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ABSTRACT
Due to the position-dependent nature of electrostatic forces,

many microelectromechanical (MEM) oscillators inherently fea-
ture parametric excitation. This work considers the nonlinear re-
sponse of one such oscillator, which is electrostatically actuated
via non-interdigitated comb drives. Unlike other parametrically-
excited systems, which feature only linear parametric excitation
in their equation of motion, the oscillator in question here ex-
hibits parametric excitation in both its linear and nonlinear terms.
This complication proves to significantly enrich the system’s dy-
namics. Amongst the interesting consequences is the fact that
the system’s nonlinear response proves to be qualitatively depen-
dent on the system’s excitation amplitude. This paper includes
an introduction to the equation of motion of interest, a brief, yet
systematic, analysis of the equation’s nonlinear response, and ex-
perimental evidence of the predicted behavior as measured from
an actual MEM oscillator.

∗Please address all correspondence to this author.
†Currently at Hewlett-Packard Research Labs, Palo Alto, CA

INTRODUCTION

The emergence of practical uses for electrostatically-
actuated microelectromechanical (MEM) oscillators coupled
with the inherent existence of parametric excitation (due to the
position-dependent nature of electrostatic forces) in many such
devices, has led the authors, amongst others, to consider both the
modeling and response of systems involving generalized forms
of parametric excitation and its associated resonances [1–7]. In
this paper the response of a simple model of a representative
parametrically-excited MEM oscillator is considered. Unlike
most parametrically-excited systems, which feature only linear
parametric excitation, the system of interest features parametric
excitation in both the linear and nonlinear terms of its equation
of motion. This simple, yet fundamental, difference proves
to have a dramatic effect on the system’s dynamics [1, 8]. In
particular, it can be shown that such systems fail to feature a
single effective nonlinearity which characterizes the nonlinear
behavior of the system. Rather, such systems exhibit branch-
specific nonlinearities which, when collectively analyzed, yield
the system characteristics. One result of this complication is that
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such systems can exhibit not only typical softening or hardening
behavior, but also mixed behavior which corresponds to the
nontrivial response branches bending toward or away from one
another near resonance [1, 8]. In addition, it can be shown that
the qualitative nature of their nonlinear frequency response
depends on the amplitude of excitation.

This paper begins with a brief introduction to the equation
of motion of interest and a summary of the analytical procedure
used to reach the results summarized in this work. The relevant
nonlinear behavior is discussed in the context of the motivating
example, a parametrically-excited MEM oscillator, and experi-
mental evidence of the predicted behavior is presented. The pa-
per then concludes with some closing remarks and an outline of
ongoing and future work. It should be noted that, where relevant,
issues pertaining to the practical design of MEM oscillators are
included. The full details of this work can be found in [8].

THE EQUATION OF MOTION AND PERTURBATION
ANALYSIS

As mentioned above, the equation of motion examined in
this work was originally formulated by the authors to model
a parametrically-excited MEM oscillator. It is worth noting,
however, that such equations naturally arise in other problems as
well, including the analysis of parametrically-excited columns
fabricated from nonlinear elastic materials [9, 10] and Paul trap
mass spectrometers [11]. Accordingly, the principal motivation
for this study is treated only as an example here.

The equation of motion of interest in this work is of the form

z′′+2εζz′+ z(1+ εν1 + ελ1 cosΩτ)+ εz3 (γ3 +λ3 cosΩτ) = 0,
(1)

where ε represents a ‘small’ scaling parameter introduced solely
for the sake of analysis and prime designates the derivative with
respect to τ [1, 5, 7, 8].

In order to simplify the analysis of Eq. (1), it is conve-
nient to employ standard perturbation techniques, in this case, the
method of averaging. To assist with this approach, a standard co-
ordinate transformation is first introduced which transforms the
equation into amplitude and phase coordinates:

z(τ) = a(τ)cos
(

Ωτ

2
+ψ(τ)

)
, (2)

z′(τ) =−a(τ)
Ω

2
sin

(
Ωτ

2
+ψ(τ)

)
. (3)

In addition, since near resonant behavior is of primary interest, a
detuning parameter σ is introduced, which is defined with respect
to the principal parametric resonance condition, namely,

Ω = 2+ εσ. (4)

Separating and averaging the resulting system of equations over
the period 4π/Ω in the τ - domain yields the system’s averaged
equations, which are of the form [1, 7, 8],

a′ =
1
8

aε
[
−8ζ+

(
2λ1 +a2

λ3
)

sin2ψ
]
+O

(
ε

2), (5)

ψ
′ =

1
8

ε
[
3a2

γ3 +4ν1−4σ+2
(
λ1 +a2

λ3
)

cos2ψ
]
+O

(
ε

2).
(6)

As evident from these averaged equations, the parametric exci-
tation in the cubic term, namely the presence of λ3, significantly
complicates the system as compared to a typical Mathieu sys-
tem, which features only linear parametric excitation. The net
effect of this complication is highly noticeable in the system’s
response, as revealed in the following section.

