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ABSTRACT

The optimal input current for a reduced neuron model and

a specific target spiking time is obtained. The objective of op-

timization is to minimize the total input energy to the system

subject to a zero net input integral over the time horizon. This

“charge-balance constraint” ensures that no net external charge

is injected into the neuron. The results are compared to opti-

mal currents for which the charge-balance constraint is not im-

posed.

MODEL EQUATIONS

Phase-reduced models of neurons have been used to inves-

tigate the patterns of synchrony that result from the type and ar-

chitecture of coupling [1–7], and the response of large groups of

oscillators to external stimuli [8–10]. More recently, phase mod-

els have been investigated in the context of controlling a neuron

to behave in a desired way [11–13]. In the present paper, we

consider a set-up similar to that considered in [11] - determining

the optimal control to make a neuron fire at a specified time - but

we add a “charge-balance constraint” that the net input current

over one cycle should be zero. The importance of the charge-

balance constraint lies in the fact that it is desirable to not disturb

the internal electrical balance when such control is applied to a

population of neurons in the brain.

In particular, we consider the phase model for a spiking (i.e.,

firing) neuron [8, 14]:

dθ

dt
= f (θ)+Z(θ)I(t). (1)

∗Address all correspondence to this author.

Here, f (θ) represents the neuron’s baseline dynamics, Z(θ) is

called the Phase Response Curve (PRC) of the neuron and char-

acterizes the phase shift of the neuron due to small impulsive

stimuli, and I(t) is the input stimulus in the form of an electrical

current. θ(t) ∈ [0,2π) is the neuron’s phase, and by convention

θ = 0 corresponds to the spiking of the neuron. In the following,

we will take f (θ) = ω, where ω is a constant.

Without loss of generality, we assume that the neuron fires

at t = 0. In the absence of input I(t), the neuron would then fire

at time T ≡ 2π

ω
. Our objective is to find the optimal input current

so that the neuron instead fires at our desired time t1, so that

θ(0) = 0, θ(t1) = 2π. (2)

By “optimal” it is meant that I(t) minimizes the cost function

G[I(t)] =

Z t1

0
[I(t)]2dt (3)

as well as satisfying the charge-balance constraint

Z t1

0
I(t)dt = 0. (4)

The former criterion dictates minimum input energy, whereas the

latter enforces charge-balance over the time interval in which the

current is applied. The charge-balance constraint can be restated

as follows. Letting ẏ = I(t) and integrating both sides from 0 to

t1 we obtain: y(t1)− y(0) =
R t1

0 I(τ)dτ. For the charge-balance

constraint to hold we need the right hand side of this equation to
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be zero. This means y(t1) = y(0), and assuming that the current

is being applied from time t = 0, so y(0) = 0, we have

y(t1) = y(0) = 0. (5)

We find the optimal I(t) by applying calculus of variations

to minimize [15]:

C[I(t)] =
Z t1

0

{

[I(t)]2 +λ1(t)
(

θ̇(t)− f (θ)−Z(θ)I(t)
)

+λ2(t)
(

ẏ(t)− I(t)
)}

dt, (6)

where the integrand is P[Φ(t),Φ̇(t), I(t)], with Φ(t) =
[θ(t),y(t),λ1(t),λ2(t)]

T and λ1(t) and λ2(t) are Lagrange multi-

pliers. The Euler-Lagrange equations corresponding to this opti-

mization problem provide us with a set of dynamically coupled

equations that will in turn lead us to the desired I(t). Computing
∂P
∂I

= d
dt

(

∂P
∂İ

)

and ∂P
∂Φ

= d
dt

(

∂P

∂Φ̇

)

, they are found to be:

I(t) =
λ1(t)Z(θ)+λ2(t)

2
, (7)

λ̇1(t) = −λ1(t) f ′(θ)−
[λ1(t)]

2Z(θ)Z′(θ)+λ1(t)λ2(t)Z
′(θ)

2
,(8)

λ̇2(t) = 0, (9)

θ̇(t) = f (θ)+
λ1(t)[Z(θ)]2 +λ2(t)Z(θ)

2
, (10)

ẏ(t) = I(t) =
λ1(t)Z(θ)+λ2(t)

2
, (11)

where in obtaining (10) and (11), (7) has been used. Also, in

these equations prime represents differentiation with respect to θ.

