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Optimal Inputs for Phase Models
of Spiking Neurons
Variational methods are used to determine the optimal currents that elicit spikes in
various phase reductions of neural oscillator models. We show that, for a given reduced
neuron model and target spike time, there is a unique current that minimizes a square-
integral measure of its amplitude. For intrinsically oscillatory models, we further dem-
onstrate that the form and scaling of this current is determined by the model’s phase
response curve. These results reflect the role of intrinsic neural dynamics in determining
the time course of synaptic inputs to which a neuron is optimally tuned to respond, and
are illustrated using phase reductions of neural models valid near typical bifurcations to
periodic firing, as well as the Hodgkin-Huxley equations. �DOI: 10.1115/1.2338654�
Introduction
Phase-reduced models of neurons have traditionally been used

o investigate either the patterns of synchrony that result from the
ype and architecture of coupling �1–8� or the response of large
roups of oscillators to external stimuli �9–11�. In all of these
ases, the inputs to the model cells were fixed by definition of the
odel at the outset and the dynamics of phase models of networks

r populations were analyzed in detail. The present paper takes a
omplementary, control-theoretic approach that is related to
robabilistic “spike-triggered” methods �12�: we fix at the outset a
eature of the dynamical trajectories of interest—spiking at a pre-
ise time t1—and study the neural inputs that lead to this outcome.
y computing the optimal such input, according to a measure of

he input strength required to elicit the spike, we identify the
ignal to which the neuron is optimally “tuned” to respond. We
iew the present work as part of the first attempts �13,14� to
nderstand the dynamical response of neurons using control
heory, and, as we expect that insights from this general perspec-
ive will be combined with the “forward” dynamics results that
hil Holmes and many others have derived to ultimately enhance
ur understanding of neural processing, we hope that it will serve
s a fitting tribute to his work.

Optimal Current for Specified Time of Firing

2.1 Problem Formulation. Consider the phase model for a
piking �i.e., firing� neuron

d�

dt
= f��� + Z���I�t� �2.1�

here f��� gives the neuron’s baseline dynamics, Z��� is its phase
ensitivity function, and I�t� is a current stimulus �e.g., �9,15��. We
ssume that Z��� vanishes only at isolated points, and that f���
0 at these points, so orbits of full revolution are possible. Here
is 2� periodic on �0,2��, and by convention �=0 corresponds

o the spiking of the neuron.
Suppose that, for a specified time t1, for all stimuli I�t� that

volve ��t� via �2.1� from ��0�=0 to ��t1�=2� �that is, that cause
he cell to spike at time t1, following a spike at time 0�, we want
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to find the stimulus that minimizes the cost function G�I�t��
=�0

t1�I�t��2dt, the square-integral cost on the current. �For a system
obeying Ohm’s law and with resistance R, this corresponds to
minimizing the power P� I2R.� Other choices, including costs on
the time derivative of the current, lead to alternate equations be-
low, but can be handled similarly �cf. �16��.

We apply calculus of variations to minimize �13�

�2.2�
with � being the Lagrange multiplier, which forces the dynamics
to satisfy �2.1�. The associated Euler-Lagrange equations are

�P

�I
=

d

dt� �P

� İ
�,

�P

��
=

d

dt� �P

��̇
�,

�P

��
=

d

dt� �P

� �̇
�⇒

I�t� =
��t�Z���t��

2
�2.3�

d�

dt
= f��� + Z���I�t� = f��� +

��Z����2

2
�2.4�

d�

dt
= − �f���� − �Z����I�t� = − �f���� −

�2Z���Z����
2

�2.5�

where �=d /d�. To find the optimal I�t�, �2.4� and �2.5� need to be
solved subject to the conditions ��0�=0,��t1�=2�. This requires
finding the corresponding initial condition ��0�	�0, which can
be done with appropriate numerical methods. The solution
���t� ,��t�� using this initial condition can then be used in �2.3� to
give the optimal stimulus I�t�. �For higher-dimensional neural
models, such as the Hodgkin-Huxley equations considered below,
gradient-based numerical models that iteratively update I�t� via
the variational derivative �P /�I�t� may be required; see �16�.�

