromic effects of the axonally generated action potentials, a subthreshold
current injection is applied to STN neurons. The amplitude of the direct current injections was
set to 1/10th of that used in the original paper in order to modulate the phase of the population
oscillation rather than resetting the phase.

As with any computational model, there are limitations to the Hahn &McIntyre model.
First, while the neurons in the model are coupled based on anatomy, the actual wiring arrange-
ments in the basal ganglia are much more complex. Second, heterogeneity within the cells in
the model is caused by random input to identical model neurons, while neurons in the basal
ganglia have a lot of heterogeneity in their firing rates and PRCs [25]. Third, there is a complex
topology to any neural network, which is not represented in this model. Fourth, the effects of
stimulation are a simplification. For computational efficiency, dendritic arbors are not simu-
lated and therefore stimulation is applied as a direct current injection to the cells. Furthermore,
as there is no cortical population included in the model, antidromic activation of cortical neu-
rons as a result of STN DBS is not included [26]. While this is not an accurate representation of
how DBS affects the neural tissue [21], the model does the best job at modeling the effects of
DBS on efferent targets, where our analysis focuses.

Closed-loop phasic stimulation. To test closed-loop phasic stimulation, a real-time esti-
mation of the population phase is necessary to determine when to apply the stimulus. The
phase was estimated using a time-weighted Fourier transform of the spikes times occurring in
the previous T = 400ms at frequency, ω = 34 Hz:

Xðf ; tÞ ¼
XNS

k¼1

eðSk�tÞ=te�2pjfSk ; ð1Þ

where Sk is the time of the kth spike of the GPe population, NS is the number of spikes in GPe
from time t − 400 ms until the present time, t, and τ = 3 ms defines the time constant of the
time-weighting of the fit.

The instantaneous population phase at time t, ϕ(t) can be determined as follows:

�ðtÞ ¼ ffð
Xfmax

f¼fmin

Xðf ; tÞe2pjtf Þ; ð2Þ

where f is the frequency range of the beta oscillation, fmin = 30 Hz and fmax = 36 Hz.
Stimulation was applied at a specified delay after the midpoint of the oscillation was

detected, i.e. where ϕ(t) = 0. 100 second simulations were run for 10 delay values. Depending
on the simulation being tested, either a single stimulus pulse or a bursts of three equally spaced
stimulus pulses were applied. The power of the pathological beta oscillation (31–36 Hz) com-
pared to the baseline gamma (60–64 Hz) was measured across each cycle.

Predicting Desynchronizing Stimulation Phase
Phase response curve theory. We use phase response curve (PRC) theory to predict how

phasic stimulation locked to an oscillation will desynchronize neurons. The phase advance, Δ,
that occurs from a stimulus applied at phase ϕ is characterized by a function Z(ϕ), which can
be measured directly from a neuron or population of neurons. When stimulation of an
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oscillator is periodic, the PRC can be used to predict the phase of the stimulus on the next
cycle, ϕi+1, from the phase on the current cycle ϕi via a map, ϕi+1 = ϕi + Z(ϕi).

PRC theory can be described using two periodically neurons starting relatively close
together in phase. The distance in phase between the two neurons on the next cycle can be
determined from the PRC and their distance, �, on the current cycle �i+1 = �i × (1 + Z0(ϕi)). If
the absolute value of the slope of the map at the phase the stimulus is delivered is greater than
one, then the distance between the neurons will grow, as shown in Fig 2. Application of the
stimulus over several cycles at these phases will cause the neurons’ phases to diverge and desyn-
chronize. The optimal stimulus phase to desynchronize the neurons with a single pulse per
cycle of the oscillation is the phase at which the map has the steepest positive slope. In this
description, the oscillators are individual neurons. However, in the Hahn &McIntyre model,
we have a population oscillation, where the populations of neurons are the oscillators.

