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ABSTRACT
Energy harvesters are a promising technology for capturing

useful energy from the environment or a machine’s operation. In

this paper we highlight ideas that might lead to energy harvesters

that more efficiently harvest a portion of the considerable vibra-

tional energy that is present for human-made devices and envi-

ronments such as automobiles, trains, aircraft, watercraft, ma-

chinery, and buildings. Specifically, we consider how to exploit

ideas based on properties of nonlinear oscillators with negative

linear stiffness driven by periodic and stochastic inputs to design

energy harvesters having large amplitude response over a broad

range of ambient vibration frequencies. Such harvesters could

improve upon proposed harvesters of vibrational energy based

on linear mechanical principles, which only give appreciable re-

sponse if the dominant ambient vibration frequency is close to

the resonance frequency of the harvester.

INTRODUCTION
Typical vibrational energy harvesters are composed of a

mass-spring system with a transducer [1, 2], where vibrations in

the surrounding environment act as inputs and cause the spring-

mass system to oscillate. The oscillations of the device are con-

verted into electric energy by electrostatic, piezoelectric, or elec-

tromagnetic transduction [1, 2]. Proposed harvesters of vibra-
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tional energy are typically based on linear mechanical principles,

e.g., [1–3]. Such devices give appreciable response amplitude

only if the dominant ambient vibration frequency is close to the

resonance frequency of the harvester. In order to achieve maxi-

mum conversion efficiency, the dominant ambient vibration fre-

quency must therefore be known prior to the design process. For

a broadband or time-varying ambient vibration spectrum, only a

small fraction of the available ambient vibration energy can be

extracted by such devices.

Improving the bandwidth of vibrational energy harvesters is

crucial for increasing their efficiency and functionality. There

have been attempts to overcome the bandwidth limitations while

staying within the linear mechanical system framework, e.g., [4–

7], and recently attempts have been made to exploit nonlineari-

ties for energy harvesting, e.g., [8–13]. In this paper we describe

the promising approach of exploiting nonlinear effects for oscil-

lators with negative stiffness to increase the range of vibration

frequencies which give large amplitude response. Note that oth-

ers have recently investigated the use of negative stiffness oscil-

lators for energy harvesting applications [9, 10, 14].

We envision implementation using microelectromechanical

oscillators, but we use a very general class of oscillators in a

vibrating environment for illustration:

mẍ−Fd(x, ẋ)−Fr(x) = −m f̈ . (1)

Here m is the mass of the oscillator, Fd is the damping force for
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the device (due, for example, to friction, air resistance, or trans-

duction of power), Fr is the restoring force for the oscillator (due,

for example, to spring-like mechanical forces and electrostatic

forces), and f is the displacement of the base of the oscillator

due to vibration [1]. Without loss of generality, we take x = 0

to correspond to the oscillator being at an equilibrium position

(which might be unstable). We define α = − ∂Fr

∂x

∣

∣

∣

x=0
to be the

linear stiffness of the device. The key idea is to design or tune

a nonlinear oscillator so that its linear stiffness α is negative, as

this will allow the device to respond with large amplitude over a

very broad range of frequencies, as illustrated below.

PERIODIC FORCING

A periodically forced oscillator obeying (1) with α < 0 can

undergo various types of large-amplitude oscillations, including

chaotic oscillations (which can be transient or attracting), large-

amplitude periodic oscillations, and large-amplitude quasiperi-

odic oscillations. The behavior depends on the design of the de-

vice, the frequency and amplitude of the forcing, and the damp-

ing, which will be influenced by the mechanism used to trans-

duce mechanical energy into usable electrical energy. For exam-

ple, consider an oscillator with

Fd(x, ẋ) = −δẋ, Fr(x) = x− x3, f =
γ

ω2
cos(ωt), (2)

corresponding to linear positive damping (δ > 0), a nonlinear

restoring force with α =−1, and periodic vibration of the base of

the oscillator of amplitude γ and frequency ω. For simplicity, we

suppose that m = 1. With these forces, the system corresponds to

the forced Duffing oscillator; see, for example, [10,15]. Figure 1

illustrates that large amplitude response, defined here as oscilla-

tions that have some values of x > 1 and x < −1, occurs over a

very broad range of driving frequencies. We observe that large

response extends down to very low frequencies.