Applying the Legendre transformation �17�, we observe that the
Hamiltonian H�� ,��=�f���+�2�Z����2 /4 is conserved on trajec-
tories for the Euler-Lagrange equations �2.4� and �2.5�. Taking
initial conditions �� ,��= �0,�0� with H0	H�0,�0�, the trajecto-
ries thus satisfy

�2�Z����2

+ �f��� − H0 = 0 �2.6�

4

006 by ASME Transactions of the ASME



m
f
t
i
t

T
i
a
d
t

t

s
s
s

e
b
s

j

H
s
f

�

q

H
−
o

a

e

D

p
g
i
a
a
E
Z
p
a
m
s
b

J

2.2 Existence and Uniqueness of Optimal Inputs I„t…. As
entioned above, the trajectories of interest are orbits that go

rom �=0 to �=2� over the timespan �0, t1�. We now show that
here is a unique such orbit and, hence, input I�t�, which is optimal
n the sense introduced above. We refer to this orbit as the optimal
rajectory. First, we make two assumptions:

Z�0� = 0, f�0� � 0 �2.7�

hat is, we assume that the phase sensitivity function Z�·� van-
shes at the spike phase �=0 and that the intrinsic phase dynamics
re increasing at this point. These conditions are required for well-
efined phase reductions of spiking neurons �9�, as they ensure
hat the spike phase is not crossed “backwards.”

LEMMA 2.1. Assume that �2.7� holds. Then d� /dt�0 for any
rajectory of �2.4� or �2.5� with ��0�=0 and ����=2�.

Proof. Consider a trajectory 
���t� ,��t���, 0� t��, which
olves �2.4� and �2.5�. From �2.7�, we have �d� /dt��t=0�0. As-
ume in point of contradiction that there exists a time 0� t̂��
uch that �d� /dt��t=t̂�0. Since ����=2�, in this case there also

xists a phase �̄�2� such that ��t�= �̄ for three distinct times
etween 0 and �. A quick sketch in the �� ,�� plane shows that,
ince any trajectory 
���t� ,��t��� is not self-intersecting, the tra-

ectory under our assumption contains three distinct points ��̄ ,� j�,
j=1,2 ,3. However, the trajectory must also be a level set of the

amiltonian; from �2.6�, which is quadratic in ����, such a level
et contains at most two points �� ,����� for any value of �. There-
ore, a contradiction has been reached and the lemma follows. �

LEMMA 2.2. Assume that �2.7� holds. For a solution to �2.4� and
2.5�

�����Z����2 = 2�− f��� + �f����2 + �Z����2H0� �2.8�

Proof. Multiplying �2.6� by �Z����2 and solving the resulting
uadratic equation in �����Z����2 gives

�����Z����2 = 2�− f��� ± �f����2 + �Z����2H0�

owever, �2.4� shows that d� /dt�0 whenever �����Z����2 /2�
f���. Therefore, from Lemma 2.1, we see that optimal solutions
nly follow the “plus” branch.

Now, we give the main result of this section.
PROPOSITION 2.3. Assume that �2.7� holds. Then for any t1�0,

n optimal trajectory exists and is unique.
Proof. Using Lemma 2.2 to rewrite Eq. �2.4�, we see that there

xist optimal solutions with spike times t1 given by

t1 =�
0

t1

dt =�
0

2�
d�

f��� +
��Z����2

2

=�
0

2�
d�

�f����2 + �Z����2H0

�2.9�

ifferentiating, we have

�t1

�H0
= −

1

2�
0

2� �Z����2d�


�f����2 + �Z����2H0�3/2 � 0 �2.10�

rovided �f����2+ �Z����2H0�0, which is necessary for �2.8� to
ive a valid trajectory. Thus, t1 decreases monotonically as H0
ncreases. Noting that �0 varies monotonically with H0 under our
ssumptions �2.7� �in fact, H0= f�0��0�, we conclude that there is
t most one value of �0 that gives a trajectory with a particular t1.
xamining �2.9� and recalling our assumption from the outset that
��� vanishes only at isolated points, and that f����0 at these
oints, we see that �i� by choosing H0 �and, hence, �0� to be
rbitrarily large, an optimal trajectory with arbitrarily small t1
ay be found; �ii� by choosing H0 to approach

