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Abstract

We study the quadratic normal form describing the generic interaction of Fourier modes of wavenumbers 0, 1 and 2 under the
symmetry group O(2) of rotations and reflections, in the case that the homogeneous quadratic terms preserve ‘energy’: the sum
of the squares of absolute values of the (complex) variables. This system is a generalization of the 1:2 mode interaction studied
by Dangelmayr [G. Dangelmayr, Steady-state mode interactions in the presence of O(2)-symmetry, Dyn. Stab. Syst. 1 (2) (1986)
159-185], Armbruster et al. [D. Armbruster, J. Guckenheimer, P. Holmes, Heteroclinic cycles and modulated travelling waves in
systems with O(2) symmetry, Physica D 29 (1988) 257—282] and others, and its restriction to the 1:2 subspace is a degenerate case
of that system. It displays all the classes of fixed points, periodic orbits (standing and travelling waves), invariant tori (modulated
travelling waves) and heteroclinic cycles found in the 1:2 interaction, as well as new heteroclinic cycles connecting pure and
mixed modes, chaotic cycles, and ‘strange’ periodic orbits. We describe the key dynamical features, show that the degenerate
1:2 case possesses a second organizing center at which bifurcation curves coalesce, provide representative bifurcation sets an
diagrams for the 1:2 and 0:1:2 systems, and use a conservative limit to understand the periodic orbits in the latter system.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Mode interactions; Bifurcations; Heteroclinic cycles

1. Introduction

In this paper we consider the normal form, truncated at quadratic order, for the 0:1:2 spatial resonance in the
presence of O(2) symmetry near a codimension three bifurcation point. The state varjalplesO, 1, 2 represent
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the amplitudes of Fourier modes having wavenumbersahd %; thus, assuming a real physical field,» are
complex variables andp is real. We further restrict our study to the special, but physically important, case in
which the homogeneous quadratic terms preserve a norm corresponding, for example, to kinetic energy of a fluid.
Indeed, the following system arose in our studies of low-dimensional models of plane Coueft&4lpwnd this
provided our initial motivation. This three-way interaction also appears to play an important role in another recent
fluid study, of counter-rotating swirling flow, which has bifurcation behavior which cannot be fully explained by
the 1:2 resonand®].

The 0:1:2 system atonce generalizes, and, in alimiting form, represents a special degenerate case of, the 1:2 spati
resonance studied by Dangelmfiirand Armbruster et aJ2], hereafter referred to as AGH. This system, which was
simultaneously and independently investigated by Jones and Pfeathmprovided the first analytically-tractable
example of structurally stable heteroclinic cycles, which had also been identified slightly earlier in a model of the
boundary layef8]. Such cycles were subsequently found in numerous fluid and other contexts: for a particularly
clear recent example, see Mercader efAl.

Structurally stable heteroclinic cycles and the periodic and quasiperiodic orbits that are associated with them are
physically important since they provide a robust mechanism by which unstable transients can repeatedly occur in
dynamical problems. In turbulent and preturbulent fluid flows the parts of these cycles near saddle points corresponc
to coherent structures: organized vortical and shear layer structures that appear, evolve, disappear and reappe
cyclically but not generally periodicallj10]. Also see the introductory remarks in Sectidnsnd 5

In this paper we show how the bifurcation sets of the 0:1:2 and the 1:2 resonances are related, and describe phe
nomena not present in the 1:2 case, including ‘multi-heteroclinic’ cycles and strange periodic orbits. The equations
for the 0:1:2 resonance may be written in the form:

ao = poao + 2(Bilail? + Balaz|?),
a1 = (u1 — Biag)as + cajaz, (1)
az = (up — Boag)ap — ca?,

whereag € Randay » € Candthe parameters;, B;, c are real. For finitg.o, we may remove andug by rescaling
the system via +— |uolt, ao,1.2 — (c/|pnol)ao.1,2, #1,2 = p1.2/|1ol, B1,2 — Bi12/cto arrive at the simpler form:

ap = oua0 + Z(Bl|al|2 + Bz|¢12|2),
a1 = (u1 — Biag)ay + aja, 2)
az = (u2 — Boag)az — a2,

whereo,, d:Efsign(uo) = +1. We note that the parameter-rescaling symmetyy(;, t) — (xa;, au;, t/o) leaves
(1) invariant, and thus it is onl¥1 > and theratios w1 2/|o| that determine the system’s qualitative behavior. In
Section6 we shall relax the assumption of nonzergand we shall use the fact, noted above, thaffpe= 0, (1)
preserves the ‘energy’ norm

2

a
E= 30 + |a1]? + laz|?. ®)

We treatu1 2 as bifurcation parameters (Wi);hdza(m, w2) denoting points in parameter space) &g as system
parameters. Allowing time reversal, we need only consider the two ‘system dases’ 0 andB, < 0 < Bj. Itis
noteworthy that both cases occur in low-dimensional models of plane Couette flow, the former in a moderate aspect
ratio domairn3] and the latter in the minimal flow urf#], the smallest domain able to sustain turbulence. We shall
adopt parameter values derived in these papers for illustrative computations below.
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The 0:1:2 resonance is related to a special case of the 1:2 resonance:

a1 = djaz + (u1 + e1la1|? + e1zlaz|?)az,

(4)

az = —a? + (u2 + ez1lai|? + exzlaz|?)ay,

studied in AGH[2], cf. [6,7,11] and references therein. The systef@sand (4)will be compared in subsequent
sections of this paper, in the course of which we shall use the real Cartesian and polar f(@jns of

ap = oyap + 2(Blr% + Bzrg),

x1 = (u1 — Brao)xz + (x1x2 + y1y2),

y1 = (11 — B1ag)y1 + (x1y2 — y1x2), (5)
2 = (u2 — Baag)xz — (x — ¥9),

y2 = (12 — B2ao)y2 — 2x1y1,

ap = oyap + ZBlr% + ZBzrg,
r1 = (11 — Biao)ry + r1r2 COS @,
r2 = (u2 — Boao)rz — 15 C0S¢, (6)

p=|2L—2r]|sing,
ro

where, with r12 and 601, defined to be non-negative moduli and real phase angles, respectively,

ai 2 dzefrl,z exp(ify.2) dzefxl,g + y12ifori d=Ef\/—1 and¢ d=ef291 — 62. As in[2], the emergence of the phase differ-
enceg and reduction to four (real) dimensions is a consequence of O(2) equivariance. The analogous component
forms of(4) are

x1=x1x2 + y1y2 + x1(ua + e11r? + e12rd),
V1= x1y2 — yix2 + y1(u1 + 6’11"% + eerg)’
x2 = —(x%2 — y]) + x2(u2 + 2072 + e20r3), “
y2 = —2x1y1 + y2(u2 + e21rf + ezor),

r1 = rirp OS¢ + ri(u1 + ellr% + elzrg),
ro = —r% CoS¢ + ro(u2 + ezlr% + ezzr%),

_ 2 (8)
= (l — 2r2> sin ¢.
r2

To demonstrate a connection betwd@phand (4)we may employ the scalingy = €250, 1.2 = €51.2, 1.2 =
€%v12 and() = €()' to transform(6) to

€55 = 0uS0 + 2(Bls% + stg),
57 = €(v1 — B1so)s1 + s152 COS ¢,
sh = €(v2 — Basg)s2 — 52 COS ¢, 9)

2
¢ = (L —2rp)sin ¢;
r2
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hence in the limit — 0 we may use the relation
— 2 2
S0 = _ZGM(Blsl + BZSz), (10)

due to equilibration of the first equation (8) to its slow manifold. Indeed, providesg}, = —1 ande <« 1, (10)
provides the quadratic approximation to a locally attracting (center) manifa]dEquivalently, for(2) in the limit
11,2 — 0 with pg # 0, the center manifold tangent to the = 0 hyperplane may be locally approximated by

ap = —ZO'H(B]_CI% + Bzag). (11)
Substitution of(11) into the latter two equations of) yields the reduced system

a1 = djaz + (u1 + 20, B3|a1|? + 20, B1Bzlaz|?)a1

. 12

az = —a3 + (u2 + 20, B1Bala1|? + 20, B3|az|?)az, (12)
which is precisely the 1:2 resonance sys{@nwith system parameters

e11 = ZGHB%, e12 = ex1 = 20, B1B>, e = ZO'MB%. (13)

Hence the dynamics of the 0:1:2 resona(®are related to those of thizgenerate 1:2 resonance in which
e12 = e21 = 0,0B4/€11€22, (14)

whereog d=Efsign(Ble) and we implicitly assumesiez2 > 0. In particular, the fixed point sets (2) and (12)
coincide, as do those ¢8) and (8)

This paper is organized as follows. In Sect®we revisit the general 1:2 resonance of AGH, and then obtain
new results for the degenerate 1:2 resonance givéa)subject ta(14). In Section3 we perform a similar analysis
of the 0:1:2 resonand®). Then in Sectiong and5 we examine both spatial resonances with system parameter
values representing the two cases noted above, representative of (large) open sets of system parameters. We ident
differences between the behavior of the 1:2 and 0:1:2 systems, and find new types of heteroclinic cycles. In Sectior
6 we relax the assumption thap # 0, and consider the limjig 1 2 — 0. Thisincludes a discussion of complicated
periodic orbits for the 0:1:2 system. Sectibooncludes the paper.

