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Abstract

We study the quadratic normal form describing the generic interaction of Fourier modes of wavenumbers 0, 1 and 2 under the
symmetry group O(2) of rotations and reflections, in the case that the homogeneous quadratic terms preserve ‘energy’: the sum
of the squares of absolute values of the (complex) variables. This system is a generalization of the 1:2 mode interaction studied
by Dangelmayr [G. Dangelmayr, Steady-state mode interactions in the presence of O(2)-symmetry, Dyn. Stab. Syst. 1 (2) (1986)
159–185], Armbruster et al. [D. Armbruster, J. Guckenheimer, P. Holmes, Heteroclinic cycles and modulated travelling waves in
systems with O(2) symmetry, Physica D 29 (1988) 257–282] and others, and its restriction to the 1:2 subspace is a degenerate case
of that system. It displays all the classes of fixed points, periodic orbits (standing and travelling waves), invariant tori (modulated
travelling waves) and heteroclinic cycles found in the 1:2 interaction, as well as new heteroclinic cycles connecting pure and
mixed modes, chaotic cycles, and ‘strange’ periodic orbits. We describe the key dynamical features, show that the degenerate
1:2 case possesses a second organizing center at which bifurcation curves coalesce, provide representative bifurcation sets and
diagrams for the 1:2 and 0:1:2 systems, and use a conservative limit to understand the periodic orbits in the latter system.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the normal form, truncated at quadratic order, for the 0:1:2 spatial resonance in the
presence of O(2) symmetry near a codimension three bifurcation point. The state variablesaj, j = 0, 1, 2 represent
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the amplitudes of Fourier modes having wavenumbers 0,k and 2k; thus, assuming a real physical field,a1,2 are
complex variables anda0 is real. We further restrict our study to the special, but physically important, case in
which the homogeneous quadratic terms preserve a norm corresponding, for example, to kinetic energy of a fluid.
Indeed, the following system arose in our studies of low-dimensional models of plane Couette flow[3,4], and this
provided our initial motivation. This three-way interaction also appears to play an important role in another recent
fluid study, of counter-rotating swirling flow, which has bifurcation behavior which cannot be fully explained by
the 1:2 resonance[5].

The 0:1:2 system at once generalizes, and, in a limiting form, represents a special degenerate case of, the 1:2 spatial
resonance studied by Dangelmayr[1] and Armbruster et al.[2], hereafter referred to as AGH. This system, which was
simultaneously and independently investigated by Jones and Proctor[6,7], provided the first analytically-tractable
example of structurally stable heteroclinic cycles, which had also been identified slightly earlier in a model of the
boundary layer[8]. Such cycles were subsequently found in numerous fluid and other contexts: for a particularly
clear recent example, see Mercader et al.[9].

Structurally stable heteroclinic cycles and the periodic and quasiperiodic orbits that are associated with them are
physically important since they provide a robust mechanism by which unstable transients can repeatedly occur in
dynamical problems. In turbulent and preturbulent fluid flows the parts of these cycles near saddle points correspond
to coherent structures: organized vortical and shear layer structures that appear, evolve, disappear and reappear
cyclically but not generally periodically[10]. Also see the introductory remarks in Sections4 and 5.

In this paper we show how the bifurcation sets of the 0:1:2 and the 1:2 resonances are related, and describe phe-
nomena not present in the 1:2 case, including ‘multi-heteroclinic’ cycles and strange periodic orbits. The equations
for the 0:1:2 resonance may be written in the form:

ȧ0 = µ0a0 + 2(B1|a1|2 + B2|a2|2),

ȧ1 = (µ1 − B1a0)a1 + ca∗
1a2,

ȧ2 = (µ2 − B2a0)a2 − ca2
1,

(1)

wherea0 ∈ R anda1,2 ∈ C and the parametersµj, Bj, c are real. For finiteµ0, we may removec andµ0 by rescaling
the system viat �→ |µ0|t, a0,1,2 �→ (c/|µ0|)a0,1,2, µ1,2 �→ µ1,2/|µ0|, B1,2 �→ B1,2/c to arrive at the simpler form:

ȧ0 = σµa0 + 2(B1|a1|2 + B2|a2|2),

ȧ1 = (µ1 − B1a0)a1 + a∗
1a2,

ȧ2 = (µ2 − B2a0)a2 − a2
1,

(2)

whereσµ
def= sign(µ0) = ±1. We note that the parameter-rescaling symmetry (aj, µj, t) �→ (αaj, αµj, t/α) leaves

(1) invariant, and thus it is onlyB1,2 and theratios µ1,2/|µ0| that determine the system’s qualitative behavior. In
Section6 we shall relax the assumption of nonzeroµ0 and we shall use the fact, noted above, that forµj = 0, (1)
preserves the ‘energy’ norm

E = a2
0

2
+ |a1|2 + |a2|2. (3)

We treatµ1,2 as bifurcation parameters (withµ
def= (µ1, µ2) denoting points in parameter space) andB1,2 as system

parameters. Allowing time reversal, we need only consider the two ‘system cases’B1,2 > 0 andB2 < 0 < B1. It is
noteworthy that both cases occur in low-dimensional models of plane Couette flow, the former in a moderate aspect
ratio domain[3] and the latter in the minimal flow unit[4], the smallest domain able to sustain turbulence. We shall
adopt parameter values derived in these papers for illustrative computations below.
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The 0:1:2 resonance is related to a special case of the 1:2 resonance:

ȧ1 = a∗
1a2 + (µ1 + e11|a1|2 + e12|a2|2)a1,

ȧ2 = −a2
1 + (µ2 + e21|a1|2 + e22|a2|2)a2,

(4)

studied in AGH[2], cf. [6,7,11]and references therein. The systems(2) and (4)will be compared in subsequent
sections of this paper, in the course of which we shall use the real Cartesian and polar forms of(2):

ȧ0 = σµa0 + 2(B1r
2
1 + B2r

2
2),

ẋ1 = (µ1 − B1a0)x1 + (x1x2 + y1y2),

ẏ1 = (µ1 − B1a0)y1 + (x1y2 − y1x2),

ẋ2 = (µ2 − B2a0)x2 − (x2
1 − y2

1),

ẏ2 = (µ2 − B2a0)y2 − 2x1y1,

(5)

ȧ0 = σµa0 + 2B1r
2
1 + 2B2r

2
2,

ṙ1 = (µ1 − B1a0)r1 + r1r2 cosφ,

ṙ2 = (µ2 − B2a0)r2 − r2
1 cosφ,

φ̇ =
(

r2
1

r2
− 2r2

)
sin φ,

(6)

where, with r1,2 and θ1,2 defined to be non-negative moduli and real phase angles, respectively,

a1,2
def= r1,2 exp(i θ1,2)

def= x1,2 + y1,2 i for i
def= √−1 andφ

def= 2θ1 − θ2. As in [2], the emergence of the phase differ-
enceφ and reduction to four (real) dimensions is a consequence of O(2) equivariance. The analogous component
forms of(4) are

ẋ1 = x1x2 + y1y2 + x1(µ1 + e11r
2
1 + e12r

2
2),

ẏ1 = x1y2 − y1x2 + y1(µ1 + e11r
2
1 + e12r

2
2),

ẋ2 = −(x2
1 − y2

1) + x2(µ2 + e21r
2
1 + e22r

2
2),

ẏ2 = −2x1y1 + y2(µ2 + e21r
2
1 + e22r

2
2),

(7)

ṙ1 = r1r2 cosφ + r1(µ1 + e11r
2
1 + e12r

2
2),

ṙ2 = −r2
1 cosφ + r2(µ2 + e21r

2
1 + e22r

2
2),

φ̇ =
(

r2
1

r2
− 2r2

)
sin φ.