A burst of stimulation pulses applied over a range of phases where the absolute value of the
slope of the map is greater than one will increase the phase difference between the neurons on
the next cycle over a single pulse. Assuming no interaction between stimuli, this is shown in

Fig 2. Phase response curves can be used to predict synchronization properties of a periodic
stimulus. Top: Current pulses for a periodic stimulus (red pulses) can be applied to a periodically firing
neuron (black). The stimulus pulse is applied at a specific phase (ϕi) in the cycle of the neuron. This results in
a change in the timing of the next action potential (red voltage trace). The difference in spike timing is
measured as the spike time advance (Δϕi). The stimulus will now fall at a different phase (ϕi+1) on the next
cycle. Bottom left: The phase of the stimulus on the next cycle can be predicted from the PRCmap (black;
PRC added to the red line of identity). Given the phase of the current stimulus pulse (ϕi), the map can be used
to predict the phase on the next cycle (ϕi+1). The slope of the PRCmap at the stimulus phase affects how two
neurons (black and blue) will synchronize or desynchronize. Here, where the slope of the PRCmap is greater
than the diagonal (red line), the two neurons starting at some small distance in phase apart (�i) are further
apart on the next cycle, �i+1 > �i. Bottom right: The PRCmap can be used to predict the stimulus phase on the
next cycle (ϕi+1) for a burst of three stimulus pulses. Here each stimulus pulse is applied at a phase where the
slope of the PRCmap is positive. This results in a greater separation of the two neurons on the next cycle
(�i+1) than when a single pulse was used (bottom left).

doi:10.1371/journal.pcbi.1005011.g002

Phasic Burst Stimulation for Parkinson’s Disease

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005011 July 14, 2016 5 / 14



Fig 2. We hypothesize that burst stimulation will be more effective at desynchronizing a popu-
lation of neurons than pulsatile stimulation.

Estimation of a PRC from a population oscillation. In a previous paper we describe how
to estimate a PRC from a population oscillation [20] where it is described in full. This method
will be described briefly here. The Fourier coefficient, cβ was estimated directly from the spike
time data output from the Hahn &McIntyre model. The Fourier coefficient is a complex num-
ber represented as cβ = Ae−jϕ. The phase can be determined by taking the angle, ff, of the Fourier
coefficient. A Fourier coefficient was fit to a 94 msec window (approximately three cycles of

the oscillation) before, cprestimi , and after, cpoststimi , the stimulus i. The phase change can be deter-
mined by taking the difference between the phase angle estimated from the time immediately
after the stimulus and the phase angle estimated immediately before the stimulus,

D�b
i ¼ ffcprestimi � ffcpoststimi . The mean and standard deviation of the phase advance for each

phase bin was estimated by fitting a wrapped normal distribution.
Predicting the effect of stimulation on synchrony with the PRC. Using the PRC we are

able to predict the effect of phasic stimulation on the amplitude of a population oscillation. The
precise phase divergence can be calculated, taking into account the stimulus pulse interval:

�iþ1 ¼ �ið1þ Z0
1ð�iÞÞð1þ Z0

2ð�i þ Z1ð�iÞ þ dÞÞ
ð1þ Z0

3ð�i þ Z1ð�iÞ þ Z2ð�i þ Z1ð�iÞ þ dÞ þ 2dÞÞ; ð3Þ

where �i+1 is the phase difference between two neurons after the three stimuli; �i is the time dif-
ference between two neurons on their ith spike; δ is the inter-stimulus-interval; and Z1, Z2, and
Z3 are phase response functions associated with the first, second, and third stimulus pulse,
respectively. These functions may differ from each other if they explicitly account for higher
order resetting characteristics resulting from pulsing history. While this equation solves for
effect on synchrony after three stimulus pulses, the equation can be generalized to any number
of pulses.

Fig 2 assumes the effects of each stimulus input have dissipated by the time the next stimu-
lus is applied, and that each stimulus pulse has the same effect on the phase of the oscillation.
In this case, where only first order effects are considered, Z1, Z2, and Z3 are identical. However,
there may be interactions between stimuli, or higher order effects [27]. In this paper, we look at
both the first order PRC, measured by applying a single subthreshold stimulus pulse at 2 Hz, as
well as a PRC measured using a burst of 3 stimulus pulses, as was used for PhaBS simulations,
to address higher order effects.