2. Dynamics of the 1:2 resonance
2.1. Basic solutions

For the reader’s convenience, and because we shall describe analogous results for the 0:1:2 system in simila
terms, we start by reviewing results which appearefRjnand [11], summarizing the various solutions (4)
discussed therein. Acronyms for the solution and bifurcation types introduced in this and other sections are given
in Table 1

Trivial state. The solutiona; = a2 = 0 has full O(2) symmetry and eigenvalugs and 2, each of multi-
plicity 2. _

Pure mode (PM) equilibria. These lie in the; = 0 invariant subspace, given byi( a2) = (0, /—j12/e226%%)
and branch from the origin in a pitchfork bifurcation of revolution along thedipe= 0. Foreo» < 0, as inthe degen-
erate 1:2 resonance whep < 0(13), PM equilibria exist fo.z > 0. These form a circle Plyparameterized by,

intersecting the real subspage= y» = 0 atthe two points Plyland PM,/> (given by (1, x2) = (0, £/ —p2/e22)).
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Table 1
Acronyms for solution and bifurcation types

Acronym Full name
Solution type PM Pure mode

MM Mixed mode

SW Standing wave

TW Travelling wave

MTW Modulated travelling wave
Bifurcation type SB Symmetry breaking pitchfork

H Hopf

PB Parity breaking

PD Period doubling

T Torus

SWHe Heteroclinic involving SW

SWHo Homoclinic involving SW

Sh Silnikov

Mixed mode (MM) equilibria. These fixed points take the foram( az) = (169, r,6%9), and we shall denote
them MM;. The non-negative moduti 2 may be determined froif8) by settingg = 0 to yield:

—p1 4 (=1 + ea1pu1 — en1pa)r2 + (e21 — e12)r3 + (erze21 — e1e22)rs =0, (15)
and

_patr2+ e1or5  ra(u2 + ezord)

2
1
e11 1—eonr

7

- (16)
The first (resp., second) equality(ib6) follows from setting-; = 0 (resp.;2 = 0) in (8). One might conclude that
there may exist at most three distinct (non-symmetry-related) MM states corresponding to the three(fd®ts of
but, as we shall see in Secti@r®?, this is not so in the degenerate case. We note that the MM equilibria bifurcate
from the PM equilibria through symmetry-breaking (SB) pitchfork bifurcations. They also bifurcate from the trivial
state in a pitchfork of revolution along the lipg = 0. _

Standing wave (SW) solutions. These periodic orbits lie in the real subspace orgungtation of it, and arise in
Hopf (H) bifurcations from the MM equilibria. Lineariziny), restricting to the real subspace and evaluating the
Jacobian matrix at the mixed mo@Es)and(16), we obtain the Hopf bifurcation conditions in termsreb:

0= —r% — Zellr%rz — Zezzrg, a7
and

(2e20r3 + r2)e11 — (2e10r2 + 1)(e21r2 — L)r2 > O. (18)
Eq. (15)implies that, agt1,2 — 0, MM solutions with smally » must satisfy

r2 N —[i1. (19)

Sincer, must be non-negative, we conclude that the locus of H bifurcations which limits on theupeirt must
locally extend into thet; < 0 half-plane.

In fact, as shown iffil] this locus of H bifurcations is locally parabolic (¢2]). Indeed, consider MM solutions
with smallry », corresponding to smajk;. Assuminge;; = O(1),i =1, 2, j =1, 2, and using19), the second
term in(17)is small relative to the first. Thus, at a Hopf bifurcation

r% ~ —Zezzrg. (20)
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Furthermore, from the second equality(ir6), using(19),

rf & ra(uz + e2or3). (21)
Finally, equating20) and (21)and using19),

12 ~ —3epop?. (22)

There are also standing wave heteroclinic (SWHe) bifurcations associated with the periodic orbits that are spawned
as such a bifurcation is approached, the periodic orbit limits to connections between the trivial state and a PM
solution. We shall use AUTQ13] to map these out in the parameter space in the examples considered in Sections
4and5

~ Travelling wave (TW) solutions. These are fixed points ¢b) but periodic orbits for the systei2) with

6, = 261 # 0. Eq.(8) indicates 25 — rZ = 0 for the travelling waves, and thus

—(2p1 + ©2)
, r1 = v/2r,
deq1 + 2e12 + 2e21 + €22 ! 2
(2e11 + e12) 2 — (2e21 + e22) 111

V—(Be11 + 2e12 + 2e21 + €22)Pun + p2)

3=
(23)

COS¢p =

Travelling wave solutions exist in the region of theplane defined by

((2e11 + e12)it2 — (2e21 + e22)111)? < —(der1 + 2e12 + 2ep1 + €22) (2401 + 112), (24)

and bifurcate from the MM equilibria in parity-breaking (PB) bifurcations when this expression is an equality.
Modulated travelling wave (MTW) solutions. These are created when a Hopf bifurcation occu(8jncorre-
sponding to a torus (T) bifurcation on a TW branch in the sygnirhey may also arise in bifurcations from the
SW solutions.
Heteroclinic cycles. In the real {1, x2) subspace these appear as a connection betwegraR#IPM; ». As
shown in[2], for parameter values satisfying

e — e —
M2e12 M2<O<M1—M+ re. (25)

€22 €22 €22 €22
PMo is a saddle and PM> a sink in the real subspace, and a connection between these two equilibria can be proven
to exist if there are no MM equilibria present. (The latter condition is sufficient but not necessary: cf[2JGHds.
1 and 5).) Given a connection from RNb PM, -, a ‘returning’ connection in a suitably rotated copy of the real
subspace may be found by appeal to O(2) symmetry. More general heteroclinic cycles connecting MM equilibria
were shown to exist in the 1:2 resonanc¢lif].

2.2. The degenerate case

We now consider the degenerate 1:2 resonghpwith (14), focussing initially on the real subspace, in which
the equations reduce to:
X1 = x1x2 + (U1 + e11x + 0,08 /e11€22%3)x1, (26)
X2 = —x2 4 (12 + 0,08 /e11€22%5 + €20%3)x2.

Focussing on the MM equilibriumondition (15)specialized to the real subspace, we see that the quadratic and
cubic terms vanish identically and it simplifies to:

—u1+ (—1+ oy oB/e11e2om1 — e11u2)x2 = 0. (27)
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One might be tempted to rearrange this equation to read

“1

: (28)
—1+oy0B /e11eo101 — e1142

X2 =

and then conclude that; — 0 necessarily implies, — 0 (and hence, frorfil6), x1 — 0) also. This holds on all
parameter space paths approachinguithe- 0 axis,except those that approach the point

= (0. —1/e11) E'i, (29)

where the denominator ¢28) vanishes. The PM equilibria undergo SB pitchfork bifurcations to MM equilibria on
such a path, which can be found by setting (2) = (0, ./—u2/e22) in (16) and using14)to obtain

2
e

<M1 — 0,084/ nﬂz) =12 (30)
€22 €22

We shall defer discussion of this parabola until SecBidnwhere we discuss the MM equilibriainthe 0:1:2 resonance
which, as we observed in Sectitnare found to lie at identical values a@fi( a2). For now, we note that if we solve
(30)for 2 as a function ofs1 and substitute this relation back in28), we can apply L'Hopital’s rule to conclude
that, along this curveg, remains equal tecy/—u2/e22 asuy — 0.

A second path approachir{g9) is the curve on which MM equilibria undergo H bifurcations. We concluded
in Section2.1 that, fore11, e22 < 0, the H bifurcation curve enters the; < 0 half-plane fromu = 0. If it is
subsequently to approach the = 0 axis it may only do so at the poipty = —1/e11; at all other points the MM
equilibria coalesce at the origin, at whia H bifurcation cannot take place, since #ie= 0 axis is invariant. We
may confirm this reasoning and explore the bifurcations by considering equilibfZzbpdt the parameter values
(29), which lie on the set

ellx% + oy oBA/e11€22 x% +x2=0. (32)

Hence foraﬂoB < 0 a closed curve of equilibria passes through bath X2) = (0, 0) and the PM equilibrium
(x1, x2) = (0, —0,//e11€22) = (0, —0, \/—p2/e22). For 0,08 > 0 two curves of equilibria exist, one passing
through (O O) and the other through the PM equilibrium €0,/ /e11€22) = (0, 0,.8/—12/e22); if 0, <0, asin
the two examples considered in Secti@nand5, these two PM equilibria are none other thanfand PN, 5,
respectively. SeEigs. 5 and 1®elow.

Linearization of(26) on the se{31) yields eigenvalues

14 o 0B /e11e22x2 + 2e11x2(1 — exox2 + 0,08 /€11€22)
e11 '

A=0,— (32)

and eigenvectors

1+ 20,08./e11€22x2 1 - V/—e11x2(1 + 0,08, /e11€22x2) 1 (33)
2\/ —e11x2(1+ 0,08 /e11€22x2) 1 - 0,08 /e11€20%2 )

The former, with zero eigenvalue, is tangent to the ci{Blg and the second eigenvalue is also zero when

A def 2e11 + 0,08 /e11e22 = +/e11(de11 — 4o, 08 fe11e22 + 9e22)

, 34
de11(e22 — 0, 0B /€11€22) (34)

X2 =
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at which point the Jacobian matrix (#6) takes the form:

—a b
a? , (35)
—— a
b

wherea andb are complicated functions efi; andez,. The corresponding pair of equilibriel 8 déf(xIB, x1B)

are degenerate Takens-Bogdanov bifurcation points, as one sees by putting the ling&b)atd Jordan form

and applying a near-identity normal form transformation to remove all but the essential quadratifl&jrritke

generic Takens-Bogdanov singularity has two such, but in the present case one of them identically vanishes, giving
(in Bogdanov form):

Uy = uy, 36
up = fuqup+ - -. (36)

This lacks the& term that is generically presefit?], as it must, consistent with existence of the curve of equilibria
(31): seeFig. 5below. In(36) this curve is transformed to coincide with the-axis and all other solutions lie on
the parabolaa, = const.+ uf/z. The sign of ther1uo term is determined by the system parameteys eoo, and
hence, vig13), B1 andBa. Details of the similarity and normal form transformations, and the (very long) expression
for theuuy coefficient, derived using Mathematica, may be obtained from the first author.