STEADY-STATE SOLUTIONS OF THE SYSTEM
Since the qualitative nature of the system’s response is of

primary interest in this work, zero damping (ζ = 0) is assumed
to simplify the analysis. With this assumption in place, the
steady-state behavior of the averaged equations presented in
Eqs. (5) - (6) can be considered in analytical form.

Setting a′ = ψ′ = 0 in Eqs. (5) - (6) and solving the result-
ing equations, which govern steady-state motion, reveals that the
system has a trivial solution and four pair of distinct nontrivial
steady-state response branches [8]. The first two pair, in terms of
amplitude and phase, are given by

a1 =±

√
4σ+2λ1−4ν1

3γ3−2λ3
, (7)

ψ1 =
π

2
, (8)

and

a2 =±

√
4σ−2λ1−4ν1

3γ3 +2λ3
, (9)
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ψ2 = 0. (10)

Clearly, the sign of the argument of the square root will deter-
mine the range of detuning over which these solutions are real
valued and thus physically apparent. More meaningful in the
context of this work, however, is the nature of their nonlinear
response, which in this case differs for each of the response
branches. In particular, since the denominator of each of these
branches differs, the nonlinear behavior of each branch is inde-
pendent from the other. To examine the net effect of this dis-
crepancy, branch specific nonlinearities are defined using the de-
nominator of each of the amplitude expressions presented above,
namely,

η1 = 3γ3−2λ3 (11)

and

η2 = 3γ3 +2λ3. (12)

By using these effective nonlinearities it is easily shown that
when both η1 > 0 and η2 > 0 the typical hardening nonlinear
behavior locally exists. Similarly, for η1 < 0 and η2 < 0 the
usual softening nonlinear behavior locally exists. However,
due to the independent nature of each branch’s nonlinearity,
two mixed or hybrid cases also exist, namely, η1 > 0 and
η2 < 0, and η1 < 0 and η2 > 0, which correspond to the two
nontrivial response branches dictated above bending toward or
away from one another near the principal parametric resonance
condition, as determined by λ1 and ν1. A summary of this result
is presented in Fig. 1, which shows each of the various response
regions present in the γ3 - λ3 parameter space. Note that
transitions between response regions occur when either one or
both effective nonlinearities equal zero, which corresponds to a
perfectly vertical solution branch as produced by the singularity
in the response [8].

The third and fourth pairs of nontrivial response branches
appear at identical constant amplitude in the absence of damping,
given by

a3,4 =±

√
−2λ1

λ3
, (13)

and are distinguished by their phases, given by

ψ3,4 =±1
2

arccos
(
−3γ3λ1 +2λ3ν1−2λ3σ

λ1λ3

)
. (14)
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Figure 1. The γ3-λ3 parameter space (From [8]). The various response
regions are designated by Roman numerals.

Due to the presence of the square root in the amplitude term,
these solutions clearly can appear in only the upper or lower
half-plane of the parameter space presented in Fig. 1, as dictated
by the sign of λ1/λ3. As brief analysis shows however, these
solutions do not abruptly appear across the λ3 = 0 axis, but
rather a ‘smooth’ bifurcation occurs here and the additional
constant amplitude solutions are created from ±∞ [8].

With each of the nontrivial solution branches characterized,
all that remains for analysis of the system’s frequency response
is a complete stability analysis. Though omitted here for the sake
of brevity, such an analysis is easily completed through exami-
nation of the local linear behavior of the system about its various
equilibria [8]. In fact, in the absence of damping, each equilib-
rium’s stability can be shown to be solely dependent on the sign
of the determinant of the Jacobian matrix of the local linear sys-
tem evaluated at the specific equilibrium point [8].

