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ABSTRACT
It is well known that an autonomous dynamical system can

have a stable periodic orbit, arising for example through a Hopf
bifurcation. When a collection of such oscillators is coupled to-
gether, the system can display a number of phase-locked solu-
tions which can be understood in the weak coupling limit by us-
ing a phase model. It is also well known that a stable periodic
orbit can be found for a parametrically forced dynamical system,
with the phase of the periodic orbit being locked to the forcing.
Here we discuss the periodic solutions which occur for a col-
lection of such parametrically forced oscillators that are weakly
coupled together.

INTRODUCTION
The scientific study of coupled oscillators started with Chris-

tian Huygens’ observations in the seventeenth century of mutual
synchronization of pendulum clocks connected by a beam [1, 2].
More recently, it has been recognized that mutual synchroniza-
tion of coupled oscillators - the adjustment of rhythms of oscil-
lating objects due to their weak interactions - occurs in many bi-
ological systems, including neurons during epileptic seizures [3]
and pacemaker cells in the human heart [4]. Coupled oscilla-
tors have also been studied in detail for technological systems,
such as arrays of lasers and superconducting Josephson junc-
tions: see [5], [6], and [7], a recent popular book on the topic,
for many biological and technological examples of synchroniza-
tion for coupled oscillators.

We classify as autonomous oscillators those for which the
stable oscillations occur for an autonomous dynamical system,
that is one for which there are no explicit time-dependent terms
in the evolution equation. For example, the oscillations might
arise through a Hopf bifurcation, as for the microelectromechan-

ical systems (MEMS) oscillators considered in [8,9]. In the limit
of weak coupling, it is possible to reduce the dynamics of cou-
pled autonomous oscillators to a phase model, with a single vari-
able describing the phase of each oscillator with respect to some
reference state (see, e.g., [10–13]). This typically leads to mod-
els for which the dynamics depend only on the phase differences
between different oscillators. It is possible to show that several
types of phase-locked solutions, for which the phase of all oscil-
lators increases at the same constant rate, are guaranteed to ex-
ist in the weak coupling limit for any generic coupling function
when the coupling topology has appropriate symmetry proper-
ties [14–17]; for the case of identical all-to-all coupling for N
oscillators, these are

• in phase solution: all N oscillators have the same phase

• two-block solutions: there are two blocks of oscillators,
one in which p oscillators share the same phase, and one in
which N − p oscillators share the same phase

• rotating block solutions: for N = mk, there are m blocks
with k oscillators in each block sharing the same phase, with
neighboring blocks differing in phase by 2π/m

• double rotating block solutions: for N = m(k1 + k2), there
are two rotating block solutions, one with m blocks with
k1 oscillators in each block sharing the same phase and
with neighboring blocks differing in phase by 2π/m, another
with m blocks with k2 oscillators in each block sharing the
same phase and with neighboring blocks differing in phase
by 2π/m, where there is a phase difference 0 < φ < 2π/m
between a block with k1 oscillators and the closest phase-
advanced block with k2 oscillators.

On the other hand, we classify as non-autonomous oscil-
lators those for which the stable oscillations only occur for a
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non-autonomous dynamical system, that is one for which there
are explicit time-dependent terms such as time-periodic forc-
ing. We will focus on parametrically forced oscillators, which
are non-autonomous oscillators for which the forcing enters as a
time-varying system parameter. Coupled parametrically forced
oscillators arise in MEMS [18–20] and other application ar-
eas [21–24], but have not received as much theoretical research
attention as coupled autonomous oscillator systems. This paper
represents the first steps in developing a comprehensive theory
of the dynamics of general weakly coupled non-autonomous os-
cillators, in the spirit of the theory of general weakly coupled
autonomous oscillators described in [14, 17]. We hope that such
a theory will ultimately lead to novel sensing mechanisms using
MEMS devices; for simplicity, here we will consider a model
system which represents only a caricature of such devices.

Specifically, in this paper we describe interesting synchro-
nization phenomena that are possible for coupled parametrically
forced oscillators. For example, consider two uncoupled oscil-
lators whose response is at half the frequency of the driving
voltage, as is common for MEMS devices [25]. Both oscilla-
tors could identically lock to the forcing, or they could lock one
forcing period apart - both situations are allowable due to a dis-
crete time-translation symmetry for the problem. We will show
that different combinations of these states will persist if the os-
cillators are now weakly coupled, with stability inherited from
the stability properties of the periodic orbits which exist for the
uncoupled system.