As in the codimension-2 Takens-Bogdanov bifurcation, a locus of H bifurcations emanates from this point;
however,unlike the standard case, a locus of SWHe bifurcations replaces the homoclinic bifurcations: these are
none other than the H and SWHe loci of Sectibfi that limit on = 0. Foro,, o8 < 0 exactly one value ong
will be positive whenever G- e11 > e22, in which case all equilibria on the cur¢@1) with 0 < x2 < ng (resp.,

0 < xJB < x2) will be unstable (resp., stable).

One may easily check that the po{29) also belongs to the set along which TW solutions bifurcate from the
MM equilibria through PB bifurcations; in the degenerate case, this set, determined by the condit{@d )tisedn
equality, may be written

((2e11 + o, 0B/e11e22) 12 — (20,08/e11e22 + €22)111)* = —(2/e11 + 0,08+/€22)* (211 + 112). (37)

There are thus two additional distinguished poift8 on (one of) the curves of equilibr{81)where, in accordance
with (23), x1 = £+/2x7, at which MM equilibria bifurcate to TW solutions; fro(81) we easily see these to be the
points

5555 = = V2 — L , (39)
e11(2+ o oBa/e2z/e11) e11(2+ o084/ e22/e11)

We shall see examples of the theory expounded in this section in Seétibard 5.1

3. Dynamics of the 0:1:2 resonance
3.1. Basic solutions
As noted in Sectiod, the @1, az) coordinates of fixed points of the 0:1:2 and degenerate 1:2 systems coincide.

We now re-examine these points(iB) to determine the effects of the extra) dimension, which can provide
an additional direction for instabilities. The PM equilibria of the 1:2 resonance are replaced by ones of the form
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(a0, 0, az), and the MM equilibria bydp, a1, a2), with all a; # 0. We shall continue to refer to them, respectively,
as pure (albeit now with two nonzero coordinates) and mixed.

Trivial state. The solutionz; = 0 has full O(2) symmetry and eigenvalues, 1.1 and o, the latter two each
having multiplicity 2.
Pure mode (PM) equilibria. These lie on the circle Pg/lgiven by

H2 —H20u 2i¢
) ’ = ) Oa 7e2 4 ) 39
(ao, a1, az) ( 5, %\ 2 5 > (39)

which intersects the real subspace at the pointg &l PM;/2:

n2 —H20u
) ) = N 07 :l: . 40
(a0, x1, x2) (Bz \/ 25 ) (40)

Linearizing(5) at these points we obtain the eigenvalues and eigenvectors
. (0 +4/1— 16B5x3) _ (op++/1+80,u2)
1 - 2 - 2 ’
N 2 N 2 ’
8/ —O0uM2 (42)

\/2B3
8 —OuM2

\/2B3
As = puz — Baag =0,

V1 = ((_GM -V 1+ 80##2)\/%1 0,01, O)T,
"

8 T
va = ((—ou + /14 8oy u2)————,0,0,1,0)",
V=20, 12
v2=(0,1,0,0,0)T,
v3=(0,0,1,0,0)",
vs = (0,0,0,0,1)T,

A2 = p1 — Biag+ x2 = 1 — Bipa/Bo +

A3 = p1— Biap — x2 = p1 — Bipua/B2 —

(42)

whereg = 1 for PMp andg = —1 for PM/>. We observe that they, v4 eigenpair span the:d, x») plane provided
1+ 80#“2 75 0.

Mixed mode (MM) equilibria. These equilibria, again denoted MMake the form4o, +r16%, r,€29), where

2u1(pu2B1 — n1B2)

ag = ’
oy + 2B1(u2B1 — pn1Bo)
ry = V—0umaloutz + 2(u2B1 — p1B2)% (43)
o, + 2B1(u2B1 — p1B2)
—Oui1
rp =

o, + 2B1(u2B1 — u1B2)’
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The second expression @f3) reveals that MM equilibria exist when
ouna[2(1B2 — n2B1)? + 0,2l <0, (44)

and these equilibria branch from PM equilibria in SB pitchfork bifurcations along a parabola @dgr@nishes:

u2B1 =+ \/—oup2/2
1= a : (45)

B>

(Recalling(13), (45)coincides with(30).) This parabola exists for positive (resp., negative) valuegofvhen
o, = —1(resp.g, = +1) and has an extremum at
oy
; 46
8B1B> (46)
since it must pass through= 0, it is therefore unbounded in the right (resp., left) half-planesfoB, < 0 (resp.,
0, B2 > 0) (recall we assume@; > 0). From(44), the MM equilibria exist inside (resp., outside) the parabola
whenevebr,, 11 > 0 (resp.g, 1 < 0). MM equilibria also bifurcate from the trivial state in a pitchfork of revolution
along the lineu; = 0: see§3.2
Further consideration ¢#3) reveals that the MM equilibria tend to infinity asapproaches the line

Ha =

_ B1 + oy

Mm1= BZMZ 2B1By’

which coincides with an analogous expression that can be derived for the degenerate 1:2 resonance. This line
intersectg45) at

iep= (0= = (0,22
M_M_(’235>_(0’€11>. )

and intersects the region where MM equilibria exist wien< 0, i.e.og < 0, and not otherwise. Examples follow
in Sections4 and 5 This bifurcation from infinity is an artifact of the quadratic truncatiorfih
Standing wave (SW) solutions. Due to the extradp) dimension, these periodic orbits are much more difficult
to locate in the 0:1:2 resonance than their counterparts in the degenerate 1:2 resonance. Numerical branch follow
ing using AUTO[13] will reveal differences from the degenerate 1:2 resonance, including period-doubling (PD)
bifurcations, standing wave homoclinic (SWHo), and Silnikov (Sh) bifurcatid®F The fixed points involved in
the SWHo and Sh bifurcations are typically MM solutions. . _
Travelling wave (TW) solutions. These are fixed points ¢8) but periodic orbits of4) with 6, = 26, £ 0.
They satisfy

(47)

2 —ou(Ppa+ p2) , ,
S SomtonB T V2ra, a0 = —20,(Burf + Bzr),
CoS¢ = V20, [(2B? + 0 B1B2) 2 — (208 B1B2 + B3)ui]

v/ —(2B1 + 08B2)2(2uu1 + p2)
and exist for parameter values such that
2[(2B% + o8 B1B2)ia — (208 B1B + B3)u1]® < —(2B1 + 08 B2)X (21 + j12). (49)

(equivalent tq24) via (13)). They appear in PB bifurcations from the MM equilibria wHdB) is an equality. The
parabola describing the PB bifurcations has an extremum at

o —0,(4B1 + B2)
e ( I > (50)
8B1(2B1 + B2) 831(231 + B2)
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which, foro,, > 0 lies in thep; < 0, w2 > 0 quadrant wherB; > —2B, and theu; > 0, u2 < 0 quadrant for
B1 < —2B>, and includes the point = [i as defined irf{29).

Modulated travelling wave (MTW) solutions. These are created when a H bifurcation occur&jncorre-
sponding to a torus (T) bifurcation on a TW branci2) The examples to follow show that the MTW bifurcation
sets for the degenerate 1:2 and 0:1:2 systemsareoincident.

Heteroclinic cycles of AGH type. Structurally stable heteroclinic cycles, analogous to thog@]ofioted in
Section2.1, also occur for the 0:1:2 system. Up to an estimate that must be checked numerically, we can prove
their existence as follows. As [@] we restrict to the real subspace, assumedhat —1 anduz, B1, B> > 0, and
demonstrate the existence of a connection between thgalAWMPN, /> equilibria, the return part of the cycle being
guaranteed by O(2) symmetry.

To obtain the necessary stability types for a connection (i.e; A8 a one-dimensional unstable manifold and
PM,/2 is a sink in the real subspace), frq#il) and (42)ve require that

u2 M2
1Bz — 2By + > > 0> p1Bs — u2B1 — V2 (51)

which, via(13), coincides with the existence conditions of AG2]( Theorem 3.2). (The other eigenvalues corre-
sponding to perturbations in the real subspace are guaranteed to have negative real past-sifceAttractivity

of the cycles (in the full phase space) is guaranteed by requiring that the real part of the least stable eigenvalue for
PM,/> has larger magnitude than the magnitude of the (real) unstable eigenvaluedof Riscorresponds to

. -1+.1-8
min {‘R (Bz( > MZ)) = (Mle — p2B1— 4/ M22>} > p1B2 — paBi+ % (52)

HereR denotes the real part of the quantity in parenthesis.
We first observe that the set

_ def
0 < {(ap, x1, x2)|ap > 0, x2 < 0},
with boundaries
_ def _ def
007 ={(ao, x1, x2)|ag > 0, xo = O}, 00, ={(ao0, x1, x2)lao = 0, xp < 0}

and containing PM)», is positively invariant. This is easily seen since, from the fourth equatis),of, = —x% <0
ondQ7 , while the first of(5) implies thatag = 2(le% + Bzxg) > 0ondQ; except at the trivial equilibrium.