up��−�f����2 / �Z����2� from above, an optimal trajectory with ar-

itrarily large t1 may be found. �

ournal of Computational and Nonlinear Dynamics
2.3 Intrinsically Oscillatory Neurons. For the special case
that f���=	
const, so that the neuron fires periodically with pe-
riod T=2� /	 in the absence of input I�t�, Z��� is called the phase
response curve �PRC�. Then, �2.4� and �2.5� have fixed points
�� f ,� f� that satisfy Z��� f�=0,� f =−2	 / �Z�� f��2. The eigenvalues
of the Jacobian evaluated at these fixed points are
±	−Z��� f� /Z�� f�. If Z��� f� and Z�� f� have opposite signs, such a
fixed point is a saddle point. The associated stable and unstable
manifolds are found to be trajectories with H0=H�� f ,� f�=
−	2 / �Z�� f��2.

2.3.1 Form of Optimal Current for Small �t1−T�. Suppose
f���=	�0, Z�0�=0, and that the desired spike time t1 is close to
the natural period T. We can then solve �2.4� and �2.5� to lowest
order in �t1−T� explicitly, demonstrating that in this case the op-
timal current is proportional to the PRC. Thus, the PRC deter-
mines the inputs that neurons are naturally tuned to, in the sense
of the optimization problem at hand.

First note that the line �=0 is invariant for �2.4� and �2.5�, and
corresponds to d� /dt=	 and, hence, to t1=T. From �2.3�, we see
that I�t�=0 in this case; this is expected because no control is
required for an intrinsically oscillatory neuron to fire a spike at its
natural period. For t1�T, we Taylor expand t1 with respect to the
initial condition ��0� to give t1=T+ ��t1 /���0����0�=0���0� to low-
est order in �t1−T�. Thus, the initial � value needed to give a
trajectory that reaches �=2� at time t1 is ��0���t1
−T� / ��t1 /���0�����0�=0, to lowest order in t1−T. From �2.10�, not-
ing for Z�0�=0 that ��0�=H0 /	, we then have

��0� =
t1 − T

	� �t1

�H0
�

H0=0

= −
�t1 − T�2	2

�
0

2�

�Z����2d�

�2.11�

Letting t1−T=O��� and expanding

��t� = ��0��t� + ���1��t� + �2��2��t� + ¯ �2.12�

��t� = ��0��t� + ���1��t� + �2��2��t� + ¯ �2.13�

we find from Eqs. �2.4� and �2.5� that ��0�=0 and ��1��t�
=��0� /�+O���. Furthermore, ��0�=	t. Therefore, from �2.3�, the
optimal current is given by

I�t� =
1

2
��0�Z���0�� + O��t1 − T�2� �2.14�

=−
�t1 − T�	2Z�	t�

�
0

2�

�Z����2d�

+ O��t1 − T�2� �2.15�

Finally, we note that it is expected that since Z�0�=Z�2��=0, the
optimal current should vanish for �=0 �at t=0� and �=2� �at t
= t1�. This is not the case for �2.15�. However, letting Z�	t�
→Z�	t−2�t�t1−T� / �t1T��=Z�	tT / t1�, which changes only the
O��t1−T�2� terms in �2.15�, we obtain an approximation which
satisfies these conditions. With this in mind, to lowest order in
t1−T, we approximate the optimal current that causes the neuron
to spike at t1�T as

I�t� = −
�t1 − T�	2Z�	t − 2�t�t1 − T�/�t1T��

�
0

2�

�Z����2d�

+ O��t1 − T�2�

�2.16�

2.3.2 Scaling of Optimal Current for Small �t1−T�. In �9�, it is
shown how PRCs for phase reductions of neural oscillators near

common bifurcations to periodic firing scale with the baseline

OCTOBER 2006, Vol. 1 / 359
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ring frequency 	. These reductions have the form Z���
Zd�	�Z̃���, where the coefficient Zd�	� captures the scaling with
. For example, for neurons near a saddle node on a periodic orbit