(8)

To demonstrate a connection between(2) and (4)we may employ the scalinga0 = ε2s0, r1,2 = εs1,2, µ1,2 =
ε2ν1,2 and(̇ ) = ε( )′ to transform(6) to

εs′0 = σµs0 + 2(B1s
2
1 + B2s

2
2),

s′1 = ε(ν1 − B1s0)s1 + s1s2 cosφ,

s′2 = ε(ν2 − B2s0)s2 − s2
1 cosφ,

φ′ = (
r2
1

r2
− 2r2) sin φ;

(9)
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hence in the limitε → 0 we may use the relation

s0 = −2σµ(B1s
2
1 + B2s

2
2), (10)

due to equilibration of the first equation of(9) to its slow manifold. Indeed, providedσµ = −1 andε � 1, (10)
provides the quadratic approximation to a locally attracting (center) manifold[12]. Equivalently, for(2) in the limit
µ1,2 → 0 with µ0 �= 0, the center manifold tangent to thea0 = 0 hyperplane may be locally approximated by

a0 = −2σµ(B1a
2
1 + B2a

2
2). (11)

Substitution of(11) into the latter two equations of (2) yields the reduced system

ȧ1 = a∗
1a2 + (µ1 + 2σµB2

1|a1|2 + 2σµB1B2|a2|2)a1

ȧ2 = −a2
1 + (µ2 + 2σµB1B2|a1|2 + 2σµB2

2|a2|2)a2,
(12)

which is precisely the 1:2 resonance system(4), with system parameters

e11 = 2σµB2
1, e12 = e21 = 2σµB1B2, e22 = 2σµB2

2. (13)

Hence the dynamics of the 0:1:2 resonance(2) are related to those of thedegenerate 1:2 resonance in which

e12 = e21 = σµσB
√

e11e22, (14)

whereσB
def= sign(B1B2) and we implicitly assumee11e22 > 0. In particular, the fixed point sets of(2) and (12)

coincide, as do those of(6) and (8).
This paper is organized as follows. In Section2 we revisit the general 1:2 resonance of AGH, and then obtain

new results for the degenerate 1:2 resonance given by(4) subject to(14). In Section3 we perform a similar analysis
of the 0:1:2 resonance(2). Then in Sections4 and5 we examine both spatial resonances with system parameter
values representing the two cases noted above, representative of (large) open sets of system parameters. We identify
differences between the behavior of the 1:2 and 0:1:2 systems, and find new types of heteroclinic cycles. In Section
6we relax the assumption thatµ0 �= 0, and consider the limitµ0,1,2 → 0. This includes a discussion of complicated
periodic orbits for the 0:1:2 system. Section7 concludes the paper.

2. Dynamics of the 1:2 resonance

2.1. Basic solutions

For the reader’s convenience, and because we shall describe analogous results for the 0:1:2 system in similar
terms, we start by reviewing results which appeared in[2] and [11], summarizing the various solutions to(4)
discussed therein. Acronyms for the solution and bifurcation types introduced in this and other sections are given
in Table 1.

Trivial state. The solutiona1 = a2 = 0 has full O(2) symmetry and eigenvaluesµ1 andµ2, each of multi-
plicity 2.

Pure mode (PM) equilibria. These lie in thea1 = 0 invariant subspace, given by (a1, a2) = (0,
√−µ2/e22e2iφ̄)

and branch from the origin in a pitchfork bifurcation of revolution along the lineµ2 = 0. Fore22 < 0, as in the degen-
erate 1:2 resonance whenσµ < 0(13), PM equilibria exist forµ2 > 0. These form a circle PM̄φ parameterized bȳφ,
intersecting the real subspacey1 = y2 = 0 at the two points PM0 and PMπ/2 (given by (x1, x2) = (0, ±√−µ2/e22)).
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Table 1
Acronyms for solution and bifurcation types

Acronym Full name

Solution type PM Pure mode
MM Mixed mode
SW Standing wave
TW Travelling wave
MTW Modulated travelling wave

Bifurcation type SB Symmetry breaking pitchfork
H Hopf
PB Parity breaking
PD Period doubling
T Torus
SWHe Heteroclinic involving SW
SWHo Homoclinic involving SW
Sh Silnikov

Mixed mode (MM) equilibria. These fixed points take the form (a1, a2) = (±r1eiφ̄, r2e2iφ̄), and we shall denote
them MMφ̄. The non-negative modulir1,2 may be determined from(8) by settingφ = 0 to yield:

−µ1 + (−1 + e21µ1 − e11µ2)r2 + (e21 − e12)r
2
2 + (e12e21 − e11e22)r

3
2 = 0, (15)

and

r2
1 = −µ1 + r2 + e12r

2
2

e11
= r2(µ2 + e22r

2
2)

1 − e21r2
. (16)

The first (resp., second) equality in(16) follows from setting ˙r1 = 0 (resp., ˙r2 = 0) in (8). One might conclude that
there may exist at most three distinct (non-symmetry-related) MM states corresponding to the three roots of(15)
but, as we shall see in Section2.2, this is not so in the degenerate case. We note that the MM equilibria bifurcate
from the PM equilibria through symmetry-breaking (SB) pitchfork bifurcations. They also bifurcate from the trivial
state in a pitchfork of revolution along the lineµ1 = 0.

Standing wave (SW) solutions. These periodic orbits lie in the real subspace or anyφ̄-rotation of it, and arise in
Hopf (H) bifurcations from the MM equilibria. Linearizing(7), restricting to the real subspace and evaluating the
Jacobian matrix at the mixed mode(15)and(16), we obtain the Hopf bifurcation conditions in terms ofr1,2:

0 = −r2
1 − 2e11r

2
1r2 − 2e22r

3
2, (17)

and

(2e22r
3
2 + r2

1)e11 − (2e12r2 + 1)(e21r2 − 1)r2 > 0. (18)

Eq.(15) implies that, asµ1,2 → 0, MM solutions with smallr1,2 must satisfy

r2 ≈ −µ1. (19)

Sincer2 must be non-negative, we conclude that the locus of H bifurcations which limits on the pointµ = 0 must
locally extend into theµ1 < 0 half-plane.