Results
We test closed-loop phasic stimulation and phasic burst stimulation (PhaBS) in the Hahn &
McIntyre model. In this model an oscillation centered around 34 Hz emerges in the “parkinso-
nian state” and responds to high frequency stimulation. To implement closed-loop phasic
stimulation and PhaBS in the model, a time weighted Fourier Transform of the spike trains
was used to estimate the instantaneous phase of the population oscillation. This phase estima-
tion was used to trigger stimulus pulses. First, we show that the 34 Hz pathological oscillation
seen in the model can be modulated using a single stimulus pulse triggered off of the phase of
the oscillation. Next, we show that applying a burst of three equally spaced stimulus pulses
(5 msec apart) triggered off of the phase of the oscillation more strongly modulates the 34 Hz
oscillation (raw output seen in Fig 3). Finally, we show the modulation of the 34 Hz oscillation
can be predicted using the phase response curve (PRC).

Phase dependent modulation of the 34 Hz oscillation is seen using a single stimulus pulse
per cycle. The ratio of the 31–36 Hz frequency band, which is modulated by stimulation, to the

Phasic Burst Stimulation for Parkinson’s Disease
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60–64 Hz frequency band, which is unmodulated by stimulation for reference, shows that the
stimulus phase affects the modulation of the oscillation (Fig 4). Stimulation applied early in the
phase of the oscillation results in a decrease in the 34 Hz oscillation below baseline (DBS Off),
while stimulation applied late in the phase of the oscillation enhances the pathological oscilla-
tion. Using 1/10th the stimulus amplitude used to model clinical DBS in the original paper
[21], a 30% reduction in the beta oscillation is seen at the optimal stimulus phase.

Importantly, the PRC can be used to predict the effects of phasic stimulation on the ampli-
tude of the 34 Hz oscillation (Fig 4). The PRC was estimated by measuring the phase advance
of the oscillation as a function of the stimulus phase using a single stimulus pulse per cycle.

Fig 3. Rastergrams from the external globus pallidus of the Hahn &McIntyre model. Left) No
stimulation, Middle) Closed-loop phasic burst stimulation at a phase which disrupts the 34 Hz oscillation
(phase = 0.3); Right) Closed-loop phasic burst stimulation at a phase which enhances the 34 Hz oscillation
(phase = 0.7).

doi:10.1371/journal.pcbi.1005011.g003

Fig 4. Effects of phasic stimulation with a single pulse on the population oscillation can be predicted
using the PRC. Top: Population PRC, as calculated in a previous paper [20]. Middle: Single pulse
predictions determined from the slope of the PRC. Prediction of which stimulus phases will desynchronize the
population oscillation (below the red line) and which will enhance the oscillation (above the red line). Bottom:
Ratio of Beta (31–36 Hz) to Gamma (60–64 Hz) power as a function of the stimulus phase, shown as a
percent change from stimulation off condition (red line). Stimulating early in the phase suppresses the 34 Hz
oscillation, while stimulating late in the phase enhances it.

doi:10.1371/journal.pcbi.1005011.g004
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This slope of this first order PRC can be used to predict the phase dependent modulation of the
34 Hz oscillation seen using closed-loop phasic stimulation.

While a single pulse per cycle was effective at disrupting the emergent pathological oscilla-
tion, we hypothesize that a burst of stimulus pulses over a range of phases will be more effective
at modulating the oscillation (Fig 2). To test phasic burst stimulation (PhaBS), a burst of three
stimulus pulses triggered off the instantaneous phase was applied to the computational model.
The stimulus amplitude was 1/10th the amptliude used as the clinical value in the original Hahn
&McIntyre paper. Roughly 30% of the first order PRC has a positive slope (Fig 4). The inter-
stimulus inverval of 5 msec was chosen so the three pulses covered about 30% of the period. As
predicted in Fig 2, the effects of burst stimulation are stronger than the effects of stimulation
using a single pulse per cycle. With PhaBS, almost a 50% reduction in the power of the patholog-
ical 34 Hz oscillation compared to baseline (DBS off) is seen at the optimal phase (Fig 5).