We first consider the dynamics of a specific single paramet-
rically forced oscillator. We then consider two uncoupled para-
metrically forced oscillators, identifying different periodic states
for such systems. Next, we show that provided the periodic orbits
for the uncoupled system are hyperbolic, there will be periodic
orbits for the coupled system close to the periodic states identi-
fied for the uncoupled system. This is then demonstrated through
numerical bifurcation analysis. We finally describe how these re-
sults can be generalized to N coupled parametrically forced os-
cillators.

A PARAMETRICALLY FORCED OSCILLATOR
Consider the equation for a damped, parametrically forced

oscillator

ẍ+bẋ+ x+ x3 = xF cos(ω f t). (1)

Here the term bẋ represents damping (we assume b > 0), the
term x + x3 represents a nonlinear restoring force, and the
term xF cos(ω f t) represents parametric excitation which can be
viewed as a time-periodic modulation of the linear part of the
restoring force. For this system, if F = 0 then x → 0 as t → ∞,
as follows. Letting

V (x, ẋ) =
1
2

x2 +
1
4

x4 +
1
2

ẋ2, (2)
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Figure 1. BIFURCATION DIAGRAM FOR FIXED b = 0.2 and F = 0.5.

SOLID (RESP., DASHED) LINES INDICATE STABLE (RESP., UNSTA-

BLE) SOLUTIONS.

we find that dV
dt = −bẋ2 ≤ 0, with equality only if ẋ = 0. The

only point in phase space which starts in the set of points for
which V (x, ẋ) = 0 and remains in this set for all time is (x, ẋ) =
(0,0); by the LaSalle Invariance Principle [26], all trajectories
thus approach this point as t → ∞.

For appropriate F and ω f , the system has a periodic re-
sponse. Indeed, treating ω f as a bifurcation parameter for fixed
F and b, we obtain the bifurcation diagram shown in Fig. 1.
(This and other numerical bifurcation analysis was done using
AUTO [27].) The “no motion” state is characterized by x = ẋ = 0
for all time, and will also be referred to as the 0 solution; it ex-
ists for all ω f , being unstable near ω f = 2 and stable otherwise
for the range shown. It loses stability in a bifurcation to a pe-
riodic orbit, with the periodic orbit branch turning around in a
saddlenode bifurcation so that there is a region of bistability be-
tween the periodic orbit and the no motion state. Such a bifur-
cation structure is common for MEMS devices, see e.g. [28, 29].
Figure 2 indicates the types of dynamics which occur in differ-
ent parameter ranges, with the “parabola” corresponding to the
loss of stability of the no motion state, and the “straight line”
corresponding to the saddlenode bifurcation of the periodic or-
bit branch. As shown in Fig. 3, the response of this periodic
orbit is at half the frequency of the forcing, as is common for
parametrically forced oscillators [30]. We note that an equally
valid periodic orbit for this forcing is shown in Fig. 4, which is
shifted by one period of the forcing from the solution shown in
Fig. 3; clearly these solutions are related by a time-translation
symmetry. These symmetry-related solutions will be crucial for
understanding the different possible solutions when such oscilla-
tors are weakly coupled. We will find it convenient to distinguish
the solutions shown in Fig. 3 and 4 by referring to one of them
as the A solution and the other as the B solution. Notice that the
A and B solutions have the same max(x) value, and the periodic
orbit branch in Fig. 1 corresponds to both (symmetry-related) so-
lutions.
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Figure 2. EXISTENCE AND STABILITY OF SOLUTIONS FOR DIFFER-

ENT REGIONS OF PARAMETER SPACE FOR b = 0.2, WITH BIFUR-

CATION SETS SHOWN AS LINES.
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Figure 3. STABLE PERIODIC ORBIT FOR b = 0.2,F = 0.5,ω f = 2.

THE RESPONSE IS AT HALF THE FREQUENCY OF THE FORCING.

WE WILL REFER TO THIS AS THE A SOLUTION.

COUPLED PARAMETRICALLY FORCED OSCILLA-
TORS

Now consider N = 2 parametrically forced oscillators which
are coupled linearly:

ẍ1 +bẋ1 + x1 + x3
1 = x1F cos(ω f t)+ c(x2 − x1), (3)

ẍ2 +bẋ2 + x2 + x3
2 = x2F cos(ω f t)+ c(x1 − x2), (4)

where xi is the position of the ith oscillator, i = 1,2.

N = 2 Uncoupled Oscillators
If c = 0, these are independent parametrically forced oscil-

lators. Thus, for b = 0.2,F = 0.5, and ω f = 2, each oscillator
could be in a stable periodic state given by the A or B solutions;
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Figure 4. STABLE PERIODIC ORBIT FOR b = 0.2,F = 0.5,ω f = 2.