In fact, as shown in[1] this locus of H bifurcations is locally parabolic (cf.[2]). Indeed, consider MM solutions
with small r1,2, corresponding to smallµ1. Assumingeij = O(1), i = 1, 2, j = 1, 2, and using(19), the second
term in(17) is small relative to the first. Thus, at a Hopf bifurcation

r2
1 ≈ −2e22r

3
2. (20)
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Furthermore, from the second equality in(16), using(19),

r2
1 ≈ r2(µ2 + e22r

2
2). (21)

Finally, equating(20) and (21)and using(19),

µ2 ≈ −3e22µ
2
1. (22)

There are also standing wave heteroclinic (SWHe) bifurcations associated with the periodic orbits that are spawned;
as such a bifurcation is approached, the periodic orbit limits to connections between the trivial state and a PM
solution. We shall use AUTO[13] to map these out in theµ parameter space in the examples considered in Sections
4 and 5.

Travelling wave (TW) solutions. These are fixed points of(6) but periodic orbits for the system(2) with
θ̇2 = 2θ̇1 �= 0. Eq.(8) indicates 2r2

2 − r2
1 = 0 for the travelling waves, and thus

r2
2 = −(2µ1 + µ2)

4e11 + 2e12 + 2e21 + e22
, r1 =

√
2r2,

cosφ = (2e11 + e12)µ2 − (2e21 + e22)µ1√−(4e11 + 2e12 + 2e21 + e22)(2µ1 + µ2)
.

(23)

Travelling wave solutions exist in the region of theµ plane defined by

((2e11 + e12)µ2 − (2e21 + e22)µ1)2 ≤ −(4e11 + 2e12 + 2e21 + e22)(2µ1 + µ2), (24)

and bifurcate from the MM equilibria in parity-breaking (PB) bifurcations when this expression is an equality.
Modulated travelling wave (MTW) solutions. These are created when a Hopf bifurcation occurs in(8), corre-

sponding to a torus (T) bifurcation on a TW branch in the system(4). They may also arise in bifurcations from the
SW solutions.

Heteroclinic cycles. In the real (x1, x2) subspace these appear as a connection between PM0 and PMπ/2. As
shown in[2], for parameter values satisfying

µ1 − µ2e12

e22
−
√−µ2

e22
< 0 < µ1 − µ2e12

e22
+
√−µ2

e22
, (25)

PM0 is a saddle and PMπ/2 a sink in the real subspace, and a connection between these two equilibria can be proven
to exist if there are no MM equilibria present. (The latter condition is sufficient but not necessary: cf. AGH ([2], Figs.
1 and 5).) Given a connection from PM0 to PMπ/2, a ‘returning’ connection in a suitably rotated copy of the real
subspace may be found by appeal to O(2) symmetry. More general heteroclinic cycles connecting MM equilibria
were shown to exist in the 1:2 resonance in[11].

2.2. The degenerate case

We now consider the degenerate 1:2 resonance(4) with (14), focussing initially on the real subspace, in which
the equations reduce to:

ẋ1 = x1x2 + (µ1 + e11x
2
1 + σµσB

√
e11e22x

2
2)x1,

ẋ2 = −x2
1 + (µ2 + σµσB

√
e11e22x

2
1 + e22x

2
2)x2.

(26)

Focussing on the MM equilibriumcondition (15)specialized to the real subspace, we see that the quadratic and
cubic terms vanish identically and it simplifies to:

−µ1 + (−1 + σµσB
√

e11e22µ1 − e11µ2)x2 = 0. (27)
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One might be tempted to rearrange this equation to read

x2 = µ1

−1 + σµσB
√

e11e22µ1 − e11µ2
, (28)

and then conclude thatµ1 → 0 necessarily impliesx2 → 0 (and hence, from(16), x1 → 0) also. This holds on all
parameter space paths approaching theµ1 = 0 axis,except those that approach the point

µ = (0, −1/e11)
def= µ̃, (29)

where the denominator of(28)vanishes. The PM equilibria undergo SB pitchfork bifurcations to MM equilibria on
such a path, which can be found by setting (r1, r2) = (0,

√−µ2/e22) in (16)and using(14) to obtain

(
µ1 − σµσB

√
e11

e22
µ2

)2

= − µ2

e22
(30)

We shall defer discussion of this parabola until Section3.1where we discuss the MM equilibria in the 0:1:2 resonance
which, as we observed in Section1, are found to lie at identical values of (a1, a2). For now, we note that if we solve
(30) for µ2 as a function ofµ1 and substitute this relation back into(28), we can apply L’Hopital’s rule to conclude
that, along this curve,x2 remains equal to±√−µ2/e22 asµ1 → 0.

A second path approaching(29) is the curve on which MM equilibria undergo H bifurcations. We concluded
in Section2.1 that, for e11, e22 < 0, the H bifurcation curve enters theµ1 < 0 half-plane fromµ = 0. If it is
subsequently to approach theµ1 = 0 axis it may only do so at the pointµ2 = −1/e11; at all other points the MM
equilibria coalesce at the origin, at which a H bifurcation cannot take place, since thex1 = 0 axis is invariant. We
may confirm this reasoning and explore the bifurcations by considering equilibria of(26) at the parameter values
(29), which lie on the set

e11x
2
1 + σµσB

√
e11e22 x2

2 + x2 = 0. (31)

Hence forσµσB < 0 a closed curve of equilibria passes through both (x1, x2) = (0, 0) and the PM equilibrium
(x1, x2) = (0, −σµ/

√
e11e22) = (0, −σµ

√−µ2/e22). For σµσB > 0 two curves of equilibria exist, one passing
through (0, 0), and the other through the PM equilibrium (0, σµ/

√
e11e22) = (0, σµ

√−µ2/e22); if σµ < 0, as in
the two examples considered in Sections4 and5, these two PM equilibria are none other than PM0 and PMπ/2,
respectively. SeeFigs. 5 and 16below.

Linearization of(26)on the set(31)yields eigenvalues

λ = 0, −1 + σµσB
√

e11e22x2 + 2e11x2(1 − e22x2 + σµσB
√

e11e22)

e11
, (32)

and eigenvectors(
∓ 1 + 2σµσB

√
e11e22x2

2
√−e11x2(1 + σµσB

√
e11e22x2)

, 1

)
,

(
∓
√−e11x2(1 + σµσB

√
e11e22x2)

1 − σµσB
√

e11e22x2
, 1

)
. (33)

The former, with zero eigenvalue, is tangent to the curve(31)and the second eigenvalue is also zero when

x2 = xTB
2

def= 2e11 + σµσB
√

e11e22 ±√e11(4e11 − 4σµσB
√

e11e22 + 9e22)

4e11(e22 − σµσB
√

e11e22)
, (34)
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at which point the Jacobian matrix of(26) takes the form:


−a b

−a2

b
a


 , (35)

wherea andb are complicated functions ofe11 ande22. The corresponding pair of equilibriaxTB def= (xTB
1 , xTB

2 )
are degenerate Takens-Bogdanov bifurcation points, as one sees by putting the linear part(35) into Jordan form
and applying a near-identity normal form transformation to remove all but the essential quadratic terms[12]. The
generic Takens-Bogdanov singularity has two such, but in the present case one of them identically vanishes, giving
(in Bogdanov form):

u̇1 = u2,

u̇2 = ±u1u2 + · · · . (36)

This lacks theu2
1 term that is generically present[12], as it must, consistent with existence of the curve of equilibria

(31): seeFig. 5below. In(36) this curve is transformed to coincide with theu1-axis and all other solutions lie on
the parabolaeu2 = const.± u2

1/2. The sign of theu1u2 term is determined by the system parameterse11, e22, and
hence, via(13), B1 andB2. Details of the similarity and normal form transformations, and the (very long) expression
for theu1u2 coefficient, derived using Mathematica, may be obtained from the first author.