In order to use the PRC to predict effects of PhaBS on the 34 Hz oscillation, we must
account for three stimulus pulses instead of a single stimulus pulse per cycle. In a first order

Fig 5. The phase response curve (PRC) can be used to predict the effects of phasic stimulation on the
34 Hz parkinsonian oscillation seen in the HMmodel. Top: PRCs estimated using, 1 (solid black) and 3
(red) stimulus pulses per cycle. Assuming each no interactions between pulses, the PRC for three pulses is
predicted (dotted black) from the single pulse PRC. The difference seen between the prediction (dotted black)
and the PRC etimated using 3 pulses (red) indicates there are higher order effects. Middle: Predictions from
the single pulse PRC (black) and the 3 stimuli PRC (red). Stimulating at phases where the curve is below zero
is predicted to desynchronize the oscillation. Bottom: Ratio of Beta (31–36 Hz) to Gamma (60–64 Hz)
amplitude as a function of stimulus phase, shown as a percent change from stimulation off (black line at
y = 0). Stimulating early in the phase suppresses the 34 Hz oscillation, while stimulating late in the phase
enhances it. This matches with predictions made using the PRC (middle). Furthermore, 3 pulses per cycle
result in a stronger modulation of the 34 Hz oscillation.

doi:10.1371/journal.pcbi.1005011.g005
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approximation, we linearly summed the effects of each stimulus pulse on the phase advance to
account for the burst stimulation. In fact, when the PRC is measured using a burst of 3 stimulus
pulses, the shape does not match this first order approximation PRC (Fig 5). This indicates
that there are higher order effects, and that each stimulus pulse within the burst does not result
in equal phase effects. For this reason, the PRC estimated using a burst of stimui was used to
predict the effects of PhaBS.

The effects of PhaBS on the 34 Hz parkinsonian oscillation seen in the Hahn &McIntyre
model can be predicted using the burst PRC (Fig 5). The slope of the burst PRC is positive
when stimuli are applied at phases early in the oscillation, which was found to suppress the
pathological oscillation in simulations. Stimulating late in the phase, which enhances the path-
ological oscillation in simulations, corresponds to phases when the slope of the PRC is negative.
Predictions from the PRC, plotted as the negative slope of the PRC (−Z0(ϕi)), are shown in the
middle panel of Fig 5. Negative values indicate phases predicted to desynchronize the oscilla-
tion. Furthermore, the burst PRC predicts a larger modulation of the oscillation using PhaBS
than when using a single pulse, and is validated in simulations. Predictions match well with the
simulation results showing the percent reduction of the pathological oscillation (Fig 5).

The PRC was used to predict the stimulus phase using Eq (3) that would produce the maxi-
mum suppression of the population oscillation. This equation can theoretically be used to opti-
mize both the phase, ϕi, and the stimulus interval, δ.

Discussion
Results in this paper provide evidence for a PRC optimized closed-loop approach to DBS to
suppress pathological oscillations seen in PD. This approach was tested in a computational
model of the subthalamopallidal network exhibiting an emergent population oscillation in the
PD state. A novel closed-loop approach to suppress oscillations, termed Phasic Burst Stimula-
tion (PhaBS), for which the PRC is used to optimize the stimulus phase was shown to be more
effective than applying a single stimulus pulse per oscillation cycle. PhaBS triggered off of the
phase of pathological oscillations has the potential to improve efficacy and robustness of DBS
while reducing power consumption. While the focus of this paper has been on an oscillation
seen in the PD state of a computational model, the approach can be generalized to disrupt or
enhance any oscillatory biomarker modulated by stimulation.

Using phasic stimulation to suppress pathological oscillations has previously been proposed
and tested in the past [6, 15, 28–30]. The contribution of this paper is in providing a method
for determining the optimal stimulus phase for a burst of stimulus pulses applied over a range
of phases. Azodi-Avval and Gharabaghi [30] suggested using the PRC to optimize stimulation
phase, but propose to stimulate at the phase of the oscillation resulting in the largest phase
advance and do not test this theory. Here, we suggest that the slope of the PRC is most impor-
tant in predicting phase dependent modulation of oscillatory activity, and provide numerical
and theoretical evidence for this assertion.