THIS IS SHIFTED BY ONE PERIOD OF THE FORCING FROM THE

SOLUTION SHOWN IN FIG. 3. WE WILL REFER TO THIS AS THE B
SOLUTION.

each oscillator also has an unstable no motion state given by the 0
solution. The periodic solutions for the uncoupled two oscillator
system are thus

in phase: A ·A, B ·B
out of phase: A ·B, B ·A
large-small: A ·0, B ·0, 0 ·A, 0 ·B
no motion: 0 ·0.

Here the first symbol characterizes the state of the first oscillator,
and the second symbol characterizes the state of the second oscil-
lator. In phase solutions have both oscillators responding iden-
tically to the forcing, while out of phase solutions correspond to
each oscillator undergoing an oscillation which is shifted by one
period of the forcing relative to the other. Large-small solutions
have one oscillator undergoing oscillations locked to the forcing
while the other oscillator is stationary. The name comes from the
result that when weak coupling is introduced, the former oscilla-
tor will undergo relatively large oscillations, while the latter will
undergo relatively small oscillations. For the no motion state,
both oscillators are stationary. The distinct solutions within a
given class (in phase, out of phase, or large-small) are related by
symmetry.

Periodic Orbits for Weakly Coupled Oscillators
When c �= 0 but is small, we expect analogous solutions to

exist, as follows. We rewrite Eqs. (3,4) as

ẋ = f(x)+ cg(x), (5)

where

x = (x1, ẋ1,x2, ẋ2), (6)
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and f(x) captures the terms which are independent of c and g(x)
captures the coupling terms. Let T = 2π/ω f be the period of the
forcing. We define Pc to be the time-2T map, that is the map
which takes an initial condition (the state at t = 0) to the state
obtained by evolving for a time equal to twice the period of the
forcing. Now, let

h(x,c) = Pc(x)−x, (7)

and let q0 be a point on one of the periodic solutions of the un-
coupled problem, for example the A ·A solution. We see that

h(q0,0) = 0. (8)

The implicit function theorem (see Appendix) then implies that,
provided the matrix Dxh(q0,0) is invertible, there is a unique
solution q(c) close to q0, for any sufficiently small c, such that
h(q(c),c) = 0. This implies that

Pc(q(c)) = q(c), (9)

that is, q(c) ≈ q0 is a fixed point of the time-2T map, which
means that it is a point on a periodic orbit with period 2T which
is close to a periodic orbit of the uncoupled system. (A related
argument is used to prove part (ii) of Theorem 4.1.1 of [31].)

It is instructive to consider an alternative, but equivalent ar-
gument. We know that q0 is a fixed point of P0, that is

P0(q0) = q0. (10)

We will determine, to leading order in c, the condition which
must be met for q(c) to be a fixed point of Pc. Consider the
asymptotic expansions

q(c) = q0 + cq1 + · · · (11)

Pc(x) = P0(x)+ cp1(x)+ · · · . (12)

Setting Pc(q(c)) = q(c), we obtain

q0 + cq1 + · · · = Pc(q0 + cq1 + · · ·)

= P0(q0 + cq1 + · · ·)+ p1(q0 + cq1 + · · ·)

= P0(q0)+ cDP0(q0)q1 + cp1(q0)+ · · · .

This is valid at O(c0) from Eq. (10). At O(c1), we need

q1 = DP0(q0)q1 + p1(q0). (13)

Solving for q1,

q1 = [Id −DP0(q0)]
−1 p1(q0), (14)

where Id is the identity matrix. In order to solve for q1, it is
necessary that [Id −DP0(q0)] is invertible. This is equivalent to
the condition above for the implicit function theorem to hold that
Dxh(q0,0) is invertible.

We now show that this matrix is invertible provided the pe-
riodic orbit for the uncoupled system is hyperbolic. Suppose that
v is an eigenvector of DP0(q0) with eigenvalue λ, so that

[DP0(q0)]v = λv. (15)

Then

(Id − [DP0(q0)])v = (1−λ)v. (16)

Thus, the matrix (Id − [DP0(q0)]) only has a zero eigenvalues
if λ = 1. But the eigenvalues of DP0(q0) give the stability of
the periodic orbit for the uncoupled problem; in particular, if it
is a hyperbolic periodic orbit, none of the eigenvalues are on the
unit circle. The hyperbolicity condition only needs to be checked
for a single uncoupled oscillator, since we are assuming that the
oscillators are identical.