A BRIEF LOOK AT THE SYSTEM’S FREQUENCY RE-
SPONSE

With both the steady-state solutions and their associated
stabilities known, it is worthwhile to consider a representative
example. As such, consider an undamped system whose
dynamics are accurately captured by Eq. (1) with ν1 = λ1 = 1
(Note that these results are easily extended for other parameter
values as well). The frequency response plots for this special
case are easily generated, using the results of the previous
section, for each of the response regions depicted in Fig. 1 as
shown in Figs. 2-5. Note that though Regions I, IIa, Vb, and VI
are omitted here, the responses in these regions are symmetric
counterparts to those which lie in the other half-plane. A brief
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Response Amplitude vs. Detuning in Region IIb 
(γ3 = -0.005, λ3 = 0.010)
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Figure 2. Representative frequency response plot for Region IIb in Fig. 1
[8]. Here and elsewhere, solid lines indicate a stable response and
dashed lines an unstable response.

Response Amplitude vs. Detuning in Region III 
(γ3 = -0.005, λ3 = 0.005)

0

10

20

30

40

50

60

-1.5 -0.5 0.5 1.5 2.5 3.5

σ

a

Figure 3. Representative frequency response plot for Region III in Fig. 1
[8].

explanation of the included plots follows.

To begin, consider the frequency response shown in Fig. 2,
which corresponds to Region IIb in Fig. 1. This region exem-
plifies a system with mixed nonlinearities in that the nontrivial
response branches do not bend in the same direction. Rather,
after branching off in subcritical pitchfork bifurcations, the
nontrivial response branches bend away from one another
near resonance, which in turn leads to globally unbounded
solutions (taken loosely here to indicate that some solutions
grow unbounded within this detuning region). The response
depicted in Figure 3, corresponding to Region III in Fig. 1,
is much more mundane. Here the two nontrivial responses
branch off in two pitchfork bifurcations, one subcritical and one
supercritical, yielding behavior entirely consistent with typical

Response Amplitude vs. Detuning in Region IV
(γ3 = -0.005, λ3 = -0.005)
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Figure 4. Representative frequency response plot for Region IV in Fig. 1
[8].

Response Amplitude vs. Detuning in Region Va 
(γ3 = -0.005, λ3 = -0.010)
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Figure 5. Representative frequency response plot for Region Va in Fig. 1
[8].

softening behavior and solutions that remain globally bounded.

The dynamics in the lower half-plane are slightly more
rich due to the presence of the additional solution branches (a3
and a4). Figure 4, corresponding to Region IV in Fig. 1, for
example, appears to locally exhibit typical softening behavior.
However as the frequency is decreased from zero detuning
additional local bifurcations occur corresponding to the creation
and annihilation of the additional solutions. In addition, these
bifurcations lead to an exchange in the stability of the frequency-
dependent branches. Though the net result is still a globally
stable response, it is clearly distinct from the response presented
in Fig. 3. The response depicted in Fig. 5 is also unique in
that the response branches here bend toward one another near
resonance. However, these stable branches persist only until
their connection with the constant amplitude branches wherein
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they destabilize in additional bifurcations, yielding a globally
unstable system.

Though only a small number of frequency response plots
are included in this very brief analysis, it should be noted that the
system contains a considerable amount of interesting phenomena
not examined herein, ranging from invariant manifolds in various
phase spaces to global bifurcations. As mentioned before, a full
accounting of this phenomena can be found in [8]. It should also
be noted that though only the undamped system is considered
here, the effects of damping on the system can be appreciable (in
general, it leads to symmetry breaking) and are also worthy of
consideration. These results can also be found in [8].

EXAMPLE: A PARAMETRICALLY-EXCITED MICRO-
ELECTROMECHANICAL (MEM) OSCILLATOR

Though the results presented in the preceding sections are
applicable to a wide variety of problems involving generalized
parametric resonance, the present study, as previously men-
tioned, was motivated by the analysis of parametrically-excited
MEM oscillators, such as the one depicted in Fig. 6. This
oscillator consists primarily of a backbone, B, the principal
shuttle mass or proof mass of the system, suspended over a
substrate by four folded beam springs, S, and excited by a pair of
non-interdigitated comb drives, N, which are externally powered
by an AC voltage source (not shown). Though two interdigitated
comb drives, C, are also present in Fig. 6, it should be noted that
they were used only for sensing purposes in the present study
and thus are not explicitly discussed here.

While the authors have previously verified that the equation
of motion given by Eq. (1) accurately captures the dynamics of
oscillators such as that depicted in Fig. 6, the development is
repeated here for both the sake of completeness and to provide
further justification for the conclusions presented in this work,
and perhaps more importantly, to explain their relevance to the
design of MEM devices [1, 3, 7, 8].