We next assert that any solution which ent@s approaches the plang = 0. On the real subspace we have
x1 = (u1 — Biao + x2)x1,and, forBy > 0, w1 — Biag + x2 < u1. Hence, foug < 0, x1 must decay exponentially
to zero (this may also occur far; > 0 in certain regions of phase space;Kify. 2). The flow on the 4o, x2) plane
is given by

ag = o,a0 + 232)(% (53)
x2 = (12 — B2ao)x2,

whose phase portrait is shownFhig. 1

To verify this picture, we note that the origin is globally asymptotically stableoforio < 0, sinceE =
oua(z) + uzx% < 0 for ag, x2 # 0 (cf. Eq.(3)). As u» increases through 0, the pure modesgPMM,/» bifurcate
from the origin and a center manifold analygig] reveals that they are the sole limit sets, excepting the origin, for
0 < p2 < 1. They remain sinks for all, > 0, but periodic or homoclinic orbits surrounding them could appear in
global bifurcations. However, since the flow far from the origin is dominated by the integrable quadratic system, for
which all solutions excepting the invarianj-axis move upwards along eIIips&%/Z + x% = const., no bifurcations
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[¢h)

PM,

L2

Fig. 1. Phase portrait ¢63)for o, = —1, u2 > 0, B> > 0.

from infinity can occur foruz > 0, and sincé¥3(0, 0) is theag-axis, no ‘finite’ homoclinic bifurcation can occur
either. We have been unable to rule out the possible creation of periodic orbits surroundingN)b in saddle-
node bifurcations, but careful studies of null- and isoclines, and extensive numerical work, sugges}. thé
correct for allup > 0. This implies that any trajectory approaching thie= 0 plane insideQ ~ limits on PMy» as
t — oQ.

Assuming that periodic orbits are not born in saddle-node bifurcations, we need only show that the unstable
manifold of PMy W"(PMo) intersect9Q; . We define a set containing R\Nby

def
0+ €{(ao, x1, x2)lao > 0, x2 > 0},

within which there exists a manifold on whiah = 0O:

2
ME L (g, x1, x2)lao =22 — L ag>0,x> 0. (54)
B>  Boxo

In (ao, x1, x2) spaceM has the appearance of a ship’s bow with the lige= 12/ B2, x1 = 0 forming the prow.
Points ‘outside’ (resp., ‘inside’) of the ‘bow’ hawe < 0 (resp.x2 > 0). Clearly PM lies onM, and its eigenvectors
(42), show thatW(PMp) is normal to the 4o, x2) plane at PN, and thus enters the region whate< 0. Hence
x2 initially decreases and will continue to do so until the orbit crosg@$, provided thatW"(PMp) does not

subsequently intersest. We have been unable to prove this, although numerical simulations suggest that it holds.
We show an example iRig. 2

3.2. Special solutions at . = [i

Eqg. (43) implies that the MM equilibria for the 0:1:2 resonance also converge on the origin as 0, except
at the pointu = [ as given by(48), where the locus of SB bifurcatioi45) crosses the; = 0 axis. Here, the real
equations take the form

ag = ouao + 2(le§ + Bzx%),
X1 = —Biaox1 + x1x2,

—0
: M 2
X2 = —_— Bzao X2 — X7,

( 282 ) !

(59)
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——

Fig. 2. Heteroclinic connection between the fahd PM, . equilibria for the parameterg.(, u2, B1, B2) = (0.0745 2.318, 0.4375 1.2031).
The heteroclinic trajectory (bold) lies below (shaded), given bg54). Note thatu; > 0 here. We shall refer to this example again in Section
4.2

and hence we have either one or two sets of equilibria given by

. :i:\/—xz(O'u + 2B1B2x2)
V2B, ’ (56)

X1

— X2
ap = Bl'
The locus(56) coincides with that of31) when projected onto thec{, x») plane, and passes through the trivial
equilibrium as well as the point

—oy —oy
,0, . 57
ZB%BZ 2B1B> ) 7

(a0, x1, x2) = (

For B2 > 0 there is one closed curve of equilibria passing through these points, whik farO there are two
hyperbolae, one of which passes through the trivial equilibrium whilst the other passes ttG@ugh
The eigenvalues on the curve of equilibft) are

A =0, A23 = * ;tB%/i (58)
where

x= ou(p —2) — 2B1Baxo, (59)

i = p? + 4B p(4B1 + Bo)x20,, + 4B2By(By + 8B1(p — 2B1B2))x3, (60)

p=1+2B2. (61)
There are two zero eigenvalues when oné af v/ vanishes; this occurs at

—0,u(p+ B1Bo) + \/pZ — 2B1Byp + 9B2B2
xp = . (62)

4B1B2(p — 2B1B2)
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B,

0.5 1 1.5 2

Fig. 3. Regions of B1, B2) space whereondition (64)is satisfied are labeled ‘H’ and bounded by solid lines and figure axes.

and is analogous to' in the degenerate 1:2 resonance. However, rather than being the limit of a locus of H and

associated SWHe bifurcations, we find that an SWHo bifurcation is more commonly encountered at this point.
Further consideration of the eigenvalu&8) shows that the H locus emanating fram= 0 may pass through

u = ji. For this we requiré. = 0 andi < 0, or

p—2
63
2 0”2BlB2’ 63)
and
B —2)— By(4B? — 1)(B? — 1

B>

For the case, < 0 andB> > 0, a pair of points satisf{63) on the (single) curve of equilibria provided0 B, <
1/V2. Foro, < 0 andB; < 0, a pair of points on the uppexA{ > 0) of the two curves satisf{63) provided
B1 > 1/V/2.

The condition (64)is somewhat more restrictive, howevEig. 3 shows regions of system parameter space in
which this condition holds, the point8{, B2) = (0.4375 1.2031) and B1, B2) = (0.5974 —0.1149), correspond-
ing to the examples of Sectiodsand 5being indicated by solid dots. In the latter case the H bifurcation curve
emanating fromu = 0 cannot pass through = fi.

4. Example 1: B = 0.4375, B, = 1.2031, 0, = —1

We now give two examples of the degenerate 1:2 and 0:1:2 resonances for specific system paBampeters
This first, representative of the casg = —1 andBy, B> > 0, is taken from our previous study of low-dimensional
models of plane Couette flow in a moderate aspect ratio dofBdirwhere it appeared as a projection of the
Navier-Stokes equations onto empirically obtained modes with spanwise wavenumbers in the ratio (8],2. In
ag represents the amplitude of a mean flow mode @nenda, the amplitudes of streamwise-invariant vortical
modes and their dynamics for these parameter values, particularly the heteroclinic cycles considered if.$ection
explains why streamwise vortices are prominent features in turbulent PCF despite being linearly unstable.
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4.1. Degenerate 1:2 resonance

In this case the 1:2 system parameter values are
e11 = —0.3828 e12 = e21 = —1.0527, ez = —2.8950 (65)

Sinceo,, = —1 and B, > 0, the parabolg45) on which SB bifurcations from PM to MM equilibria occur lies
entirely in theu, > 0 half-plane and, fronf46), its extremum lies in the; < 0, 2 > 0 quadrant. The parabola

of PB bifurcations exists for ajk2, and from(24) also has its extremum in the; < 0, u2 > 0 quadrant. These
curves, as well as similar parabolas of T, H and SWHe bifurcations numerically computed via AUTO, are shown in
Fig. 4.

In accord with the analysis of Secti@ the H bifurcation curve enters the, < 0 half-plane and later turns
around to limit onu = i = (0, —1/e11) = (0, 2.6122); as we move along this curve gadpproaches this point
from the left, the pair of MM equilibria at which H bifurcations occur tend towands £2) ~ (£0.7815 0.4158),
in agreement with the coordinates of the Takens-Bogdanov point givéBl)ycombined with the+’ solution
of (34) (we may exclude the—’ solution since it is negative and therefore cannot sat{4f)). The curve of
equilibria (31) is shown inFig. 5, with the Takens-Bogdanov points indicated. Two loci of T bifurcations from
TW to MTW also leavew = 0; one of these limits o = i; the other enters the; > 0 half-plane and tends to
infinity.

We now consider the behavior of solutiong4) subject to(65) asut1 varies withu, fixed. Asu increases for
w2 € (0, —1/e11), an SB bifurcation is first encountered in which PM equilibria lose stability to MM equilibria;
depending on the value of;, H, SWHe or PB bifurcation sets may be crossed nextuoe 0.5, the sequence is
SB— H — SWHe— PB— T, as shown in the bifurcation diagramfeify. 6. Here MM equilibria are bornin a SB
bifurcation atu; ~ —0.2338; they remain stable unfil; ~ —0.1391 where they undeog H bifurcation to stable
SW solutions. The latter exist over a small range of parameter space, before being destroyed in a SWHe bifurcation at
u1 ~ —0.1329, in which stable heteroclinic cycles appearpAdurther increases, unstable TW solutions are born
in a PB bifurcation aft; ~ —0.1190; these grow in amplitude while the unstable MM equilibria converge on the
originasu1 — 0. The TW gain stabilitym a T bifurcation atc; ~ 0.0854 that produces unstable MTW solutions.
The heteroclinic cycles appear to remain stable yntike 0.177, corresponding to a global bifurcation in which
the MTWSs coalesce with them (d&], §5), although we were unable to follow the MTWs beygngd~ 0.1762.