One major advantage of PhaBS is that subthreshold amplitudes are used for stimulation.
Here we have shown that applying a burst of subthreshold stimulus pulses is more effective at
reducing the pathological oscillation than using a single stimulus pulse per cycle of the same
amplitude. It is a possibility that using a single pulse at a higher stimulus amplitude would pro-
vide as much reduction of an oscillation as a burst of pulses. However, because the neuronal
response to stimulation amplitude is highly nonlinear, we do not expect that the three small
stimulus pulses can simply be replaced with one large perturbing stimulus pulse. Using a lower
amplitude stimulation may reduce side effects and conserve power. Furthermore, hydrolization
of the electrode is a hard safety limit of the stimulation amplitude which may be reached before
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significant modulation of the oscillation by a single pulse could be achieved. Therefore, if stim-
ulation is approaching the maximum pulse amplitude, multiple pulses may be more effective.

A computational model of the subthalamopallidal network was used to test if PhaBS could
desynchronize a population of heterogeneous neurons. The Hahn &McIntyre model was used
because it is a well known model that produces a population oscillation which is suppressed by
DBS in the PD state. The oscillation generated in this model is not caused by synchronous peri-
odically firing neurons, but instead is an emergent property of the network generated by the
coupling of an excitatory and inhibitory nucleus [20]. Previous studies have focused on apply-
ing PRC theory to single neuron oscillators [18, 31]; however here it is effectively applied to a
population of neurons, as it has been done in studies of circadian oscillators [17, 32–34].

While the Hahn &McIntyre model is one of the most physiologically realistic computa-
tional models of DBS in the subthalamopallidal network, there are limitations to the predictive
accuracy of this model, as described in the methods section. For computational efficacy, simpli-
fications are made, such as with connectivity, topology, heterogeneity, and modeling the effects
of stimulation on neural tissue. Despite these limitations, the Hahn &McIntyre exhibits an
emergent population oscillation in the parkinsonian state and models efferent effects of stimu-
lation, necessary for testing PhaBS. We do not suggest that the optimal phases found in this
study will be the same as the optimal phase found in a clinical setting. Instead, we present evi-
dence for a method of using the PRC, estimated empirically from each patient, to select the
optimal stimulation phase to disrupt pathological oscillations specific to that subject. The use
of the Hahn &McIntyre model successfully demonstrates how a closed-loop approach to DBS,
where a burst of stimulus pulses is triggered off the phase of a population oscillation, may work
and be systematically optimized. While here we optimize the stimulus phase, Eq (3) can also be
used to optimize the inter-stimulus interval, δ (5 msec interval was used here).

We have proposed using PRCs to predict stimulus parameters to optimally disrupt beta
oscillations seen in PD. However, there are a number of potential issues with suppressing this
activity. While beta oscillations are implicated in anti-kinetic motor symptoms of PD, a causal
role is highly debated [4]. Enhanced beta oscillations are reduced upon therapeutic DBS and
dopamine replacement therapy [10]; however, this may be an epiphenomenon. Strong beta
oscillations are not seen in all PD patients and are seen in healthy subjects, such as naïve non-
human primates [35]. This suggests that beta oscillations may not be an ideal biomarker. How-
ever, the approach presented here can be be applied to any behavioral oscillation, such as
tremor, or any other oscillatory activity found to be implicated in PD in the future.

It is not known how eliminating the beta oscillation will impact normal motor control. Oscil-
latory activity is necessary for normal function throughout the brain. Eliminating beta oscillations
may impair motor control in a different way, or may allow new pathological activity to emerge.
While there are many potential clinical limitations to PRC optimized PhaBS, specifically targeting
beta oscillations may provide valuable insight into the role of enhanced synchrony in PD.