To begin, it is noted that the equation of motion of the oscil-
lator in question can be generalized to be of the form

mẍ+ cẋ+Fr(x)+Fes(x, t) = 0, (15)

where Fr(x) represents the elastic restoring force produced by the
four folded beam springs and Fes(x, t) represents the electrostatic
driving and restoring forces produced by the non-interdigitated
comb drives under a fluctuating voltage excitation, given by [1,
3, 7, 8]

V (t) = VA
√

1+ cosωt. (16)

the oscillator is no longer restricted to the frequency of the

externally applied force. In particular, there are excitations of

the natural frequency, when excited at certain integer fractions

or multiples of the resonant frequency. There is plenty of

literature on such systems modeled by Hill’s equation and

variations including the introductory book by Cartmell [13].

In the case of harmonic oscillators with time-modulated

stiffness, a sharp transition between zero response and a

large auto-parametric response (sub-harmonic resonance)

exists [14]. Since this transition is dependent on system

parameters, including the mass of the vibrating oscillators,

change in mass can be detected with such a system. In this

mass sensor implementation, the minimum detectable mass

change can be expressed as [5]:

dm ¼ � k

4p2

1

f 3
0

df0 (1a)

where k is the system stiffness and f0 the natural frequency.

The sensitivity of a simple harmonic resonator based mass

sensor, such as a cantilever sensor, can be represented as

[15–17]:

dm ¼ k

4p2

1

f 020
� 1

f 2
0

� �
¼ � k

2p2

1

f 3
0

df0 (1b)

The sensitivity of these two cases is of the same order if

the smallest resolvable frequency shift (df0) due to mass

change is the same. However, the sensitivity of a normal

cantilever mass sensor is strongly dependent on pressure.

The minimum detectable frequency change is inversely

proportional to the quality factor [18]:

Df ¼ 1

A

f0kBTB

kQ
(2)

where A is the amplitude of the oscillation, B the bandwidth,

Q the quality factor, T the temperature and k the stiffness of

the oscillator. It should be noted that damping cannot be

avoided in micro or nano scale [19]. In the case of a

parametrically driven oscillator, the sensitivity depends on

the transition between zero and large response and the

transition can be very sharp. At 7 mTorr, for the case of a

parametric torsional mode MEMS oscillator, the transition

was observed with an input frequency shift of 0.001 Hz [4],

which is the limit of the hardware used (Function generator

HP3245A). Because of the sharp transition, with the same

configuration, parametrically driven mass sensor can be two

orders of magnitude more sensitive than harmonic resonator

based mass sensor. In a cantilever mass senor with dimen-

sions as 22:37 mm � 2 mm � 0:5 mm, the theoretical sensi-

tivity can be 9:65e � 17g [20]. If working in the parametric

mode, it can resolve as small a mass change as 3:62e � 19 g.

The sharp transition is a reflection of a sub-harmonic

response pitchfork bifurcation in the driving voltage fre-

quency–amplitude parameter space. The occurrence of this

bifurcation will be shown to be independent of the ambient

pressure (modeled as viscous damping in the dynamics). We

have observed this sharp transition at 450 mTorr and higher.

Theoretically, good sensitivity can be achieved even at

atmospheric pressure.

In this paper, we describe the motivation for the need to

study nonlinear effects and present an introduction to the

bulk-micro-machined parametrically actuated mass sensor.

We then present the development of its model in the

electromechanical domain and present an analytical treat-

ment of the resulting nonlinear Mathieu equations. This

analysis is supported with experimental results. The impli-

cations of these results on the behavior of the mass sensor are

discussed.

2. Device

In this section, we describe the electromechanical system

fabricated using the bulk-micro-machining technique

SCREAM [21]. The device we have studied is an oscillator,

which was designed by Adams et al. [22] for the independent

tuning of linear and cubic stiffness terms. A scanning

electron micrograph of the oscillator is shown in Fig. 1.

The device size is about 500 mm � 400 mm. It has two sets of

parallel interdigitated comb finger banks on either end of the

backbone and two sets of non-interdigitated comb fingers on

each side. The four folded beams provide elastic recovery

force for the oscillator. The beams, backbone and the fingers

are �2 mm wide and �12 mm deep. The backbone is 515 mm

long and 20 mm wide. Each of the four recovery folded

beams are 200 mm on the long side and 20 mm on the short

side. Either the interdigitated or the non-interdigitated comb

fingers may be used to drive the oscillator. Fig. 2 is a

schematic of these comb fingers. This oscillator is used to

Fig. 1. A scanning electron micrograph of the oscillator. Note the folded

beam springs (S), the two sets of interdigitated comb finger banks (C) on

both ends of backbone (B) and non-interdigitated comb fingers (N) on each

side of backbone (B).