For higher values ofi, the bifurcation sequence, after the initial SB bifurcation, may be any ef IFB —
SWHe—- T,PB->T—-H—-BP— SWHe—- T, PB-H—-T—-SWHe— TorPB— H— SWHe—T. A
representative example of the first occursdor= 0.9, which yields a bifurcation diagram qualitatively similar to

3.0
M2

PB
SB

2.5

2.0

0.5 . SWHe

0.0

_0'5 T T T T
-025 -020 -015 =-0.10 -0.05 0.00  0.05

Fig. 4. Various bifurcation sets fd@) with e11 = —0.3828 e12 = ¢21 = —1.0527, andey, = —2.8950 featuring symmetry-breaking (SB)
pitchfork, Hopf (H), standing wave heteroclinic (SWHe), parity-breaking (PB) and torus (T) bifurcations. The H, SWHe and T curves are
difficult to distinguish in the upper half of this figure.
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2
9
1 L
0 L
-1r PM, /s
) . . ‘ T
-2 -1 0 1 2

Fig. 5. Phase space (#6) for system paramete(65) atx = fi with sample trajectories. Pdand PM,» denote the pure mode equilibria and
points at which Takens-Bogdanov and parity-breaking bifurcations occur are are lad&lladdx"®, respectively.

that inFig. 6, with the SW solution branch extending further to the right beyond the PB bifurcation point. We do
not show this.

The casei, = 1.0 exemplifies the second of these sequerfeigs?7. Here, after being spawned in a SB bifurcation
atug ~ —0.2241, the stable MM equilibria lose stability in a PB bifurcation to stable TWs at —0.1371, and
subsequently undergo a H bifurcation to unstable SW solutiong, at —0.1345. Meanwhile, the stable TWs
underg a T bifurcation to stable MTWs at; ~ —0.1349. The unstable SW and stable MTWs meet in a branch
point (BP) of periodic orbits at; ~ —0.1315, after which the MTWSs are extinguished and stable SWs remain
until destroyed in a SWHe bifurcation at ~ —0.1310.

Examples of bifurcation diagrams showing the third and fourth sequences listed above may be faédhd in

4.2. 0:1:2 Resonance

We next turn to the full systerf®) with the same system parameters. For reasons given previously, the SB and
PB bifurcation curves are identical to those found in SectidnWe again turn to AUTO to compute the loci of
H, SWHe and T bifurcation sets departing fraum= 0; the results are given iRig. 8. We observe two distinct H
bifurcation branches: one leaves the origin with< 0, 12 > 0 (cf. (22)) and therpasses through u =  into the

0.70 -

A AGH Cycles Stable r"’lii:f\r\"
0.60
0.50 ] A

SB SWHe T

PM

0.10
0.00 : : IELLUN— m
2030 -020 -010 000 010 020

Fig. 6. Bifurcation diagram fof26) with system paramete(65) andu, = 0.5. Here and on subsequent bifurcation diagrams, stable branches
are shown solid and unstable branches dashed. Also, here and on other bifurcation diagrams for the degenerate 1:2 mode.nteraction,

v/ max(ai|? + |az|2), where, for periodic orbits, maj(denotes the maximum value attained over one period.
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1.00
0.90+ AGH cycles stable ' MTW
0.80- ™W
0.70+
0.60
0.50
0.40-
0.304
0.20
0.104

0.00 M , I

T T
-0.30 -0.20 -0.10 0.00 0.10 020 0.30 040

Tram s PM

075
A SWHe

0.70+

AGH cycles stable

0.65+

0604 ... A e PM

T™W

0_4: T T T T T —= Il/l
-0.140 -0.135 -0.130 -0.125 -0.120 -0.115 -0.110

Fig. 7. Bifurcation diagram fof26) with system paramete(§5) andu, = 1.0. Region near PB shown in blow up on lower panel.

w12 > 0 quadrant (and subsequently through the right boundaFygf). A second branch originates at=

and immediately moves into the » > 0 quadrant (and thence through the upper boundafgo®). This accords

with the theory of Sectio8.2 An SWHe bifurcation curve emerges frgm= 0, and an SWHo bifurcation curve
emerges fromu = j1; we were not able to compute a complete locus of these bifurcation sets using AUTO, but
indicate parts of them iRig. 8 We also find an Sh bifurcation curve emerging frare= fi, which almost coincides

with one of the H bifurcation curves: ségg. 8.

3.0 SWHo Sh,H PR
He SB
2.5
1(Re)
2.04
1.5
1.0
SWHo
0.5 .- SWHe
T
0.0 SB
PB
-0.5 T T T T T T M
-0.150 -0.100 —-0.050 0.000 0.050
-0.125 -0.075 -0.025 0.025

Fig. 8. Various bifurcation sets f@2) with By = 0.4375 B> = 1.2031 ands,, = —1 featuring symmetry-breaking (SB) pitchfork, Hopf (H),
standing wave homoclinic (SWHo), standing wave heteroclinic (SWHe), Silnikov (Sh), parity-breaking (PB) and torus (T) bifurcations. The
dashed lingi(Re) corresponds to changing the Reynolds nunein a model in[3]; see(66).
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For u2 € (0, 1.0), the bifurcation sequence ag is increased from negative to positive values is very similar
to that discussed in Sectiehl We thus concentrate qp € (1.0, 2.6122) and, in particular, the range in which
the sequence is PB> T — H. The dashed curve iRig. 8 provides a representative path through this region. As
described irf14], it corresponds to monotonic increase of Reynolds nunieen the 0:1:2 three-mode reduction
of plane Couette flow in a moderate aspect ratio dorf@inThe formula for this curve is given by

(0.0323Re — 12.0680)

Re) =
Ha(Re) 114349 ’ 66
(re) . (01062 —159763) (66)
pHaARe) = 114349

In Fig. 9 we join the stable MM branch to the left of its encounter with PBRrat~ 33953, where it loses
stability to TW solutions. A Hopf bifurcation subsequently occur®ats 339.82, producing SW solutions, and
the MM equilibria converge on the origin &e ~ 37361 as theu(Re) path inFig. 8 crosses the.; = 0 axis.
Meanwhile the TW solutions remain stable uid ~ 341, where MTW solutions appear; these remain stable until
Re ~ 354.82, at which point a PD bifurcation occurs. The resulting period-doubled MTW solutions enjoy a brief
region of stability untilRe ~ 357.56, where another PD bifurcation occurs (nhot showifrign 8). The resulting
period-doubled solutions lose stability At ~ 357.93; beyond this point all TW, MTW solutions and period-
doubled variants are unstable. The unstable SW solutions arising in the H bifurcakerra839.82 undergo T
and PD bifurcations ake = 35164 and 352.59, respectively. Neither of the resulting (unstable) branches are shown
in Fig. 8 The unstable SW solutions disappear altogeth@eat 366.24, when the SWHo line dfig. 8is crossed.

Atthe end of Sectio3.1we argued that structurally stable heteroclinic cycles of AGH [g2benust also occur for
the 0:1:2 system (cFig. 2); we now show projections of an example of this heteroclinic cycle, found at parameters
(66)for Re = 400, inFig. 10 (Note that ther; = 0 line is attracting despite the positive valugf) In addition to
AGH cycles, there exist nedte = 347 (Whereu; ~ —0.0752 andus ~ 1.8257) heteroclinic cycles of a type not
previously seen. Their connecting orbits pass very close to the (unstablgebiMibrium in the real subspa¢43)
en route from the Pilequilibrium to the PM,> equilibrium and then, during the return-path, close to MFig.
11 An exact connection between the PM and MM fixed points is codimension two, since it requires coincidence
of the one-dimensional unstable manifold of the PM solution with the one-dimensional stable manifold of the MM
solution within the three-dimensional real subspace. There is no obvious reason why an approximate connectior
should occur for the cut through parameter space corresponding to the plane Couette flow model. However, suck
heteroclinic cycles cannot occurin the 1:2 system since the MM solutions would have an unstable complex conjugate

New AGH
Cycles Cycles
Stable Stable

-

1.70 —
4 - PM SW

1.60 Pos L aTw

Iy

1.50
1.40
1.30 +

1.20 + L TW

1.10

PN
1.00 ik Re

1 1 1 1\11\1 1
300. 310. 320. 330. 340. 350. 360.

Fig. 9. Partial bifurcation diagram ¢2) following the pathu(Re) given by(66)with system paramete(65). Here and on subsequent bifurcation
diagrams for the 0:1:2 mode interactiof,= \/max0a0|2 + |a1|? + |az|?).
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0.6
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PMoen/a

05 1 15 2 25 @0

To o 1.5

0.5 PMo 0.5

-0.5 PM,/, -0.5

G  _q5 T
05 1 15 2 25 208 -06 -04 -02 0

Fig. 10. Projections of the AGH type heteroclinic cycle #M PM,> — PMp at (11, 12, B1, B2) = (0.0745 2.318 0.4375 1.2031) (i.e.
Re = 400). For these parameter values there are no MM equilibria to disrupt the cycle.

MM, /5 PMo,r/2

0.5 1 15 2 M

MM

Fig. 11. Projections of the new heteroclinic cycle PM MM — PM;/2 — MM /> — PMg co-existing with a stable SW solution (dotted)
at (w1, u2, B, B2) = (—0.0752 1.8257, 0.4375 1.2031) (i.e.Re = 347). This figure strongly suggests that the heteroclinic cycle (solid) passes
through the two SW periodic orbits near Myand MM, (dotted) in the invariant real subspace.
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Fig. 12. Projections of the chaotic heteroclinic cycle PM> MMy, — PMy, — MMy, — PMy, at  (u1, u2, B1, B2) =
(—0.078Q 1.8163 0.4375 1.2031) (i.e.Re = 346).

pair of eigenvalues in the two-dimensional real subspaceHRggell), leaving no possible stable direction for a
trajectory from a PM solution to come in along.