SNIPER� bifurcation, Z���= �c /	��1−cos���� �cf. �18��, where c
s a model-dependent constant, so Zd�	�=1/	; for neurons near a
upercritical Hopf transition, Z���= �c /	−	H� sin��� �cf. �19��,
here 	H is the frequency at the bifurcation; thus, Zd�	�
1/	–	H.
Using these results and �2.16�, it is readily determined how the

ptimal I�t� scales with 	 when the desired spike time t1 is a
fixed� small perturbation from the natural period T=2� /	. De-
oting by Imax1 the maximum of �I�t�� in this case, we get

Imax1 = c1	2/Zd�	� �2.17�

or a fixed neuron model and time shift t1−T, to lowest order in
1−T. Here, c1 is a model-dependent constant. In words, Eq.
2.17� shows how the amplitude of the optimal current required to
erturb spike times by a fixed amount scales with the baseline
requency of the neuron. A complementary relationship is ob-
ained by asking how this amplitude scales with baseline fre-
uency when the optimal current perturbs the spike time by a
xed fraction of the �varying� baseline period. In this case, setting

1−T in �2.16� to pT, where p is the fixed fraction, gives

Imax2 = c2	/Zd�	� �2.18�
For phase reductions near the SNIPER bifurcation, and for

ther cases in which Zd�	� decreases as 	 increases, both expres-
ions �2.17� and �2.18� demonstrate that the optimal currents re-
uired to perturb spike times diminish rapidly in amplitude at
ower baseline frequencies. We will return to this point below.

Examples

3.1 Sinusoidal PRC. Consider f���=	=const and the PRC

Fig. 1 Phase space for „2.4… and „2.5
=Zd=1, showing fixed points at „� ,�…=
stable manifolds of the fixed points, a
Fig. 2 Dependence of t1 on �0 for the sinus

60 / Vol. 1, OCTOBER 2006
Z��� = Zd sin��� �3.19�

where Zd is a constant. This might arise due to proximity to a
supercritical Hopf or a Bautin bifurcation �9,19�. There are fixed
points of the Euler-Lagrange equations �2.4� and �2.5� at �� f ,� f�
= �� /2 ,−2	 /Zd

2� , �3� /2 ,−2	 /Zd
2�, each with eigenvalues 	 and

−	. The phase space for �2.4� and �2.5� is shown in Fig. 1 for
	=Zd=1. We integrate �2.9� to give

t1 =
4

	
K�−

H0Zd
2

	2 � =
4

	
K�−

�0Zd
2

	
� �3.20�

Here, K�x� is the complete elliptic function of the first kind, a
monotonically increasing function with properties that

K�0� =
�

2
, lim

x→−�
K�x� = 0, lim

x→1
K�x� = � �3.21�

Figure 2 shows how t1 depends on �0; as expected from �2.10�, it
decreases monotonically as �0 increases. Furthermore, as ex-
pected from Sec. 2.3, the initial condition �0=0 gives t1=2� /	.
Finally, from �3.20� and �3.21�, we see that t1 blows up to
infinity as H0→−	2 /Zd

2; this is expected from �2.9�, as −	2 /Zd
2

=sup��−�f����2 / �Z����2�. This corresponds to approach toward the
stable and unstable manifolds of the fixed points. This forces the
trajectory to spend asymptotically long times near the fixed points
�with corresponding current approximately given by �2.3� evalu-
ated at the fixed point�, delaying its arrival to �=2�,

To obtain the initial condition �0 for a particular value of t1, one
can in principle invert the function K�x� in �3.20�. In practice, it is
easier to solve �2.4� and �2.5� subject to the conditions ��0�
=0,��t1�=2� numerically using a shooting method. We used such
a method to generate the optimal currents for 	=Zd=1 for various
values of t1 shown in Fig. 3, where the time axis has been scaled
for ease of comparison. Not surprisingly, if we want the neuron to
fire more quickly than it would in the absence of the stimulus �i.e.,

ith the sinusoidal PRC „3.19… and �
/2 ,−2… and „3� /2 ,−2…, stable and un-
trajectories with t1=5 and t1=9
… w
„�
oidal PRC „3.19…, as obtained from „3.20…