The first equation of this set is an algebraic equation for I(t),
whereas the other equations are ordinary differential equations

that need to be solved in order for the first equation to be eval-

uated. This is a two point boundary value problem where the

boundary values for θ(t) and y(t) are given in (2,5). The ini-

tial values for λ1(t) and λ2(t) are determined using a shooting

method with the condition that the boundary values for θ(t) and

y(t) are achieved.

Before giving results, we note some properties of the Euler-

Lagrange equations. First, (9) implies that λ2 will remain con-

stant along trajectories. Furthermore, the (θ,λ1) subsystem is

decoupled from the y dynamics. Finally, the Hamiltonian

H(θ,λ1) = λ1(t) f (θ)+
[λ1(t)]

2[Z(θ)]2

4
+

λ1(t)λ2Z(θ)

2
, (12)

is conserved along the trajectories of the Euler-Lagrange equa-

tions.
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Figure 1. Phase portrait for the SNIPER neuron model for t1 = 5 with

the charge-balance constraint. Here and in Figure 2 the dots represent

fixed points of the (8,10) subsystem, and the stable and unstable mani-

folds of the fixed points are shown.

RESULTS

There are four different codimension-one bifurcations which

can lead to periodic firing of neurons [8]. Here we focus on the

SNIPER (saddle node on a periodic orbit) bifurcation, which is

typical for Type I neurons [16]. For a periodically firing neuron

near a SNIPER bifurcation, Z(θ) = c(1− cos(θ)), where c is a

model-dependent constant [8, 16]. For simplicity, we take c = 1,

although similar results would be found for other choices. Fur-

thermore, we take ω = 1 so that the natural period of the neuron

is T = 2π.

The phase portraits for (8,10) with t1 = 5 and t1 = 9 are

shown in Figures 1 and 2, respectively. These figures also show

the fixed points which exist for the (8,10) subsytem, along with

their associated stable and unstable manifolds. As in [11], these

manifolds can sometimes be used to interpret the trajectories as-

sociated with the optimal current: in particular, the t1 = 9 trajec-

tory of the Euler-Lagrange equations is close to the stable and

unstable manifolds of the fixed point. This forces the trajectory

to spend a long time near the fixed point, delaying its arrival to

θ = 2π. We note that Figures 1 and 2 are for different values of

λ2, the Lagrange multiplier associated with the charge-balance

constraint. Each of the t1 = 5 and t1 = 9 trajectories shown

in Figures 1 and 2 are the only trajectories in their respective

phase planes that can take the (7)-(11) system from θ(0) = 0 to

θ(t1) = 2π with zero charge balance and the least amount of input

energy. Without the charge-balance constraint, as in [11], we get

the same phase portrait and different trajectories, with different

λ1(0)’s, can be drawn in the same phase plane.

A comparison of the optimal current with and without the

charge-balance constraint is shown in Figure 3. Clearly for this

model, the constraint has a large effect on the form of the optimal

current.

DISCUSSION

For the system considered in this paper in which the neu-

ron is close to a SNIPER bifurcation, the charge-balance con-

straint has a very large effect. Indeed, when there is no such

constraint, the optimal current is always either positive (resp.,
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Figure 2. Phase portrait for the SNIPER neuron model for t1 = 9 with

the charge-balance constraint. The trajectory is very close to the stable

and unstable manifolds of the fixed point of the (8,10) subsystem.
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Figure 3. SNIPER neuron model optimal current for three different val-

ues of t1 with (solid lines) and without (dashed lines) the charge-balance

constraint.

negative) when we want the neuron to fire earlier (resp., later)

than it would in the absence of external input.

Similar techniques can be applied to other neuron models.

Preliminary results indicate that the effect of the constraint on

controlling a Hodgkin-Huxley neuron (with standard parame-

ters) is less but still noticeable. One can envision other con-

straints that could be included for this problem, for example that

|I(t)| ≤ Ī, which could be imposed either with or without the

charge-balance constraint. We defer the discussion of the control

of other types of neurons and of other constraints to future work.
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