Fig. 11also reveals that a stable heteroclinic connection can co-exist with stable SW solutions, shown as dotted
loops near MM and MM, . These SW orbits apparently nontrivially link the heteroclinic cycle in the (three-
dimensional) real subspace.

For Re = 346, whereu1 ~ —0.0780 andu2 ~ 1.8163, a cycle similar to that shown kig. 11is found, but the
visits to the MM equilibria are more complicated. Indeed, this appears to be a chaotic heteroclinic cyElg; see
12. Here successive visits to MM solutions occur in a chaotic fashion, as shown in the left p&igel B8 unlike
the successive visits fake = 347 which are always to one of four MM solutions relatedd)® rotations in the
(x1, y1) plane, as shown in the right panelffy. 13

We conclude this section by examining a horizontal pagipat 2.9, intersecting the; = 0 axis abovexw = i,
the bifurcation diagram for which appearshig. 14 As deduced in Sectio®.1, the MM equilibria in the right

n n
+HHTH++
05 05 A iy
+ +
+F e
i E
0 of -+ i
% ra
+ &
i, A
- - + ¥
0.5 +++++++ o 0.5 +++++ _+++++
05 0 05 A1 ~05 0 05 “1

Fig. 13. Trajectory for solution shown in (leffig. 12and (right)Fig. 11, with longer integration time. The-'s show the circle of MM fixed
points. In the left panel, successive visits to MM solutions occur in a chaotic fashion. In the right panel, the successive visits are always to one
of four MM solutions related byt/2 rotations in thexi, y1) plane.
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Fig. 14. Partial bifurcation diagram ¢2) with system paramete(65) andu, = 2.9.

half-plane exist outside the parabd#b). These unstable MM equilibria bifurcate from the originaspasses
through zero and eventually disappear in a SB bifurcationiat 0.0537. Along the way, they undergo two H
bifurcations atu1 = 0.0246 and 0.0421. The SW solution emerging from the former bifurcation disappears in an
apparent Sh bifurcation at; = 0.0236, while the SW solutions emerging from the latter disappear in a SWHo
bifurcation atu; = 0.0144. The two H bifurcations are separated by a PB bifurcatiom at 0.0400, in which

TW solutions are generated. These have four unstable eigenvalues, but two cross into the left half-plane at the T
bifurcation atu; = 0.0494, and two more at the T bifurcationat = 0.8800 (not shown), giving stability of the

TW solutions for highep:1 values. At the latter T bifurcation, the MTW solutions bifurcate to smaller values of

u1, and are stable until undergoing their own T bifurcatiopat= 0.4969 (not shown). The MTW which emerge

from the T bifurcation ajt1 = 0.0494 undergo various bifurcations, but always remain unstable.

5. Example 2: By = 0.5974, B, = —0.1149, 0, = —1

Our second example of the degenerate 1:2 and 0:1:2 resonances, representative obihe-cadeandB; >
0, B2 < 0, is also taken from a low-dimensional plane Couette flow model, but in this case in a minimal flow unit
[4]. Here dynamical structures such as travelling and standing waves that are present in a somewhat larger model
(but which are similar to those considered811) account for the streak breakdown/reformation cycle in this flow.
This parallels the discovery of structurally stable heteroclinic cycles in the five-mode boundary layer mglels in
and their subsequent elucidation in the simpler 1:2 resonari@é. in

5.1. Degenerate 1:2 resonance

We now study(26) for the particular case
e11 = —0.7138 e12 = ep1 = 0.1373 e2o = —0.0264 (67)

As in Section4.1, we first find parabolae of SB and PB bifurcations. Siage= —1 and B> < 0 the former is
confined to the:» > 0 half-plane andg46) indicates that its extremum lies in thg > > 0 quadrant; fron{44) we
see that the MM equilibria exist inside the parabolaifger< 0 and outside the parabola fei > 0. The inequality
B1 > —B»/2 is satisfied for this case and &0) indicates that the locus of PB bifurcations has its extremum in
the u1 < 0, u2 > 0 quadrant. Finally, sinceg = sign(B1B2) < 0, the line along which the MM equilibria are
undefinedioes intersect the region in which these equilibria exist, as indicated by ‘MMx' in Fig. 15

We use AUTO to compute loci of H, T and SWHe bifurcations, all of which are indicat&iginl5 Again, in
accord with the theory of Sectidh2, we see that the H bifurcation curve enters the< 0 half-plane and limits
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p SB PB
1.5 MM — o0 it
MM — o
1.0 -
05
SB SWHe{{ H
0.0
-05 PB th

20 45 -10 05 00 05 10 15 20

Fig. 15. Various bifurcation sets f@d) at with e11 = —0.7138 e12 = e21 = 0.1373 andeyz = —0.0264 featuring symmetry-breaking (SB)
pitchfork, Hopf (H), standing wave heteroclinic (SWHe), parity-breaking (PB) and torus (T) bifurcations.

on i = (0, —1/e11) = (0, 1.400). The degenerate equilibria and some sample trajectories in parameter space are
shown inFig. 16 note the two branches of equilibria, singgog > 0. We find that the locus of SWHe bifurcations

lies entirelyoutside that of the H bifurcations, while the locus of T bifurcations extends fromutie 0 point into

the1 > 0 half-plane.

The situation here is clearly much simpler than in Seclah as i1 increases from (moderate) negative to
positive values for € (0, i), the only bifurcation sequence observed is SWé — PB— T — SB, possibly
preceded by a further SB. A bifurcation diagram fgr = 0.2 is shown inFig. 17. The MM equilibria, born in a
SB bifurcation atu; ~ —3.7945, lose stability in a subcritical H bifurcation @t ~ —0.5909. Between this and
the SWHe bifurcation at; ~ —0.6234 there exists an unstable SW solution, whose stable manifold divides the
basins of attraction of the stable MM and RMequilibria. Unstable TW solutions bifurcate from the unstable MM
equilibria atiug ~ —0.0880, and later gain stabilityjia T bifurcation afx; ~ 0.1202, at which the stable MTW
solutions disappear. Stable heteroclinic cycles of AGH f#jeexist in the regionu; € (—0.61, —0.05); for the
lowest values ofi1 in this range the stable cycles co-exist with stable MM equilibria.

We close with a brief comment on the cage< 0. Here the trivial state is the unique global attractonfor< 0O;
moving into thew; > 0 half-plane, the mixed-mode equilibria bifurcate fraam= 0 point and remain stable until
bifurcating to travelling waves as the PB curverad. 15is crossed.

-15 s L L L s L L
-8 -6 -4 -2 0 2 4 6 8

Fig. 16. Phase space (#26) for system paramete($7) at « = 1 with sample trajectories. The nearly-coincident pure mode equilibria and
Takens-Bogdanov points are labelled PM and TB, respectively. Compare this figure, foroyhigh- 0, with Fig. 5whereos, 0 < 0.
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Fig. 17. Bifurcation diagram fo{26) with parameters set according (&) for fixed 2 = 0.2.
5.2. 0:1:2 Resonance

We next turn to the full systeif2) with system paramete(87), for which the curves of SB and PB bifurcations,
as well as that along which the MM equilibria diverge to infinity, coincide with those found in Segtion

We again turn to AUTO to numerically compute the locus of H, SWHe and T bifurcations departing from the
u = 0 point, finding that the H bifurcation curve appears to diverge to infinity in the left half-plane and, in particular,
doesnor pass throughe = fi, in accord with the theory of Sectiéh2 The locus of SWHe bifurcations, computed
with AUTO, are found to lie between the loci of SB and H bifurcations. The bifurcation sequence with fixed
wu2 € (0, —1/e11) andus increasing through negative valuesitg = 0 is thus expected to be the same as found in
the degenerate 1:2 resonance. Inghe> 0 half-plane, however the picture differs somewhat from that of Section
5.1 Here it appears that most horizontal cuts thro&gh 18do not intersect the T bifurcation locus (at least for
moderatgs1) and hence TW solutions appear to be the final limiting state.

For horizontal cuts withu, set to a fixed value greater tharl/e;1, the branch of H bifurcations which depart
the . = 1 point is encountered, along with an associated SWHo bifurcation set.

We indicate by a dashed linelig. 18the path followed through parameter space as the Reynolds numRer,
is monotonically increased in a 0:1:2 three-mode reduction of plane Couette flow in the minimal flg4] uNid
interesting bifurcations are encounteredrads increased from zero, the only qualitative change being the birth of
MM solutions from the origin as the line crosses the= 0 axis (atRe = 76.70). The lack of interesting dynamics
at these parameter values illustrates why the 0:1:2 mode interaction alone is an unsatisfactory model; however, the

3, SWHo H
12 PB
2.1 T
1.4 MM — oc
0.
T
-1.
—2. PB
-3. T -.ul\“-l &

220 -15 -1.0 -05 00 05 10 15 20

Fig. 18. Various bifurcation sets f¢2) with B; = 0.5974 B, = —0.1149 ands,, = —1 featuring symmetry-breaking (SB) pitchfork, Hopf

(H), standing wave heteroclinic (SWHe), standing wave homoclinic (SWHo), parity-breaking (PB) and torus (T) bifurcations. The dashed line
u(Re) corresponds to changing the Reynolds numReim the model obtained by restricting to the 0:1:2 modeptjn The equation for this

line is 11(Re) = (0.1281Re — 9.8256)/10.7603 2(Re) = (—0.0503Re — 21.8841)/10.7603.
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addition of a few more modes to the basic 0:1:2 system leads to interesting, physically-relevant dynamical behavior
similar to that of the 0:1:2 resonance at somewhat different parameter {éJues

6. Example 3: Perturbations from p9 12 =0

At the outset of this paper, we rescaldd under the assumption of finijey. We now discard this assumption,
and consider the 0:1:2 resonance as a problem with three (small) bifurcation parametersand o, allowing
us to perturb from a (partially) integrable case. Throughout this section we restrict to the real subgphestiof
¢ scaled out, and hence consider analogues of the first, second and fourth equafneitbf ..o written for o,
(andy1 2 = 0). We focus on the cas®; > 0 > By, for which an interesting family of periodic orbits are born in a
‘Silnikov’ homoclinic bifurcation[12].