Transactions of the ASME
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f t1�T�, then the optimal current is positive �respectively, nega-
ive� for � values for which Z��� is positive �respectively, nega-
ive�. Furthermore, it is clear that the approximation �2.15� char-
cterizes optimal currents for t1�T �Fig. 4�a��, and that the
ptimal current scales as expected with 	 �Fig. 5�a��.

3.2 SNIPER PRC. Consider f���=	=const, and the PRC

Z��� = Zd�1 − cos �� �3.22�
his could arise for neurons near a SNIPER bifurcation �i.e., a
addle-node bifurcation on a periodic orbit� �9,18�. Here, there is

Fig. 3 Optimal currents for the sinusoidal PRC „3.1
time axis for ease of comparison

Fig. 4 Exact „solid lines… and approxima
labeled with „a… the sinusoidal PRC „3.19… w

�=Zd=1, and „c… the PRC corresponding to th

ournal of Computational and Nonlinear Dynamics
one fixed point of the Euler-Lagrange equations �2.4� and �2.5� at

�� f ,� f�= �� ,−	 / �2Zd
2��, with eigenvalues ±	 /2. The phase

space for �2.4� and �2.5� for this PRC is shown in Fig. 6 for 	

=1 and Zd=1. We again used a shooting method to find the opti-
mal currents—a comparison for various values of t1 is given in
Fig. 7. Again, �2.15� is a good approximation for t1�T �see Fig.
4�b��, and the expected scaling of optimal currents with 	 is seen
�Fig. 5�b��.

3.3 Theta Neuron. The “theta neuron” model describes both

with �=Zd=1 for different values of t1, with scaled

„dashed lines… optimal currents for t1 as
�=Zd=1, „b… the SNIPER PRC „3.22… with
9…
te
ith
e Hodgkin-Huxley equations with Ib=10

OCTOBER 2006, Vol. 1 / 361
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uperthreshold and subthreshold dynamics near a SNIPER bifur-
ation �18�. With our control current I�t�, this model is

d�

dt
= 1 + cos � + �1 − cos ���I�t� + Ib� �3.23�

.e., Eq. �2.1� with f���=1+cos �+ Ib�1−cos �� ,Z���=1−cos �.
s above, � is 2� periodic and spikes fire at �=0. If the baseline

urrent Ib�0, then the cell fires periodically in the absence of
nput I�t�, with angular frequency 	=2Ib. If Ib�0, then the

odel is excitable: no spikes occur without input I�t�, as there are
wo fixed points �one of which is stable� for I�t�=0; however, for
ppropriate inputs I�t� spikes can occur. When Ib�0, applying the
oordinate transformation ���=2 tan−1�Ibtan� /2−� /2��+� to
3.23� gives d /dt=	+ 2

	 �1−cos �I�t�, i.e., the governing equa-
ion for the SNIPER PRC with Zd=2/	. This transformation pre-
erves ��=0�=0 and ��=2��=2�, i.e., the property of spiking
t 0 and 2�.

The Euler-Lagrange equations �2.4� and �2.5� for the theta neu-
on model have a fixed point at �� f ,� f�= �� ,−Ib�, with eigenval-
es ±2Ib. For Ib�0, they also have fixed points at �� f ,� f�

ig. 5 Scaling of the amplitude of optimal currents with base-
ine frequency �, for „a… the sinusoidal PRC Z„�…
„1/�−�H… sin„�…, with �H=0.5 and „b… the SNIPER PRC Z„�…
„1/�…†1−cos„�…‡. For t1−T=−0.5, the amplitude Imax1 from the

owest-order expression „2.17… is given by solid lines; stars
ive the analogous numerically computed values „i.e., to all
rders…. For the fraction p=0.9, the amplitude Imax2 from the

owest-order expression „2.18… is given by dotted-dashed lines;
riangles give the analogous numerical values. Insets give the
ame data on log-log axes.