Advantages of Closed-Loop DBS
Phasic Burst Stimulation, presented in this paper, is a closed-loop approach to DBS for PD.
Currently continuous high frequency stimulation is used to treat motor symptoms of PD. Stim-
ulation parameters for this open-loop approach are pre-programmed by a clinician and are not
adjusted based on feedback. While high frequency stimulation is effective [36], it may not be
optimal. One limitation of an open-loop approach is that the same level of stimulation is
applied regardless of the severity of a patient’s motor symptoms [12]. A closed-loop approach
offers many potential benefits including improved efficacy [12, 37], reduced side effects [12],
increased battery life, and patient-specificity [36].
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For PhaBS to be effective, an oscillatory biomarker related to symptom severity must be tar-
geted. This oscillation could be a behavioral oscillation, such as tremor, or from a neural signal
for non-oscillatory motor symptoms, such as the beta oscillation. Tremor provides a behavioral
oscillation that can be recorded noninvasively from patients. It has been shown that tremor
amplitude is modulated by the phase at which stimulus pulses are applied in essential tremor
patients [6, 15]. The theory presented in this paper suggests that a PRC estimated from the
tremor could be used to identify the optimal stimulation phase to suppress the tremor, and that
a burst of stimulus pulses may be more effective than a single stimulus per cycle. An implant-
able DBS system for PD (Activa PC+S) with sensing, stimulation, and detection features has
been developed for investigational use [2], making it possible to use the biomarkers recorded
from the neural signal in a clinical setting.

In modeling, it has been shown that phasic stimulation destabilizes the current phase
around which neurons synchronize while stabilizing another phase [38]. Therefore, continued
stimulation at the same phase for many cycles may only result in transient destabilization and
instead help sustain the oscillation after many cycles of stimulation. One solution is to turn off
stimulation when the amplitude becomes small and turn it back on when the oscillation begins
to emerge again.

Enhanced beta activity is not constant, there may be periods of high beta and periods of low
beta synchrony [39]. For this reason, a closed-loop approach to DBS, where beta oscillations
are tracked, may offer a more efficient approach to stimulation. If enhanced beta oscillations
are actually causing motor symptoms, this would suggest stimulation is not needed during
times when beta power is low.

To optimize PhaBS for patient-specific oscillations, a PRC must be measured from the sub-
ject. Recently it has been shown that it is possible to estimate PRCs from local field potential
recordings from the STN of PD patients [30]. This suggests that the pathological beta oscilla-
tion implicated in PD is sensitive to the phase at which a stimulus is applied at that PhaBS may
be possible clinically.

There have been many approaches, both closed- and open-loop, for optimizing DBS for
movement disorders (i.e. [12, 28, 37, 40–44]). Adaptive and on-demand closed-loop
approaches (i.e. [12, 37, 41]) have been used to reduce the amount of stimulation applied and
improve efficacy. These approaches are reactive, where open-loop high frequency stimulation
is applied when a physiological event is detected, such as an increase in beta power. Here we
are proposing a closed-loop approach where the timing of the stimulus pulses is determined by
the physiology.

New open-loop approaches, such as Coordinated Reset [42] and Temporally Optimized
Patterned Stimulation (TOPS) [44] have also shown promise at improving DBS for PD. Coor-
dinated Reset [42], a multi-site stimulation approach, aims to disrupt pathological synchrony
by entraining sub-populations out of phase with each other thereby disrupting synchrony
across the entire population. This approach may evoke plasticity effects resulting in long-last-
ing reductions in motor symptoms persistent after the stimulation is terminated. Current pulse
generators implanted in patients are not capable of implementing this approach. TOPS [44],
another open-loop approach, uses an algorithm to optimize the pattern of stimulation using a
computational model. This approach depends on the accuracy of the computational model
and is not patient-specific. PhaBS differs from these approaches by using a principled approach
for optimization using a simple model, the PRC, estimated from a patient’s physiological
recordings generating a patient specific stimulation.

Oscillatory activity is seen throughout the nervous system. Enhanced oscillations have been
implicated in many neurological disorders, such as essential tremor, Parkinson’s disease, epi-
lepsy, and schizophrenia [45–48], where it may be therapeutic to disrupt oscillations. However,
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oscillatory activity can also be necessary or important for proper function, such as such as in
cognition and perception [49–52]. While this paper focuses on using PhaBS to suppress patho-
logical oscillations seen in PD, the theory can be applied to enhance or disrupt other oscillatory
signals.
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