As in the codimension-2 Takens-Bogdanov bifurcation, a locus of H bifurcations emanates from this point;
however,unlike the standard case, a locus of SWHe bifurcations replaces the homoclinic bifurcations: these are
none other than the H and SWHe loci of Section2.1 that limit onµ = 0. ForσµσB < 0 exactly one value ofxTB

2
will be positive whenever 0> e11 > e22, in which case all equilibria on the curve(31) with 0 < x2 < xTB

2 (resp.,
0 < xTB

2 < x2) will be unstable (resp., stable).
One may easily check that the point(29) also belongs to the set along which TW solutions bifurcate from the

MM equilibria through PB bifurcations; in the degenerate case, this set, determined by the condition that(24) is an
equality, may be written

((2e11 + σµσB
√

e11e22)µ2 − (2σµσB
√

e11e22 + e22)µ1)2 = −(2
√

e11 + σµσB
√

e22)
2(2µ1 + µ2). (37)

There are thus two additional distinguished pointsxPB on (one of) the curves of equilibria(31)where, in accordance
with (23), x1 = ±√

2x2, at which MM equilibria bifurcate to TW solutions; from(31)we easily see these to be the
points

(xPB
1 , xPB

2 ) =
(

∓
√

2

e11(2 + σµσB
√

e22/e11)
, − 1

e11(2 + σµσB
√

e22/e11)

)
, (38)

We shall see examples of the theory expounded in this section in Sections4.1 and 5.1.

3. Dynamics of the 0:1:2 resonance

3.1. Basic solutions

As noted in Section1, the (a1, a2) coordinates of fixed points of the 0:1:2 and degenerate 1:2 systems coincide.
We now re-examine these points in(2) to determine the effects of the extra (a0) dimension, which can provide
an additional direction for instabilities. The PM equilibria of the 1:2 resonance are replaced by ones of the form
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(a0, 0, a2), and the MM equilibria by (a0, a1, a2), with all aj �= 0. We shall continue to refer to them, respectively,
as pure (albeit now with two nonzero coordinates) and mixed.

Trivial state. The solutionaj = 0 has full O(2) symmetry and eigenvaluesµ0, µ1 andµ2, the latter two each
having multiplicity 2.

Pure mode (PM) equilibria. These lie on the circle PM̄φ given by

(a0, a1, a2) =
(

µ2

B2
, 0,

√
−µ2σµ

2B2
2

e2iφ̄

)
, (39)

which intersects the real subspace at the points PM0 and PMπ/2:

(a0, x1, x2) =
(

µ2

B2
, 0, ±

√
−µ2σµ

2B2
2

)
. (40)

Linearizing(5) at these points we obtain the eigenvalues and eigenvectors

λ1 =
(σµ +

√
1 − 16B2

2x
2
2)

2
= (σµ +√1 + 8σµµ2)

2
,

λ4 =
(σµ −

√
1 − 16B2

2x
2
2)

2
= (σµ −√1 + 8σµµ2)

2
,

λ2 = µ1 − B1a0 + x2 = µ1 − B1µ2/B2 + g
√−σµµ2√

2B2
2

,

λ3 = µ1 − B1a0 − x2 = µ1 − B1µ2/B2 − g
√−σµµ2√

2B2
2

,

λ5 = µ2 − B2a0 = 0,

(41)

v1 = ((−σµ −√1 + 8σµµ2)
g√−2σµµ2

, 0, 0, 1, 0)T,

v4 = ((−σµ +√1 + 8σµµ2)
g√−2σµµ2

, 0, 0, 1, 0)T,

v2 = (0, 1, 0, 0, 0)T,

v3 = (0, 0, 1, 0, 0)T,

v5 = (0, 0, 0, 0, 1)T,

(42)

whereg = 1 for PM0 andg = −1 for PMπ/2. We observe that thev1, v4 eigenpair span the (a0, x2) plane provided
1 + 8σµµ2 �= 0.

Mixed mode (MM) equilibria. These equilibria, again denoted MMφ̄, take the form (a0, ±r1eiφ̄, r2e2iφ̄), where

a0 = 2µ1(µ2B1 − µ1B2)

σµ + 2B1(µ2B1 − µ1B2)
,

r1 =
√−σµµ1[σµµ2 + 2(µ2B1 − µ1B2)2]

σµ + 2B1(µ2B1 − µ1B2)
,

r2 = −σµµ1

σµ + 2B1(µ2B1 − µ1B2)
.

(43)
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The second expression of(43) reveals that MM equilibria exist when

σµµ1[2(µ1B2 − µ2B1)2 + σµµ2] ≤ 0, (44)

and these equilibria branch from PM equilibria in SB pitchfork bifurcations along a parabola where(44)vanishes:

µ1 = µ2B1 ±√−σµµ2/2

B2
. (45)

(Recalling(13), (45)coincides with(30).) This parabola exists for positive (resp., negative) values ofµ2 when
σµ = −1 (resp.,σµ = +1) and has an extremum at

µ1 = σµ

8B1B2
; (46)

since it must pass throughµ = 0, it is therefore unbounded in the right (resp., left) half-plane forσµB2 < 0 (resp.,
σµB2 > 0) (recall we assumeB1 > 0). From(44), the MM equilibria exist inside (resp., outside) the parabola
wheneverσµµ1 > 0 (resp.,σµµ1 < 0). MM equilibria also bifurcate from the trivial state in a pitchfork of revolution
along the lineµ1 = 0: see§3.2.

Further consideration of(43) reveals that the MM equilibria tend to infinity asµ approaches the line

µ1 = B1

B2
µ2 + σµ

2B1B2
, (47)

which coincides with an analogous expression that can be derived for the degenerate 1:2 resonance. This line
intersects(45)at

µ̃ = µ =
(

0,
−σµ

2B2
1

)
=
(

0,
−1

e11

)
. (48)

and intersects the region where MM equilibria exist whenB2 < 0, i.e.σB < 0, and not otherwise. Examples follow
in Sections4 and 5. This bifurcation from infinity is an artifact of the quadratic truncation in(1).