140 W. Zhang et al. / Sensors and Actuators A 102 (2002) 139–150

Figure 6. A representative parametrically-excited MEM oscillator (From
[3]). The backbone is indicated by the letter B, S indicates the folded beam
springs which supply the system’s elastic restoring force, N indicates the
non-interdigitated comb drives used to provide the electrostatic driving
and restoring forces, and C identifies the interdigitated comb drives, which
are used here solely for sensing purposes.

As previously shown in [3], each of these forces can be accu-
rately modeled by cubic functions of displacement, in particular,

Fr(x) = k1x+ k3x3 (17)

and

Fes(x, t) =
(
r1Ax+ r3Ax3)VA

2 (1+ cosωt) , (18)

where k1 and k3, and r1A and r3A, represent mechanical stiffness
and electrostatic coefficients respectively. Substitution of these
forces into Eq. (15) yields a dimensional equation of motion for
the shuttle mass of the form [1, 7, 8]:

mẍ+cẋ+k1x+k3x3 +
(
r1Ax+ r3Ax3)VA

2 (1+ cosωt) = 0. (19)

To ensure consistent analysis it proves beneficial to rescale
Eq. (19) such that it is nondimensional. Accordingly, time and
displacement are rescaled according to

τ = ω0t (20)

and

z =
x
x0

, (21)
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Table 1. Nondimensional Parameter Definitions [8].

Definition Nondimensional Parameter

(•)′ = d(•)
dτ

Scaled Time Derivative

εζ =
c

2mω0
Scaled Damping Ratio

ελ1 =
r1AVA

2

k1
Linear Electrostatic Excitation Coefficient

Ω =
ω

ω0
Nondimensional Excitation Frequency

εχ =
k3x0

2

k1
Nonlinear Mechanical Stiffness Coefficient

ελ3 =
x0

2r3AVA
2

k1
Nonlinear Electrostatic Excitation Coefficient

where ω0 represents the linear elastic natural frequency, defined
according to

ω0 =

√
k1

m
, (22)

and x0 represents a characteristic length of the system. This, as-
suming the nondimensional damping, net electrostatic force, and
nonlinear mechanical force are small, which is valid for the near-
resonant operation of MEM oscillators, results in a nondimen-
sional equation of motion for the backbone, very similar to that
given in Eq. (1), given by

z′′+2εζz′+ z(1+ ελ1 + ελ1 cosΩτ)

+ εz3 (χ+λ3 +λ3 cosΩτ) = 0,
(23)

with parameters and operators defined in accordance with
Table 2 [1, 7, 8].

Since the equation of motion presented in Eq. (23) is of the
form of that presented in Eq. (1), it is readily apparent that the
results of the previous sections are directly applicable to the os-
cillator in question. However, whereas in the previous sections
the nonlinear parameters of the system could be independently
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Figure 7. The γ3 - λ3 parameter space superimposed with the nonlin-
earity path the oscillator design presented in Table 2 would exhibit [8].

selected, in the case of the MEM oscillator these parameters are
inherently coupled to the system’s excitation. In particular, the
nonlinear parameters, amongst others, depend on the amplitude
of the AC voltage excitation (VA). The net result of this reliance is
that the system actually exhibits qualitative changes in its nonlin-
ear response, that is, it transitions between the response regions
delineated in Fig. 1, as VA is varied [8]. To examine this fur-
ther, consider the oscillator’s nonlinearity in terms of the γ3 - λ3
parameter space using

ελ3 =
x0

2r3AVA
2

k1
(24)

and

εγ3 = εχ+ ελ3 = εχ+
x0

2r3A

k1
VA

2. (25)

Clearly when VA = 0 the system lies at (γ3,λ3) = (χ,0), on the
boundary between Regions I and VI, in the parameter space,
however, as the voltage is increased the system follows a line
in the parameter space specified by

λ3 = γ3−χ. (26)

As a result, depending on the oscillator’s parameters and the
input voltage of the system, the oscillator can feasibly exhibit a
nonlinear response compatible with any of the response regions
presented in Fig. 1.

To examine this phenomenon further, consider the oscillator
design described by the parameters given in Table 2. As shown in
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Table 2. Design Parameters for a Representative MEM Oscillator [8].