Fig. 6 Phase space for „2.4… and „2.5… for
showing the fixed point at „� ,�…= „� ,−1/2

point, and trajectories for periodic orbits with

62 / Vol. 1, OCTOBER 2006
= �cos−1��Ib+1� / �Ib−1�� ,0�, with eigenvalues ±2−Ib. The phase
space for the Euler-Lagrange equations for this model with Ib
=0.25 and Ib=−0.25 is shown in Fig. 8. For large t1 when Ib�0,
the solution spends most of its time near one of the two saddle
points, with an increasingly punctate current pulse peaked half-
way through its transit from �=0 to �=2�, as Fig. 9 shows.

3.4 Hodgkin-Huxley PRC. The Hodgkin-Huxley equations
�20� are a system of four ordinary differential equations �ODEs�
that model the generation of action potentials �i.e., spikes� in the
squid giant axon, based on the dynamical interplay between ionic
conductances and intracellular voltage. They have been highly
influential, with most mathematical neuron models being based on
them in one way or another. Here we consider the Hodgkin-
Huxley equations with standard parameters and applied baseline
current IHH=10, for which the neuron fires periodically with pe-
riod T=14.63 ms, corresponding to 	=0.429 rad/ms. The PRC
for this system, computed numerically with the software
X-Windows Phase Plane �XPP� �21�, is shown in Fig. 10. To
numerically study the Euler-Lagrange equations, we approximated
the PRC obtained from XPP as a Fourier series with 21 terms. It is
found numerically that the Euler-Lagrange equations �2.4� and
�2.5� for this PRC have fixed points at �� ,��= �3.53,−74.73� and
�4.89,−18.11�, both saddles with eigenvalues approximately equal
to ±0.92. The phase space for �2.4� and �2.5� for this PRC is
shown in Fig. 11. We used a shooting method to find the optimal
currents shown in Fig. 12 for various values of t1.

It is natural to ask to what extent the optimal current found
using the phase model with this Hodgkin-Huxley PRC causes a
neuron described by the full equations to fire at the specified time.
To answer this, we take initial conditions for the Hodgkin-Huxley
equations following a spike, apply the optimal I�t� found from the
phase model until the specified time t1, then allow the full equa-
tions to evolve under their natural dynamics without injected cur-
rent. We measure the firing time as the time of the first peak in the
voltage above an appropriate threshold.

For t1 close to the intrinsic period, the Hodgkin-Huxley equa-
tions with these inputs fire at approximately the specified times t1
�in microseconds�; see Fig. 13 for t1=14. In this case, �I�t�� re-
mains relatively small, which is necessary for the phase model to
accurately characterize the full Hodgkin-Huxley equations �e.g.,
�9��. As t1 moves away from the natural period, the optimal cur-
rent from the phase model causes the full equations to spike later
than the target time, as �I�t�� becomes relatively large and the
phase reduction loses validity. In fact, simulations show that this
I�t� pushes the trajectory near an unstable fixed point �not cap-
tured by the phase model� having complex eigenvalues with
small, positive real parts. The time required for the trajectory to
spiral away from this fixed point accounts for some of the discrep-
ancy with the phase model. Figure 14 compares the specified time

SNIPER PRC „3.22… with �=1 and Zd=1,
table and unstable manifolds of the fixed
the
…, s
period t1=5 and t1=9
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Fig. 7 Optimal currents for the SNIPER PRC „3.22… with �=Zd=1 for different values of t1, with scaled time

axis for ease of comparison
Fig. 8 Phase space for „2.4… and „2.5… for the theta neuron model „3.23… with „a… Ib
=0.25, „b… Ib=−0.25, showing fixed points, stable and unstable manifolds of the fixed
points, and trajectories for periodic orbits with period t1=5 and t1=9. The dot in „b… is a
center fixed point.
ournal of Computational and Nonlinear Dynamics OCTOBER 2006, Vol. 1 / 363
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f firing t1 and the actual time of firing t1
HH for the full Hodgkin-

uxley equations, using the current found from optimizing the
hase model.