Standing wave (SW) solutions. Due to the extra (a0) dimension, these periodic orbits are much more difficult
to locate in the 0:1:2 resonance than their counterparts in the degenerate 1:2 resonance. Numerical branch follow-
ing using AUTO[13] will reveal differences from the degenerate 1:2 resonance, including period-doubling (PD)
bifurcations, standing wave homoclinic (SWHo), and Silnikov (Sh) bifurcations[12]. The fixed points involved in
the SWHo and Sh bifurcations are typically MM solutions.

Travelling wave (TW) solutions. These are fixed points of(8) but periodic orbits of(4) with θ̇2 = 2θ̇1 �= 0.
They satisfy

r2
2 = −σµ(2µ1 + µ2)

2(2B1 + σBB2)2
, r1 =

√
2r2, a0 = −2σµ(B1r

2
1 + B2r

2
2),

cosφ =
√

2σµ[(2B2
1 + σBB1B2)µ2 − (2σBB1B2 + B2

2)µ1]√
−(2B1 + σBB2)2(2µ1 + µ2)

,

and exist for parameter values such that

2[(2B2
1 + σBB1B2)µ2 − (2σBB1B2 + B2

2)µ1]2 ≤ −(2B1 + σBB2)2(2µ1 + µ2), (49)

(equivalent to(24)via (13)). They appear in PB bifurcations from the MM equilibria when(49) is an equality. The
parabola describing the PB bifurcations has an extremum at

µ =
(

σµ

8B1(2B1 + B2)
,
−σµ(4B1 + B2)

8B2
1(2B1 + B2)

)
(50)
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which, for σµ > 0 lies in theµ1 < 0, µ2 > 0 quadrant whenB1 > −2B2 and theµ1 > 0, µ2 < 0 quadrant for
B1 < −2B2, and includes the pointµ = µ̃ as defined in(29).

Modulated travelling wave (MTW) solutions. These are created when a H bifurcation occurs in(6), corre-
sponding to a torus (T) bifurcation on a TW branch in(2). The examples to follow show that the MTW bifurcation
sets for the degenerate 1:2 and 0:1:2 systems arenot coincident.

Heteroclinic cycles of AGH type. Structurally stable heteroclinic cycles, analogous to those of[2] noted in
Section2.1, also occur for the 0:1:2 system. Up to an estimate that must be checked numerically, we can prove
their existence as follows. As in[2] we restrict to the real subspace, assume thatσµ = −1 andµ2, B1, B2 > 0, and
demonstrate the existence of a connection between the PM0 and PMπ/2 equilibria, the return part of the cycle being
guaranteed by O(2) symmetry.

To obtain the necessary stability types for a connection (i.e. PM0 has a one-dimensional unstable manifold and
PMπ/2 is a sink in the real subspace), from(41) and (42)we require that

µ1B2 − µ2B1 +
√

µ2

2
> 0 > µ1B2 − µ2B1 −

√
µ2

2
, (51)

which, via(13), coincides with the existence conditions of AGH ([2], Theorem 3.2). (The other eigenvalues corre-
sponding to perturbations in the real subspace are guaranteed to have negative real part sinceµ2 > 0.) Attractivity
of the cycles (in the full phase space) is guaranteed by requiring that the real part of the least stable eigenvalue for
PMπ/2 has larger magnitude than the magnitude of the (real) unstable eigenvalue for PM0. This corresponds to

min

{∣∣∣∣R
(

B2
(−1 + √

1 − 8µ2)

2

)∣∣∣∣ , −
(

µ1B2 − µ2B1 −
√

µ2

2

)}
> µ1B2 − µ2B1 +

√
µ2

2
. (52)

HereR denotes the real part of the quantity in parenthesis.
We first observe that the set

Q− def= {(a0, x1, x2)|a0 > 0, x2 < 0},

with boundaries

∂Q−
1

def= {(a0, x1, x2)|a0 > 0, x2 = 0}, ∂Q−
2

def= {(a0, x1, x2)|a0 = 0, x2 < 0}

and containing PMπ/2, is positively invariant. This is easily seen since, from the fourth equation of(5), ẋ2 = −x2
1 < 0

on ∂Q−
1 , while the first of(5) implies thatȧ0 = 2(B1x

2
1 + B2x

2
2) > 0 on∂Q−

2 except at the trivial equilibrium.
We next assert that any solution which entersQ− approaches the planex1 = 0. On the real subspace we have

ẋ1 = (µ1 − B1a0 + x2)x1, and, forB1 > 0, µ1 − B1a0 + x2 ≤ µ1. Hence, forµ1 < 0, x1 must decay exponentially
to zero (this may also occur forµ1 > 0 in certain regions of phase space; cf.Fig. 2). The flow on the (a0, x2) plane
is given by

ȧ0 = σµa0 + 2B2x
2
2

ẋ2 = (µ2 − B2a0)x2,
(53)

whose phase portrait is shown inFig. 1.
To verify this picture, we note that the origin is globally asymptotically stable forσµ, µ2 < 0, sinceĖ =

σµa2
0 + µ2x

2
2 < 0 for a0, x2 �= 0 (cf. Eq.(3)). As µ2 increases through 0, the pure modes PM0, PMπ/2 bifurcate

from the origin and a center manifold analysis[12] reveals that they are the sole limit sets, excepting the origin, for
0 < µ2 � 1. They remain sinks for allµ2 > 0, but periodic or homoclinic orbits surrounding them could appear in
global bifurcations. However, since the flow far from the origin is dominated by the integrable quadratic system, for
which all solutions excepting the invarianta0-axis move upwards along ellipsesa2

0/2 + x2
2 = const., no bifurcations
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Fig. 1. Phase portrait of(53) for σµ = −1, µ2 > 0, B2 > 0.

from infinity can occur forµ2 > 0, and sinceWs(0, 0) is thea0-axis, no ‘finite’ homoclinic bifurcation can occur
either. We have been unable to rule out the possible creation of periodic orbits surrounding PM0, PMπ/2 in saddle-
node bifurcations, but careful studies of null- and isoclines, and extensive numerical work, suggest thatFig. 1 is
correct for allµ2 > 0. This implies that any trajectory approaching thex1 = 0 plane insideQ− limits on PMπ/2 as
t → ∞.

Assuming that periodic orbits are not born in saddle-node bifurcations, we need only show that the unstable
manifold of PM0 Wu(PM0) intersects∂Q−

1 . We define a set containing PM0 by

Q+ def= {(a0, x1, x2)|a0 > 0, x2 > 0},

within which there exists a manifold on which ˙x2 = 0:

M
def=
{

(a0, x1, x2)|a0 = µ2

B2
− x2

1

B2x2
, a0 > 0, x2 > 0

}
. (54)

In (a0, x1, x2) spaceM has the appearance of a ship’s bow with the linea0 = µ2/B2, x1 = 0 forming the prow.
Points ‘outside’ (resp., ‘inside’) of the ‘bow’ have ˙x2 < 0 (resp., ˙x2 > 0). Clearly PM0 lies onM, and its eigenvectors
(42), show thatWu(PM0) is normal to the (a0, x2) plane at PM0, and thus enters the region where ˙x2 < 0. Hence
x2 initially decreases and will continue to do so until the orbit crosses∂Q−

1 , provided thatWu(PM0) does not
subsequently intersectM. We have been unable to prove this, although numerical simulations suggest that it holds.
We show an example inFig. 2.