It is important to mention that Figure 1 only displays sin-

gle attractors at each value for ω. There might be co-existing

large amplitude attractors that the sweeping procedure used to

generate Figure 1 missed. Furthermore, there could be transient

behavior which is also of large amplitude. It is well known, for

example, that transient chaotic behavior can occur for parameter

values for which no chaotic attractor exists [15]. When such a

chaotic transient corresponds to a large amplitude oscillation, it

can also lead to efficient energy harvesting.

An interesting viewpoint for understanding the large re-

sponse over a broad frequency range is the following. An os-

cillator tuned to have a negative linear stiffness might be in a

regime in which it can undergo chaotic oscillations, which could

be transient or attracting. Now, it is known that embedded within

a chaotic set are an infinite number of unstable periodic orbits,

each of which generically has a different frequency [15]. Indeed,

chaos can be viewed as the system “bouncing around” amongst

Figure 1. Bifurcation diagram showing the response of the forced Duff-

ing oscillator with δ = 0.1,γ = 1. For each value of ω, we integrate

to get rid of transients, then plot the instantaneous value of x whenever

ẋ = 0. We see that the oscillator undergoes large amplitude oscillations

for a wide range of forcing frequencies ω.

these unstable periodic orbits; this is why the power spectrum for

a chaotic signal is broadband [16]. The response of oscillators in

the chaotic regime might be related to resonances between the

drive frequency and the unstable periodic orbits embedded in the

chaotic set.

STOCHASTIC FORCING

A stochastically forced oscillator with α < 0 can also un-

dergo large-amplitude oscillations between co-existing quasi-

stable equilibria. To understand this, we first consider the system

in the absence of damping and forcing, that is when Fd(x, ẋ) = 0

and f̈ = 0. In this limit, the dynamics take the form

ẍ = −
dV

dx
, V (x) =

1

4
x4 −

1

2
x2. (3)

This is a double well potential with minima at x =−1 and x = 1,

and a local maximum at x = 0, the former corresponding to sta-

ble equilibria and the latter to an unstable equilibrium. Now con-

sider the stochastically forced oscillator ẍ + δẋ− x + x3 = η(t),
where η(t) represents a Gaussian white noise random process

with the properties 〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = 2Dδ(t − t ′).
Figure 2 shows an example time series for the displacement x

when δ = 0.1 and D = 0.01. Here the stochastic forcing causes

noise-induced transitions between neighborhoods of the minima,

giving large amplitude oscillations [11]. Such transitions might

be enhanced by tuning and driving the system to exploit stochas-

tic resonance [9].

IMPLEMENTATION USING MEMS DEVICES

Achieving desired values of α can be accomplished by elec-

trostatically tuning MEMS oscillators through the tuning scheme

described in [17,18]. For example, a shuttle mass oscillator with
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Figure 2. Noise-induced transitions between potential wells with minima

at x = ±1, leading to large amplitude oscillations.

fixed-fixed springs will have a restoring force Fr(x) = k1x+k3x3,
where k1 is the linear mechanical stiffness and k3 is the non-

linear stiffness that arises due to the stretching of each spring’s

neutral axis, which results from the boundary conditions. The

effective stiffness can be tuned by using a set of noninterdigi-

tated combfingers. One side of the combfingers is attached to

a static electrode and the other is attached to the shuttle mass.

By applying a DC voltage (VDC) across the combfingers, an elec-

trostatic force Fes(x) =
(

r1x+ r3x3
)

V 2
DC is produced, where r1

is the linear electrostatic stiffness and r3 is the nonlinear elec-

trostatic stiffness. By having the combfingers misaligned with

respect to each other, and designing the combfinger gap, spac-

ing, and width appropriately the linear electrostatic stiffness can

be negative [18, 19]. As a result, the effective linear stiffness

α =
(

k1 + r1V 2
DC

)

can be tuned by adjusting VDC and can be small

positive, zero
(

for VDC =
√

−k1/r1

)

, or negative.

The vibrational energy of such an oscillator could be trans-

duced into electrical energy using standard methods such as elec-

trostatic (capacitive), piezoelectric, or electromagnetic (induc-

tive) [1, 2]. We note that energy is required to tune the linear

stiffness α; however, if the amount of harvested energy exceeds

this energy, then the harvester gives a net positive contribution.
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