Definition Nondimensional Parameter

r1A 8×10−4 µN
V 2µm

r3A −1.2×10−4 µN
V 2µm3

k1 7.15
µN
µm

k3 0.042
µN
µm3

c 2.11×10−8 kg
s

m 2.5×10−10 kg

Fig. 7 this oscillator freely transitions between Regions VI, Vb,
Va, and IV as the input voltage amplitude, VA, is varied. Thus,
within the 0 - 35 V input voltage window the oscillator exhibits
quasi-hardening, quasi-softening, and the so-called mixed non-
linear behavior. Though such qualitative changes may be of in-
terest from a research point of view, in most, but not all, practical
applications their existence is somewhat undesirable. As such, it
is proves beneficial to identify the transition voltages at which the
behavioral transitions are predicted, so that they can be avoided
in practical implementation. As brief calculations will reveal,
such transitions take place at

VA,C1 =

√
−3k3

5r3A
(27)

for the VI to Vb transition, and

VA,C2 =

√
−3k3

r3A
(28)

for the Va to IV transition.

It should be pointed out that despite the fact that these
MEM oscillators can transition between response regions, all
devices produced to date, due to the nature of their mechanical

nonlinearities (χ > 0), exhibit hardening characteristics at
0 V. Accordingly, any oscillators designed to exhibit softening
or quasi-softening nonlinearities have a minimum operating
voltage required to achieve the desired behavior. This constraint,
however, is of minimal concern as these oscillators, regardless of
their operating region, feature, like most parametrically-excited
systems, a minimum operating voltage constraint due to the
presence of damping.

In an attempt to verify the assertions of this section,
experimental results produced using an actual oscillator, based
on the design presented in Table 2, are included in Figs. 8-10.
These figures show the frequency response curves for the device
in question at AC voltage excitation amplitudes of 7.6 V, 16.6 V,
and 33.0 V. As predicted by theory, the oscillator’s nonlinearity
qualitatively changes as the excitation voltage is increased. In
particular, at 7.6 V the oscillator exhibits hardening character-
istics, at 16.6 V mixed nonlinear characteristics, and at 33.0 V
softening characteristics.

While the experimental results presented in Figs. 8-10 are
promising indications of the validity of the analysis presented in
this work, a few issues remain to be addressed. For example, the
absence of effects associated with the additional constant ampli-
tude solution is slightly disconcerting. This, however, is largely
reconcilable with the fact that the authors were not aware of such
phenomena previous to and during the experimentation shown
and thus this phenomena was not taken into account during fre-
quency sweeps and device characterization. Similarly, the para-
meters shown in Table 2, though highly compatible with the an-
alytical predictions, were derived through a recently developed
identification procedure, which though systematic, is not yet re-
fined. Accordingly, direct comparisons between analytical and
experimental results are limited by the degree of accuracy of the
parameter identification process. Ongoing experimentation and
characterization should help address both of these issues.

CONCLUSION
As shown throughout this work, parametrically-excited

MEM oscillators and systems with generalized forms of para-
metric resonance, in general, exhibit an array of interesting
dynamical features. Amongst the more interesting is the fact that
such system are capable of displaying not only typical hardening
or softening nonlinear characteristics, but also mixed nonlinear
characteristics wherein the principal response branches bend
toward or away from one another near resonance. In fact,
in certain incarnations (in particular, parametrically-excited
MEM oscillators) such behavior can be shown to be explicitly
coupled to the excitation amplitude of the system. That is, such
systems can be shown to qualitatively transition between various
nonlinear regimes as the excitation amplitude is varied.
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Velocity Amplitude vs. Driving Frequency - VA = 7.6 V
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Figure 8. Experimentally-derived frequency response curves for a MEM
oscillator excited at 7.6 V (From [8]).

Velocity Amplitude vs. Driving Frequency - VA = 16.6 V
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Figure 9. Experimentally-derived frequency response curves for a MEM
oscillator excited at 16.6 V (From [8]).

Though previous experimentation has yielded results gen-
erally compatible with the results presented in this work, some
issues remain, as highlighted in the preceding section. These is-
sues are currently being addressed through a new experimental
campaign designed to further characterize such systems in light
of the analytical results presented in this work.
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Velocity Amplitude vs. Driving Frequency - VA = 33.0 V
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Figure 10. Experimentally-derived frequency response curves for a
MEM oscillator excited at 33.0 V (From [8]).
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