3.2. Special solutions at µ = µ̃

Eq. (43) implies that the MM equilibria for the 0:1:2 resonance also converge on the origin asµ1 → 0, except
at the pointµ = µ̃ as given by(48), where the locus of SB bifurcations(45)crosses theµ1 = 0 axis. Here, the real
equations take the form

ȧ0 = σµa0 + 2(B1x
2
1 + B2x

2
2),

ẋ1 = −B1a0x1 + x1x2,

ẋ2 =
(−σµ

2B2
1

− B2a0

)
x2 − x2

1,

(55)
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Fig. 2. Heteroclinic connection between the PM0 and PMπ/2 equilibria for the parameters (µ1, µ2, B1, B2) = (0.0745, 2.318, 0.4375, 1.2031).
The heteroclinic trajectory (bold) lies belowM (shaded), given by(54). Note thatµ1 > 0 here. We shall refer to this example again in Section
4.2.

and hence we have either one or two sets of equilibria given by

x1 = ±√−x2(σµ + 2B1B2x2)√
2B1

,

a0 = x2

B1
.

(56)

The locus(56) coincides with that of(31) when projected onto the (x1, x2) plane, and passes through the trivial
equilibrium as well as the point

(a0, x1, x2) =
( −σµ

2B2
1B2

, 0,
−σµ

2B1B2

)
. (57)

For B2 > 0 there is one closed curve of equilibria passing through these points, while forB2 < 0 there are two
hyperbolae, one of which passes through the trivial equilibrium whilst the other passes through(57).

The eigenvalues on the curve of equilibria(56)are

λ1 = 0, λ2,3 = λ̃ ±
√

λ̂

4B2
1

(58)

where

λ̃ = σµ(p − 2) − 2B1B2x2, (59)

λ̂ = p2 + 4B1p(4B1 + B2)x2σµ + 4B2
1B2(B2 + 8B1(p − 2B1B2))x2

2, (60)

p = 1 + 2B2
1. (61)

There are two zero eigenvalues when one ofλ̃ ±
√

λ̂ vanishes; this occurs at

x2 =
−σµ(p + B1B2) ±

√
p2 − 2B1B2p + 9B2

1B
2
2

4B1B2(p − 2B1B2)
. (62)
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Fig. 3. Regions of (B1, B2) space wherecondition (64)is satisfied are labeled ‘H’ and bounded by solid lines and figure axes.

and is analogous toxTB in the degenerate 1:2 resonance. However, rather than being the limit of a locus of H and
associated SWHe bifurcations, we find that an SWHo bifurcation is more commonly encountered at this point.

Further consideration of the eigenvalues(58) shows that the H locus emanating fromµ = 0 may pass through
µ = µ̃. For this we requirẽλ = 0 andλ̂ < 0, or

x2 = σµ

p − 2

2B1B2
, (63)

and

B1p(p − 2) − B2(4B2
1 − 1)(B2

1 − 1)

B2
< 0. (64)

For the caseσµ < 0 andB2 > 0, a pair of points satisfy(63)on the (single) curve of equilibria provided 0≤ B1 ≤
1/

√
2. For σµ < 0 andB2 < 0, a pair of points on the upper (x2 > 0) of the two curves satisfy(63) provided

B1 > 1/
√

2.
Thecondition (64)is somewhat more restrictive, however.Fig. 3 shows regions of system parameter space in

which this condition holds, the points (B1, B2) = (0.4375, 1.2031) and (B1, B2) = (0.5974, −0.1149), correspond-
ing to the examples of Sections4 and 5being indicated by solid dots. In the latter case the H bifurcation curve
emanating fromµ = 0 cannot pass throughµ = µ̃.

4. Example 1: B1 = 0.4375, B2 = 1.2031, σµ = −1

We now give two examples of the degenerate 1:2 and 0:1:2 resonances for specific system parametersB1,2.
This first, representative of the caseσµ = −1 andB1, B2 > 0, is taken from our previous study of low-dimensional
models of plane Couette flow in a moderate aspect ratio domain[3], where it appeared as a projection of the
Navier-Stokes equations onto empirically obtained modes with spanwise wavenumbers in the ratio 0:1:2. In[3],
a0 represents the amplitude of a mean flow mode anda1 anda2 the amplitudes of streamwise-invariant vortical
modes and their dynamics for these parameter values, particularly the heteroclinic cycles considered in Section3.1,
explains why streamwise vortices are prominent features in turbulent PCF despite being linearly unstable.
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4.1. Degenerate 1:2 resonance

In this case the 1:2 system parameter values are

e11 = −0.3828, e12 = e21 = −1.0527, e22 = −2.8950. (65)

Sinceσµ = −1 andB2 > 0, the parabola(45) on which SB bifurcations from PM to MM equilibria occur lies
entirely in theµ2 ≥ 0 half-plane and, from(46), its extremum lies in theµ1 < 0, µ2 > 0 quadrant. The parabola
of PB bifurcations exists for allµ2, and from(24) also has its extremum in theµ1 < 0, µ2 > 0 quadrant. These
curves, as well as similar parabolas of T, H and SWHe bifurcations numerically computed via AUTO, are shown in
Fig. 4.

In accord with the analysis of Section3, the H bifurcation curve enters theµ1 < 0 half-plane and later turns
around to limit onµ = µ̃ = (0, −1/e11) = (0, 2.6122); as we move along this curve andµ approaches this point
from the left, the pair of MM equilibria at which H bifurcations occur tend towards (x1, x2) ≈ (±0.7815, 0.4158),
in agreement with the coordinates of the Takens-Bogdanov point given by(31), combined with the ‘+’ solution
of (34) (we may exclude the ‘−’ solution since it is negative and therefore cannot satisfy(17)). The curve of
equilibria (31) is shown inFig. 5, with the Takens-Bogdanov points indicated. Two loci of T bifurcations from
TW to MTW also leaveµ = 0; one of these limits onµ = µ̃; the other enters theµ1 > 0 half-plane and tends to
infinity.