Foru; = 0 the ‘energy’ function(3), which defines a family of ellipsoids in phase space, remains constant; for
w; # 0, we have

E = j10a3 + 2u1x3 + 2jupx3. (68)

It will be convenient to define a new variabtg %' a/+/2 and system parameteBs » dzef\/iquz so that the level
sets ofE become geometrical spherEs= Zz% + xf + x%, and the (real) ODEs take the form

o = podo + Elx% + 792)6%,
x1 = (u1 — B1do)x1 + x1x2, (69)
X2 = (u2 — Boag)xp — x2.

Foru; = 0 the fixed points of (69) include two equilibria on thgaxis at

(do, x1, x2) = (£VE, 0, 0), (70)
with eigenvalues
A =0, FB1VE and F BoVE. (71)

For B, < 0 < By, these are saddles; those with positive (resp., negativieiving their stable eigenspaces in the
x1 (resp.,x2) direction and unstable eigenspaces inithéresp.,x1) direction. There are also four MM equilibria
at the points

(@o. x1, x2) = (ao, £/ — B1Bado, B1do), (72)

where
E
o= 4| e (73)
1+ B1(B1 — B)
the eigenvalues at these points are
~ E - — — - -
A=0, (“02 2) (1:& \/1+ 8(B1/Ba+ B3/B, — B{)) . (74)

The radical in(74) may be positive for some choices 8f and B, but is negative for allB, < 0 provided

B1 > 1/24/2. SinceB, is assumed negative, the real part of the nontrivial eigenvalues will share the sign of ~
Thus, withB; > 1/2v/2 Eq.(69) with to,1.2 = 0 has two spiral sources in tlag > 0 half-space, and two spiral
sinks in thedp < 0 half-space, on each invariant sphere.
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In terms of the spherical polar coordinate representation
ap = r C0S0H, X1 =r Sin 6 CoS g, X2 =r Sin 6 sin ¢, (75)
(where we restrict to [0, ] and ¢ to [0, 2r)) (69) becomes
= (no o 0 + (1 cof ¢ + uap SiN? @) sin? O)r,
6 = sin O](u1 cof ¢ + o Si? ¢ — o) cosé — r(By cof ¢ + By sin? ¢)], (76)
@ = (u2 — 1 + (B1 — Bo)r cosé)sin ¢ cosg — r sin 6 cosg.
As expected, settingo 1.2 = 0 yields trivial radial dynamics = 0 and thus an invariant sphere= v/E, while the

angular variables reveal that fixed points lie@t{) = (mn/2, nx) for any integersn = 0, 1, 2, 3andn = 0, 1 and
at (p, 0) such that

tang = %4/ —Bl/Bz, tanf = 41/ 31(31 — Bz) 77

These latter conditions yield four equilibria, at
(0.0)=(@.0), (T-¢.0), @+p7—0) and (r—g¢,7—6), (78)

where

¢ = arctan/—B1/B, and 6= arctan/B1(B1 — Bo). (79)

For the system parameteBs = 0.5974 B, = —0.1149 of Sectiorb, ¢ ~ 1.1575 andh ~ 0.9106. The phase
space of 76)for this case (at = 1) is shown irFig. 19 The fixed point¢70)at the north and south poles are blown
up to invariant circles & = 0, 7, and the four equilibrig78) appear as spiral sinks and sources above and below
the equatod = /2. Almost every initial condition is attracted to one of the sinks.

We now consider how this picture changes as the bifurcation parameters are perturbed away from zero. First,
for the special casgo,1,2 = u, the first equation of76) decouples as = ur. In thedp, x1, x2 coordinates, this
implies a solution 0{69) of the form

(o, x1, x2) = (Go(0)e"", £/ —B1 B2 éio(0)e", Brio(0)e™), (80)

on the invariant radial lines; = v/ —B1 B2 do, x2 = By do. Moreover, the terms involving ; in the second and
third equations of76)vanish identically, so that thie ¢ dynamics remain as irig. 19while solutions move radially

according tq80). No mixed modes exist in this case.

v
)
\,,,/

- -

3
3n/2 0¥

Fig. 19. Flow of the syster{v6) onr = const. withi.; = 0.
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For general; # 0 we may computepproximate invariant lines by substituting the ansatz

x1 =%V -B1By(Go+a1) and x2 = By (Go + a2) (81)

into (69) and equating coefficients afand ¢o)° (constant) (those cn‘gvanish identically, as above). This yields
two pairs of equations:

O(ao) : 1+ Brop = po+ 2B2Bo(az — a1), 12 — Boop + 2Boay = o + 2B2 Bo(ar2 — 1),

- o - o 82
O) : (u1 + Brag)ag = B%Bz(a% — a%) 202 + Bza% = B%Bz(oz% - a%). (82)

These four equations can only be satisfied for the special chgiee 1 as above (whence; = 0), but the first
pair admits the solution

= (u1 — M2~)(21~91~1~92 —-1) (u1 — 1o)(B1 + Bo)
2Bo[B1(B2 — B1) — 1] = 2B2[B%(B2 — B1) — Ba]’
O ks AR
B2(B, — B1) — B1

(83)

for arbitraryp ;. Choosingy; thus, we balance the linear and quadratic terms, implying that, for léggehe affine
linear subspacd81) are increasingly good approximations to the distinguished solution cur¢@g)xthat perturb
from the lines(80) for 1 ; # 0.

The mixed mode§d3) discussed in SectioB.1 may be written as

’ ’ T 84
o+ B1B 1o+ B1B o+ B1B (84)

. piB  Ev/—poma(ponz + BY)  —popa

(@o, x1, x2) = - - ,
whereB = M21~91~— w1Bo. These fiz<ed points exist only forou1(pnop2 + B2) < 0 and they bifurcate from the
pure modesifz/ B2, 0, £./—unou2/B2), at

BZ

, (85)
2

mo =
which, under the redefinitiop ; — 1 /|10l employed above, coincides wid5). Whenuo — 0 they collapse
onto the (invariantyg-axis atap = w1/ B1, which is filled with fixed points at.o = 0. Similarly, thecondition (47)
at which the mixed modes reach infinity becomes

Ho = —B]_B. (86)

As ;g — — B1 B, the ratiogx1 /do| and|x2/ao| in (84)approach,/— B1 B, andB1 as required by the approximation
(81).

It is easiest to describe the mixed modesugsvaries for fixedu1, uz. There are several cases, depending
on the signs ofi1, 1o and B. We shall focus on those fqr; > 0 > u» (with B> < 0 < B; as already noted).
From (84)—(86) the mixed modes depart from the pure modes and move towards infinitygyith > O for ug €
(—B?/u2, —B1B), and return from infinity withug, x» < O for 1o > —B1B, and approach (Qk./—/i1/i2, —jt1)
as |uo| — oo. Far from the origin, stability properties transverse to the (approximate) invariant(Bi¢sire
determined by the dynamics on the invariant sphereg o= 0; hence, the mixed modes are unstable transverse
to (81) approachingig, x> = +00, and stable transverse (81) as they reappear froay, x2 = —oo. Along the
invariant lines stability is determined by the sign of theg()-dependent coefficient of the first (radial) equation of
(76). Substituting th&(agp) terms of(81)into the polar coordinate transformatifb), we find that this is dominated
for larger by sign(wo + B1B). We conclude that the MM equilibria are saddle points with two-dimensional unstable
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0 /2 37/2 2

Fig. 20. Periodic orbit with bifurcation parameters1 2 = (0.01, 0.02, —0.02) and system parameté®s = 0.5974 B, = —0.1149, projected
onto the ¢, ¢) plane superimposed upon the trajectorieBigt 19(dotted). See the text for a discussion of phases I-VII.

and one-dimensional stable (two-dimensional stable and one-dimensional unstable) manifpdgls<ferB, B
(no > —B1B), respectively.

For o > —B1 B and sufficiently close to this value, the mixed mode saddle points are of ‘dissipative’ type, their
positive real eigenvalues being smaller than the magnitude of the negative real parts of their complex conjugate pair.
These fixed points are involved in a homoclinic bifurcation of Silnikov tf#g, in which a family of remarkable
periodic orbits is created. These were first found in numerical simulations, but they may be largely understood
by reference to the behavior of solutions (6P) on the invariant plané® = {(ao, x1, x2) | x1 = 0}, along the

approximately-invariant lines and, for large= 1/&% + x% +x§, near the approximately-invariant spheres. The

orbits display seven distinct phases, denoted |I-VII, and an example is sh&igsir20 and 21Due to reflection
symmetryx; — —x1 aboutP, it suffices to consider only; > O.