Summarizing, provided the periodic orbit for the uncoupled
system is hyperbolic, there will be a nearby periodic orbit for the
system with sufficiently small coupling.

Furthermore, we expect that since the c → 0 system limits
to the c = 0 system, the periodic orbit for the weakly coupled
system will “inherit” the stability properties from the periodic
orbit for the uncoupled system. This follows from the continuity
of the Poincaré map with respect to c, giving

lim
c→0

DPc(q(c)) = DP0(q0). (17)

This implies that the eigenvalues corresponding to the stability
of the q(c) periodic orbit for the coupled system tend toward the
eigenvalues corresponding to the stability of the q0 periodic orbit
for the uncoupled system.

N = 2 Coupled Oscillators
These general results are illustrated for Eqs. (3,4) for b =

0.2,F = 0.5,ω f = 2 in Fig. 5, which shows that for small c > 0,
periodic orbits of the expected stability type exist which are close
to the periodic orbits for the uncoupled system. Indeed, for the
uncoupled system the A and B solutions are stable and the 0 so-
lution is unstable (see Fig. 1); thus, the A ·A and A ·B solutions
(and their symmetry-related counterparts B ·B and B ·A, respec-
tively) are expected to be stable for small |c|, while the others are
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Figure 5. BIFURCATION DIAGRAM FOR FIXED b = 0.2,F =
0.5,ω f = 2 WITH THE COUPLING STRENGTH c TREATED AS A BI-

FURCATION PARAMETER. SOLID (RESP., DASHED) LINES INDICATE
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THE SAME max(x1) VALUE, AND THUS APPEAR TO BE ON THE

SAME BRANCH IN THIS PROJECTION. A SIMILAR COINCIDENCE
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expected to be unstable. Figure 5 shows that that as c increases,
the out of phase A ·B solution loses stability. This illustrates that
our arguments above are only valid for small |c|. We note that,
in this figure, the fact that the branches come together at c = 0
is an artifact of the projection. The solutions are actually sep-
arated in phase space: even though they share the same value
for max(x1), the second oscillator has different behavior. There-
fore, the uniqueness property from the implicit function theorem
argument is not violated.

For b = 0.2,F = 0.5,ω f = 2.25, Fig. 1 shows that the no
motion state is stable, and that there are stable periodic orbits
(which are analogues of the A and B solutions discussed above)
and unstable periodic orbits. Figure 6 shows that for small c > 0,
periodic orbits of the expected stability type exist which are close
to the periodic orbits for the uncoupled system. (To aid in in-
terpreting this plot, we note that the maximum x values for the
stable and unstable periodic orbits are approximately 0.72 and
0.45, respectively.) Indeed, for the uncoupled system the A, B,
and 0 solutions are stable; thus, the in phase A ·A solutions, out
of phase A ·B solutions, large-small solutions (which in the limit
c → 0 approach the A ·0 solutions), and no motion 0 ·0 solution
are all stable for small |c|. All solutions which involve an unsta-
ble periodic for the uncoupled system as c → 0 are unstable.

We now fix the coupling strength as c = 0.03 and take
b = 0.2,F = 0.5, and treat ω f as a bifurcation parameter. Fig-
ure 7 shows the corresponding bifurcation diagram for the in
phase, out of phase, and no motion states. We see that the in
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phase and out of phase states bifurcate from the no motion state
at different values of ω f . As expected from the discussion above,
for ω f = 2 both the in phase and out of phase states are stable,
while for ω f = 2.25 the in phase, out of phase, and no motion
states are all stable. We expect at ω f = 2.25 there will be large-
small solutions; this is verified in Fig. 8 which identifies them as
being on a branch which bifurcates from the out of phase solu-
tion branch. The large-small solution at ω f = 2.25 is shown in
Fig. 9.

Although our analytical results only apply in the weak cou-
pling limit, we note that interesting dynamics occur for larger
|c|, such as anti-synchronized chaotic behavior for b = 0.2,F =
0.5,ω f = 2, and c = −0.9 shown in Fig. 10 and Fig. 11.
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N Coupled Oscillators
These results generalize to N coupled parametrically forced

oscillators. Specifically, provided the periodic orbits for the in-
dividual oscillators for the uncoupled system are hyperbolic, for
every periodic solution which exists for the uncoupled system
there will be a nearby periodic orbit for the system with suffi-
ciently small coupling. Furthermore, the periodic orbit will in-
herit the stability properties from the periodic orbit for the un-
coupled system.