We now consider the behavior of solutions to(4) subject to(65)asµ1 varies withµ2 fixed. Asµ1 increases for
µ2 ∈ (0, −1/e11), an SB bifurcation is first encountered in which PM equilibria lose stability to MM equilibria;
depending on the value ofµ2, H, SWHe or PB bifurcation sets may be crossed next. Forµ2 = 0.5, the sequence is
SB→ H → SWHe→ PB→ T, as shown in the bifurcation diagram ofFig. 6. Here MM equilibria are born in a SB
bifurcation atµ1 ≈ −0.2338; they remain stable untilµ1 ≈ −0.1391 where they undergo a H bifurcation to stable
SW solutions. The latter exist over a small range of parameter space, before being destroyed in a SWHe bifurcation at
µ1 ≈ −0.1329, in which stable heteroclinic cycles appear. Asµ1 further increases, unstable TW solutions are born
in a PB bifurcation atµ1 ≈ −0.1190; these grow in amplitude while the unstable MM equilibria converge on the
origin asµ1 → 0−. The TW gain stability in a T bifurcation atµ1 ≈ 0.0854 that produces unstable MTW solutions.
The heteroclinic cycles appear to remain stable untilµ1 ≈ 0.177, corresponding to a global bifurcation in which
the MTWs coalesce with them (cf.[2], §5), although we were unable to follow the MTWs beyondµ1 ≈ 0.1762.

For higher values ofµ2 the bifurcation sequence, after the initial SB bifurcation, may be any of H→ PB →
SWHe→ T, PB→ T → H → BP→ SWHe→ T, PB→ H → T → SWHe→ T or PB→ H → SWHe→ T. A
representative example of the first occurs forµ2 = 0.9, which yields a bifurcation diagram qualitatively similar to

Fig. 4. Various bifurcation sets for(4) with e11 = −0.3828, e12 = e21 = −1.0527, ande22 = −2.8950 featuring symmetry-breaking (SB)
pitchfork, Hopf (H), standing wave heteroclinic (SWHe), parity-breaking (PB) and torus (T) bifurcations. The H, SWHe and T curves are
difficult to distinguish in the upper half of this figure.
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Fig. 5. Phase space of(26) for system parameters(65)atµ = µ̃ with sample trajectories. PM0 and PMπ/2 denote the pure mode equilibria and
points at which Takens-Bogdanov and parity-breaking bifurcations occur are are labelledxTB andxPB, respectively.

that inFig. 6, with the SW solution branch extending further to the right beyond the PB bifurcation point. We do
not show this.

The caseµ2 = 1.0 exemplifies the second of these sequences:Fig. 7. Here, after being spawned in a SB bifurcation
atµ1 ≈ −0.2241, the stable MM equilibria lose stability in a PB bifurcation to stable TWs atµ1 ≈ −0.1371, and
subsequently undergo a H bifurcation to unstable SW solutions atµ1 ≈ −0.1345. Meanwhile, the stable TWs
undergo a T bifurcation to stable MTWs atµ1 ≈ −0.1349. The unstable SW and stable MTWs meet in a branch
point (BP) of periodic orbits atµ1 ≈ −0.1315, after which the MTWs are extinguished and stable SWs remain
until destroyed in a SWHe bifurcation atµ1 ≈ −0.1310.

Examples of bifurcation diagrams showing the third and fourth sequences listed above may be found in[14].

4.2. 0:1:2 Resonance

We next turn to the full system(2) with the same system parameters. For reasons given previously, the SB and
PB bifurcation curves are identical to those found in Section4.1. We again turn to AUTO to compute the loci of
H, SWHe and T bifurcation sets departing fromµ = 0; the results are given inFig. 8. We observe two distinct H
bifurcation branches: one leaves the origin withµ1 < 0, µ2 > 0 (cf. (22)) and thenpasses through µ = µ̃ into the

Fig. 6. Bifurcation diagram for(26)with system parameters(65)andµ2 = 0.5. Here and on subsequent bifurcation diagrams, stable branches
are shown solid and unstable branches dashed. Also, here and on other bifurcation diagrams for the degenerate 1:2 mode interaction,A =√

max(|a1|2 + |a2|2), where, for periodic orbits, max(·) denotes the maximum value attained over one period.
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Fig. 7. Bifurcation diagram for(26)with system parameters(65)andµ2 = 1.0. Region near PB shown in blow up on lower panel.

µ1,2 > 0 quadrant (and subsequently through the right boundary ofFig. 8). A second branch originates atµ = µ̃

and immediately moves into theµ1,2 > 0 quadrant (and thence through the upper boundary ofFig. 8). This accords
with the theory of Section3.2. An SWHe bifurcation curve emerges fromµ = 0, and an SWHo bifurcation curve
emerges fromµ = µ̃; we were not able to compute a complete locus of these bifurcation sets using AUTO, but
indicate parts of them inFig. 8. We also find an Sh bifurcation curve emerging fromµ = µ̃, which almost coincides
with one of the H bifurcation curves: seeFig. 8.

Fig. 8. Various bifurcation sets for(2) with B1 = 0.4375, B2 = 1.2031 andσµ = −1 featuring symmetry-breaking (SB) pitchfork, Hopf (H),
standing wave homoclinic (SWHo), standing wave heteroclinic (SWHe), Silnikov (Sh), parity-breaking (PB) and torus (T) bifurcations. The
dashed lineµ(Re) corresponds to changing the Reynolds numberRe in a model in[3]; see(66).
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For µ2 ∈ (0, 1.0), the bifurcation sequence asµ1 is increased from negative to positive values is very similar
to that discussed in Section4.1. We thus concentrate onµ2 ∈ (1.0, 2.6122) and, in particular, the range in which
the sequence is PB→ T → H. The dashed curve inFig. 8 provides a representative path through this region. As
described in[14], it corresponds to monotonic increase of Reynolds numberRe in the 0:1:2 three-mode reduction
of plane Couette flow in a moderate aspect ratio domain[3]. The formula for this curve is given by

µ1(Re) = (0.0323Re − 12.0680)

11.4349
,

µ2(Re) = (0.1062Re − 15.9763)

11.4349
.

(66)

In Fig. 9 we join the stable MM branch to the left of its encounter with PB atRe ≈ 339.53, where it loses
stability to TW solutions. A Hopf bifurcation subsequently occurs atRe ≈ 339.82, producing SW solutions, and
the MM equilibria converge on the origin atRe ≈ 373.61 as theµ(Re) path inFig. 8 crosses theµ1 = 0 axis.
Meanwhile the TW solutions remain stable untilRe ≈ 341, where MTW solutions appear; these remain stable until
Re ≈ 354.82, at which point a PD bifurcation occurs. The resulting period-doubled MTW solutions enjoy a brief
region of stability untilRe ≈ 357.56, where another PD bifurcation occurs (not shown inFig. 8). The resulting
period-doubled solutions lose stability atRe ≈ 357.93; beyond this point all TW, MTW solutions and period-
doubled variants are unstable. The unstable SW solutions arising in the H bifurcation atRe ≈ 339.82 undergo T
and PD bifurcations atRe = 351.64 and 352.59, respectively. Neither of the resulting (unstable) branches are shown
in Fig. 8. The unstable SW solutions disappear altogether atRe ≈ 366.24, when the SWHo line ofFig. 8is crossed.