Optimal Current for Minimizing the Time of Firing
The previous sections were concerned with determining the op-

imal current to cause a neuron described by a phase model to fire
t a specified time. Here, we consider optimizing the current, sub-

ect to the constraint that �I�t� � � Ī for all t, which causes the

ig. 9 Optimal currents for the theta neuron model, „a… with
b=0.25 and „b… with Ib=−0.25, with time axis scaled as above.
arget time values are, from top, t1=3,4,5,6,10,25.

Fig. 10 Phase response curve for the Hod
eters and injected baseline current IHH=10

Fig. 11 Phase space for „2.4… and „2.5…
Huxley equations with IHH=10, showing th

fixed points, and trajectories for periodic orbi

64 / Vol. 1, OCTOBER 2006
neuron described by a phase model to fire as quickly as possible.
This constraint could represent the maximal possible synaptic in-
put that upstream neurons can provide to the neuron at hand.
Here, we do not constrain the rate with which I�t� can vary; in
practice, the timescale of the synaptic currents, which varies
among synapse types but can be very rapid, determines the viabil-
ity of this assumption of unconstrained rate.

The following argument suggests using “bang-bang control,” in

which the injected current takes the extreme values of ±Ī �16�.
From �2.1�, in a time step dt the phase advances by

d� = �f��� + Z���I�t��dt �4.24�

To get the neuron to fire as quickly as possible, we maximize d�
at each timestep. Clearly, to do this we should take

I�t� = Ibb���t�� =� Ī for Z���t�� � 0

− Ī for Z���t�� � 0
�4.25�

More completely, suppose that the neuron starts with initial
phase �i. It will fire at time tf given by

tf =�
0

tf

dt =�
�i

2�
d�

f��� + Z���I�t�
�4.26�

where we assume that f���+Z���I�t� is always positive �if not,

then from �4.24� the phase does not advance�. Now, if −�Z��� � Ī
�Z���I�t�� �Z��� � Ī, that is, the current I�t� satisfies the amplitude
constraint and is not given by �4.25�,

1

f��� + Z���I�t�
�

1

f��� + �Z����Ī
� 0 �4.27�

in-Huxley equations with standard param-

the PRC corresponding to the Hodgkin-
table and unstable manifolds of the two
gk
for
e s
ts with period t1=14 and t1=18
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⇒tf =�
�i

2�
d�

f��� + Z���I�t�
��

�i

2�
d�

f��� + Z���Ibb���
	 tf

bb

�4.28�
here tf

bb is the time the neuron fires for the current given by
4.25�. Note that for bang-bang control to work, it is necessary

Fig. 12 Optimal currents for the PRC for the Hodgki
IHH=10 for different values of t1, with scaled time ax

Fig. 13 Dynamics of the full Hodgkin-Hux
mal current stimulus for t1=14 for the ph
IHH=10. „a… shows the time series of the t
phase space projection onto the „V ,n… pla
variable „using the standard Hodgkin-Huxl
ics while I„t… is being applied up to time t1.

turned off until the neuron first fires.

ournal of Computational and Nonlinear Dynamics
that f���+ �Z��� � Ī�0 for all �. Figure 15 shows tf
bb for �i=0 for

the PRCs considered in Sec. 3. For all except the theta neuron

model with negative Ib, for which one needs Ī�−Ib in order for
bang-bang control to produce a spike, we see that tf

bb approaches

the natural period as Ī→0, as expected.