For example, consider N parametrically forced oscillators
which are coupled linearly to all other oscillators:

ẍi +bẋi + xi + x3
i = xiF cos(ω f t)+ c ∑

j �=i

(x j − xi), (18)
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where xi is the position of the ith oscillator, i = 1, · · ·N. Suppose
b = 0.2,F = 0.5,ω f = 2, so that when c = 0 each oscillator could
be in a stable periodic state given by the A and B solutions, or it
could be in the unstable no motion state given by the 0 solution.
There will be 3N distinct periodic orbits for c = 0: oscillator 1
could be in A, B, or 0, oscillator 2 could be in A, B, or 0, etc. Of
these solutions, a total of

N!
pA!pB!p0!

(19)

solutions will have pY oscillators in each state Y = A, B, or 0,
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where pA + pB + p0 = N. This follows from the following com-
binatorial argument. Suppose we make a list of N symbols such
that the ith symbol is A, B, or 0 according to whether the ith os-
cillator is in the A, B, or 0 state, respectively. In the N slots, there
are

(
N
pA

)
=

N!
pA!(N − pA)!

different ways to put the symbol A in pA of the slots. Of the
remaining (n− pA) slots, there are

(
N − pA

pB

)
=

(N − pA)!
pB!(N − pA − pB)!

different ways to put the symbol B in pB of the slots. The remain-
ing (N − pA − pB) slots will have the symbol 0. The product of
these is

N!
pA!(N − pA)!

×
(N − pA)!

pB!(N − pA − pB)!
=

N!
pA!pB!p0!

,

as in Eq. (19). As an illustration, suppose N = 4, pA = 2, pB = 1,
and p0 = 1. The different possible lists of symbols are

AAB0 AA0B ABA0 A0AB AB0A A0BA

BAA0 0AAB BA0A 0ABA B0AA 0BAA,

giving a total of

4!
2!1!1!

= 12

possibilities.
Interestingly, the implicit function theorem argument pre-

sented above does not depend on the coupling topology of the
system, or any special properties about the coupling strength (for
example, all the strengths being equal). That is, regardless of
how the oscillators are coupled together, for sufficiently small
coupling strengths there will be analogues of the periodic solu-
tions which exist for the uncoupled system. For example, instead
of the oscillators having all-to-all coupling, similar results hold
for oscillators coupled only to their neighbors. Of course, as the
coupling strengths increase away from 0, so that the above argu-
ments no longer hold, the coupling topology will affect the types
of states that exist and are stable.

CONCLUSION

We have discussed periodic solutions which occur for para-
metrically forced oscillators that are weakly coupled together. In
particular, the existence and stability of periodic orbits for the
coupled system can be determined by the existence and stabil-
ity of the individual parametrically forced oscillators when they
are uncoupled. Our results follow from an application of the
implicit function theorem to an appropriate Poincaré map. The
results were confirmed using numerical bifurcation analysis for
a specific system. These results may be viewed as an analogue
of general results on the existence of phase-locked solutions for
weakly coupled autonomous oscillators, as in [14, 17].
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Appendix: The Implicit Function Theorem
We state the implicit function theorem, adapted from [32].
Let Φ : R

N → R
M , 1 ≤ M < N, be a continuously differen-

tiable function, written as

Φ(x) = Φ(x1, · · · ,xN) = (φ1(x1, · · · ,xN), · · ·φM(x1, · · · ,xN)).

Suppose

Φ(x0) = Φ(x0
1, · · · ,x

0
N) = 0,

and

det

⎛
⎜⎜⎜⎜⎜⎜⎝

∂φ1
∂xN−M+1

∣∣∣
x0

∂φ1
∂xN−M+2

∣∣∣
x0

· · · ∂φ1
∂xN

∣∣∣
x0

∂φ2
∂xN−M+1

∣∣∣
x0

∂φ2
∂xN−M+2

∣∣∣
x0

· · · ∂φ2
∂xN

∣∣∣
x0

...
...

...
∂φM

∂xN−M+1

∣∣∣
x0

∂φM
∂xN−M+2

∣∣∣
x0

· · · ∂φM
∂xN

∣∣∣
x0

⎞
⎟⎟⎟⎟⎟⎟⎠

�= 0.

Then there exists a unique continuously differentiable func-
tion f = ( f1, · · · , fM) from a neighborhood of (x0

1, · · · ,x
0
N−M) ∈

R
N−M to a neighborhood of (x0

N−M+1, · · · ,X
0
N) ∈ R

M such that

Φ(x1, · · · ,xN−M, f1(x1, · · · ,xN−M), · · · , fM(x1, · · · ,xN−M)) = 0.
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