107
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Fig. 21. Various projections of periodic orbit withy 12 = (0.01, 0.02, —0.02) andB; = 0.5974 B, = —0.1149.
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First note that solutions starting neBrremain nearP for finite times, approaching it when the transverse
dynamics governed by the second componer(66j is attractive, i.e. in the regionug — Bidg + x2) < 0. The
dynamics or is topologically equivalent to that picturedfig. 1 with time reversed, since the signs qQio (or o),
w2 and By in the present case are all opposite to the corresponding parameter skigslinHence, all solutions
starting sufficiently close t® (excepting those on stable manifolds of the mixed modes), eventually enter the half
spaceiy < 0 and approach the negativg-axis. Here the quantity{i — B1dg + x2) becomes positive, and $oy|
begins to grow until the solution leaves the neighborhoo®.of his occurs explosively, since along the negative
ap-axis we haveug(t) = ao(0) exp(ot), and using this in the linearized flow transversé{ave obtain

x1 = (1 — Bado(t))x1 =

10()

x1(t) = x1(0) exp| par — exp(uor)| » 87)

————(exp(uot) — 1)} ~ exp {u ;- B o9

"o
and the second (superexponentlal) factor in the first exponent is positivg(fr< 0. Flow near the positive
ap-axis, circulating with|xz| growing and shrinking, and along the negatiyeakis forms phases I-lll, and the
superexponential explosi@B7) initiates phase IV.

Oncelx1| is O(1), x2 grows again by virtue of thexf term in the third equation 69), all three components
increase and the quadratic terms dominate, so that the orbit tracks the flow,of 1@ system on an invariant
sphere, spiraling towards one of the (stable) foci wigh, < 0 in phase VFig. 20 It is now close to an attracting
(approximate) invariant line, and will either escape to infinity or approach a neighborhdddlohg that line,
depending upon the flow direction at the point of initial approach. If the mixed mode saddle lies ‘outside’ this point,
or lies in the regiomg, x2 > 0, the dynamics returns the solutiorfRan phases VI and VII, the latter occuring close
to P where linear terms dominate andi(— B1do + x2) < 0. This completes the periodic cycle; which however
can be rather rich, since neBiiseveral circuits ‘around’ the pure mode RMmay occur if the returning orbit lands
near PM,/> (the case oFigs. 20 and 2has only a single circuit).

The above argument suggests only that there is an attracting set in the neighborhood of a closed curve that follows
the route I-VII, but we may prove that this set exists, and that it is a stable periodic orbit, by appeal to a version of
the Silnikov theorem appropriate to a dissipative spiral saddle for the eigenvalue conditions notedXdjppe (

583, Fig. 4.8.26) anfll6], cf. (12], Theorem 6.5.1).

It remains then to verify that, for at least one parameter valgie- 0, the incoming branches of the unstable
manifold(s) of the mixed mode(s) Md/,2, which follow the approximately-invariant ling81) in towardsP,
return to MMy /2. We first note that the flow o (Fig. 1with time reversed) implies that only solutions lying in
the stable manifolds of the pure modes can limifofior 11 > 0 the stable manifold of the origin lies 7). Thus,
while codimension two heteroclinic bifurcations:y occur in whichW"(MM g /2) limit on PMg or PM,», as one
variesg with all other parameters fixed these will generically not be encountered.

We next observe that, ag increases in the range@lB, 00), MMg /> move monotonically inward along the
lines, carrying their (local) stable manifol#S(MMg -/2) with them. At largelr|, WS(MMg z/2) remains close to
the invariant spheres; consequently solutions departing#amany bounded neighborhood of the origin, including
solutions iINWY(MM g /2), lie ‘inside’ W3(MM g /2) for o larger than, but sufficiently close toB1B.

In contrast, we will show that the estimgi&7) implies that, ag.g increases, the point on the negatixeakis
at whichWY(MMy /2) explodes away frorf® moves monotonically out towardg = —oc. Indeed, eliminating
from the linearized; anddp equations of69) and writing the initial values of; andag asx10 andago, respectively,
we have:

dag  wixr Bia ao
—= = - = |x1| = |x10| |z—
aoo

dio  pmodo o

“1 ~
m Bl . .
* exp [—1(610 - aoo)] : (88)
140

For 1, B1 > 0 and ¢ — @oo) < O fixed, both the second and third factors in this expression decreasd a)
increases, so if we can show theto|, the distance fror® at whichw"(MMg ,/») first becomes close to the negative
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do-axis, also decreases ag increases, our claim will follow. The points~of first encounte®f(MMg »/2) with
P may be estimated froif81) by settingx; = 0 to obtaindg ~ —oz1, x2 ~ Bi(a2 — a1), with «; given in(83).

Bi+ B B, - B
i} ~uzo(~ 1+ 2) 1 const, — /fo(~1 ~2)
2B[B{(B2 — B1) — B1] 2Bo[B1(B2 — B1) — 1]

(@o, x2) ~ ( + const) , (89)

where the constant terms depend upangco, B1, B> but are independent ofy. This implies that, agg increases,
the approximate ‘landing points’ icp < 0 move along a line

_ By(B1—B)). _1
(Bl+ 2'}2) ao + O(MO ), (90)

thus approaching thg-axis, and the increase jip contributes to take solutions further from the origin as they track
the circles in which the invariant sphere intersget3 he time spent in phases | and Il whegg (— B1dg + x2) < 0
and? is attractive is therefore increased, effectively reducing the vallie,gff appropriate for the estima(g&s).
Consequently, for sufficiently largey > —B1 B, WY (MM /2) leavesP ‘outside’ W3(MM g x/2).

It follows from continuous dependence of solutions on parameters that there is at leagfonghich attracting
homoclinic cycles to MM /> exist, and the (modified) Silnikov result implies that there exist stable periodic orbits
near this value. For example, for; = 0.02, u2 = —0.02, B1 = 0.5974, andB; = —0.1149 (as considered in
Section5) such that- B1 B = 0.01153, the homoclinic orbit occurs ap ~ 0.01181. Here the eigenvalues of the
MM are 0000156 and-0.08332+ 0.73736i. The unique stable periodic orbit associated with this homoclinic orbit
can be followed to lower values ofy, as inFig. 21

While we appeal to theig 12 — O limit in accounting for the behavior of these periodic orbits in terms of
solutions on invariant spheres, the parameter-rescaling symraetny ( t) — (xa;, o, t/o) noted in Sectiorl
implies that any solution found (perturbatively) for small has an ‘expanded’ counterpart for large. Hence
these orbits (and, indeed, all others) exist in an unbounded sector of parameter space. We note that these periodic
orbits, which lie in the real subspace, appear to be stable and attracting for general initial conditions in the full
5-dimensional phase space: all solutions appear to eventually relax on a rotation of the real subspace, and approact
one of the pair of periodic orbits therein. Analogous periodic orbits are not possible for the related 1:2 system, since
they clearly require theg direction (sed-ig. 21).

7. Conclusions

In this paper we studied a five- (real) dimensional quadratic system originally derived though projection of the
Navier-Stokes equations onto a subspace of three Fourier modes of wavenumbers 0,[3,4hdth@ relevant to
more general three-wave interactions in systems with O(2) symmetry. In addition to this symmetry, the equations
have a rather special structure: their homogeneous quadratic terms preserve an energy-like function, and they
exhibit a scaling ‘parameter symmetry.” Two limits are notable: when the three bifurcation parameters vanish, the
conservative system preserves a family of invariant spheres, and when two of the parametes} &re small
relative to the third £o), the (fast) 0-mode equation may be removed and the system collapsed to a degenerate case
of the 1:2 resonance studied[R2] and[11].

We re-examined the 1:2 resonance and shed some light on the previously unstudied degenerate case. In additior
to all the solution types described[ih,2,11] we found a parameter valug) at which loci of symmetry-breaking,
parity-breaking and Hopf bifurcations pass through ghe= 0 axis. This organizing center corresponds to a de-
generate Takens-Bogdanov bifurcation point contained in either a closed curve, or two open arcs, of equilibria,
depending upon the signs of the system parameters.

We used the 1:2 analysis as a stepping stone to the problem of the 0:1:2 three-wave resonance. Most notably, this
system possesses analogues of the structurally stable heteroclinic cyi@dpsainecting pure modes, as well as
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new cycles involving transits among both pure and mixed modes. We then considered the 1:2 and 0:1:2 resonanc
problems for two particular cases of system parameters typifying these new behaviors. We found significant dif-
ferences between the 1:2 and 0:1:2 systems for the same parameter values, and were able to explain some of the
differences. For example, the presence or absence of an additional locus of Hopf bifurcations emanatinia from ~
the 0:1:2 case depends only on the system parameter vadigeS,(Eqs.(63) and (64). We also found a class of
‘strange’ periodic orbits that exist over a relatively large bifurcation and system parameter region, whose existence
we prove by appeal to Silnikov bifurcation theory, and whose structure we interpret via the conservative limit.
While we have studied only the quadratic syst@irhere, we expect that many of the phenomena described will
persistlocally, neat; = Ofor sufficiently small |11 j|, for O(2)-equivariant systems with cubic and higher order terms
that continue to preserve an ‘energy like’ integral analogoy8xaOf course, the parameter-rescaling symmetry
(aj, wj, 1) — (caj, apj, t/a) will no longer hold, but hyperbolic sets and codimension one and two bifurcations
will continue to occuf12].
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