uxley equations with standard parameters and with
or ease of comparison

equations with I„t… chosen to be the opti-
model with the Hodgkin-Huxley PRC for

smembrane voltage V, and „b… shows the
where V is the voltage and n is a gating

notation…. The thin line shows the dynam-
thick line shows the dynamics after I„t… is
n-H
ley
ase
ran
ne,
ey
The
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Discussion and Conclusion
In this paper, we first show that there is a unique optimal cur-

ent I�t� that will elicit a spike at a specified time t1 for phase-
educed neural models satisfying a general set of conditions. We
hen derive results about this current I�t� for intrinsically oscilla-
ory models, using the formalism of PRCs. In particular, for these

odels we show that the time course of the optimal current will
e proportional to the PRC itself for small perturbations in spike
imes. This fact, coupled with earlier results about the typical
caling of PRCs, enables us to study how the amplitude of this
urrent scales with the baseline �i.e., unperturbed� frequency of
he oscillatory model. Finally, we discuss bang-bang control, com-
uting the earliest spike times that can be elicited in different
eural models by currents of fixed maximal amplitude. All of
hese results are illustrated with phase-reduced neural models
alid near the SNIPER and Hopf bifurcations, and with a numeri-
ally derived phase model for the Hodgkin-Huxley equations.

Our results on the form and scaling of optimal currents I�t�
ddress the question of how the dynamics of individual neurons
etermine the processing of synaptic inputs to produce spikes.
pecifically, they imply that the standard classification of a neu-
on’s PRC as Type I versus Type II �18� depending, respectively,
n whether it is nonnegative �as for the SNIPER PRC� or takes
oth positive and negative values �as for the sinusoidal PRC�, also
etermines, respectively, whether purely excitatory synapses or a

Fig. 14 Comparison of the specified time
the full Hodgkin-Huxley equations for th
model. The dashed line corresponds to ex

Fig. 15 Minimal time of firing tf
bb as a fun

for phase models starting at �i=0 for „a… s
f„�…=�=1, Z„�…=1−cos �; dotted-dashed li
ted line: the theta neuron model with Ib=−0

equations with standard parameters and Ib=1
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mixture of excitatory and inhibitory synapses are required to op-
timally adjust its spike times. As previous work �9,18,19� shows
that PRCs remain invariant in form but typically increase in am-
plitude as baseline oscillation frequencies decrease, we also con-
clude that the optimal inputs for a given neuron operating at dif-
ferent frequencies are determined by rescaling in both time and
amplitude as a single curve of a given form. For the standard
neural models studied here, the amplitude of the current that op-
timally causes a fixed perturbation in spike times decreases rap-
idly with the model’s baseline frequency, indicating increased sen-
sitivity at low firing rates. This type of increased sensitivity, or
gain, at lower firing rates has been emphasized in the context of
population-averaged firing rates in �9,22�, and is extended here to
the spike times of individual neurons.

In the context of many of the neural inputs that occur in vivo,
the present results may nonetheless be viewed as rather limited, as
many neurons receive inputs from up to thousands of afferent
synapses and the combined currents contain components distinct
from the optimal inputs considered here. One approach to this
more general problem is to compute time-dependent components,
or ‘features,’ of neural inputs whose combined strengths deter-
mine whether or not a given input will elicit a spike �see �12� and
references therein�. In particular, �23� shows that only a few such
components are required to make this determination to quite high
accuracy for the Hudgkin-Huxley �HH� equations. It will be inter-

ring t1 and the actual time of firing t1
HH for

urrent found from optimizing the phase
agreement.

n of Ī, obtained using bang-bang control,
line: f„�…=�=1, Z„�…=sin �; dashed line:

the theta neuron model with Ib=0.25; dot-
, and „b… the PRC for the Hodgkin-Huxley
of fi
e c
ctio
olid
ne:
.25
0
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sting to investigate the relationship between this feature-based
pproach and that taken in the present paper, especially because
he dominant such feature identified for the HH equations in �23�
esembles in form the optimal currents for these equations com-
uted here.

We close by mentioning an alternative approach to the problem
f complex neural inputs to the probabilistic approach taken in
12,23�: exploring the entire family of inputs I�t� that elicit a spike
t time t1. The complement to this “level set” of inputs would then
orrespond to the �span of the� dominant features identified in
12,23�. This level-set-based approach was developed to answer
elated questions for other physical models in �24�, and we have
hecked that the formalism extends readily to phase-reduced neu-
on models. As such, the optimal inputs studied in this paper may
e viewed as distinguished points on the level set from which to
egin this future analysis.
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