At the end of Section3.1we argued that structurally stable heteroclinic cycles of AGH type[2] must also occur for
the 0:1:2 system (cf.Fig. 2); we now show projections of an example of this heteroclinic cycle, found at parameters
(66)for Re = 400, inFig. 10. (Note that thex1 = 0 line is attracting despite the positive value ofµ1.) In addition to
AGH cycles, there exist nearRe = 347 (whereµ1 ≈ −0.0752 andµ2 ≈ 1.8257) heteroclinic cycles of a type not
previously seen. Their connecting orbits pass very close to the (unstable) MM0 equilibrium in the real subspace(43)
en route from the PM0 equilibrium to the PMπ/2 equilibrium and then, during the return-path, close to MMπ/2: Fig.
11. An exact connection between the PM and MM fixed points is codimension two, since it requires coincidence
of the one-dimensional unstable manifold of the PM solution with the one-dimensional stable manifold of the MM
solution within the three-dimensional real subspace. There is no obvious reason why an approximate connection
should occur for the cut through parameter space corresponding to the plane Couette flow model. However, such
heteroclinic cycles cannot occur in the 1:2 system since the MM solutions would have an unstable complex conjugate

Fig. 9. Partial bifurcation diagram of(2) following the pathµ(Re) given by(66)with system parameters(65). Here and on subsequent bifurcation

diagrams for the 0:1:2 mode interaction,A =
√

max(|a0|2 + |a1|2 + |a2|2).
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Fig. 10. Projections of the AGH type heteroclinic cycle PM0 → PMπ/2 → PM0 at (µ1, µ2, B1, B2) = (0.0745, 2.318, 0.4375, 1.2031) (i.e.
Re = 400). For these parameter values there are no MM equilibria to disrupt the cycle.

Fig. 11. Projections of the new heteroclinic cycle PM0 → MM0 → PMπ/2 → MMπ/2 → PM0 co-existing with a stable SW solution (dotted)
at (µ1, µ2, B1, B2) = (−0.0752, 1.8257, 0.4375, 1.2031) (i.e.Re = 347). This figure strongly suggests that the heteroclinic cycle (solid) passes
through the two SW periodic orbits near MM0 and MMπ/2 (dotted) in the invariant real subspace.
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Fig. 12. Projections of the chaotic heteroclinic cycle PMφ1 → MMφ2 → PMφ3 → MMφ4 → PMφ5 at (µ1, µ2, B1, B2) =
(−0.0780, 1.8163, 0.4375, 1.2031) (i.e.Re = 346).

pair of eigenvalues in the two-dimensional real subspace (seeFig. 11), leaving no possible stable direction for a
trajectory from a PM solution to come in along.

Fig. 11also reveals that a stable heteroclinic connection can co-exist with stable SW solutions, shown as dotted
loops near MM0 and MMπ/2. These SW orbits apparently nontrivially link the heteroclinic cycle in the (three-
dimensional) real subspace.

ForRe = 346, whereµ1 ≈ −0.0780 andµ2 ≈ 1.8163, a cycle similar to that shown inFig. 11is found, but the
visits to the MM equilibria are more complicated. Indeed, this appears to be a chaotic heteroclinic cycle; seeFig.
12. Here successive visits to MM solutions occur in a chaotic fashion, as shown in the left panel ofFig. 13, unlike
the successive visits forRe = 347 which are always to one of four MM solutions related byπ/2 rotations in the
(x1, y1) plane, as shown in the right panel ofFig. 13.

We conclude this section by examining a horizontal path atµ2 = 2.9, intersecting theµ1 = 0 axis aboveµ = µ̃,
the bifurcation diagram for which appears inFig. 14. As deduced in Section3.1, the MM equilibria in the right

Fig. 13. Trajectory for solution shown in (left)Fig. 12and (right)Fig. 11, with longer integration time. The+’s show the circle of MM fixed
points. In the left panel, successive visits to MM solutions occur in a chaotic fashion. In the right panel, the successive visits are always to one
of four MM solutions related byπ/2 rotations in the (x1, y1) plane.
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Fig. 14. Partial bifurcation diagram of(2) with system parameters(65)andµ2 = 2.9.

half-plane exist outside the parabola(45). These unstable MM equilibria bifurcate from the origin asµ1 passes
through zero and eventually disappear in a SB bifurcation atµ1 = 0.0537. Along the way, they undergo two H
bifurcations atµ1 = 0.0246 and 0.0421. The SW solution emerging from the former bifurcation disappears in an
apparent Sh bifurcation atµ1 = 0.0236, while the SW solutions emerging from the latter disappear in a SWHo
bifurcation atµ1 = 0.0144. The two H bifurcations are separated by a PB bifurcation atµ1 = 0.0400, in which
TW solutions are generated. These have four unstable eigenvalues, but two cross into the left half-plane at the T
bifurcation atµ1 = 0.0494, and two more at the T bifurcation atµ1 = 0.8800 (not shown), giving stability of the
TW solutions for higherµ1 values. At the latter T bifurcation, the MTW solutions bifurcate to smaller values of
µ1, and are stable until undergoing their own T bifurcation atµ1 = 0.4969 (not shown). The MTW which emerge
from the T bifurcation atµ1 = 0.0494 undergo various bifurcations, but always remain unstable.

5. Example 2: B1 = 0.5974, B2 = −0.1149, σµ = −1

Our second example of the degenerate 1:2 and 0:1:2 resonances, representative of the caseσµ = −1 andB1 >

0, B2 < 0, is also taken from a low-dimensional plane Couette flow model, but in this case in a minimal flow unit
[4]. Here dynamical structures such as travelling and standing waves that are present in a somewhat larger model
(but which are similar to those considered in§3.1) account for the streak breakdown/reformation cycle in this flow.
This parallels the discovery of structurally stable heteroclinic cycles in the five-mode boundary layer models in[8]
and their subsequent elucidation in the simpler 1:2 resonance in[2].

5.1. Degenerate 1:2 resonance

We now study(26) for the particular case

e11 = −0.7138, e12 = e21 = 0.1373, e22 = −0.0264. (67)

As in Section4.1, we first find parabolae of SB and PB bifurcations. Sinceσµ = −1 andB2 < 0 the former is
confined to theµ2 ≥ 0 half-plane and(46) indicates that its extremum lies in theµ1,2 > 0 quadrant; from(44)we
see that the MM equilibria exist inside the parabola forµ1 < 0 and outside the parabola forµ1 > 0. The inequality
B1 > −B2/2 is satisfied for this case and so(50) indicates that the locus of PB bifurcations has its extremum in
the µ1 < 0, µ2 > 0 quadrant. Finally, sinceσB = sign(B1B2) < 0, the line along which the MM equilibria are
undefineddoes intersect the region in which these equilibria exist, as indicated by ‘MM→ ∞’ in Fig. 15.

We use AUTO to compute loci of H, T and SWHe bifurcations, all of which are indicated inFig. 15. Again, in
accord with the theory of Section2.2, we see that the H bifurcation curve enters theµ1 < 0 half-plane and limits
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Fig. 15. Various bifurcation sets for(4) at with e11 = −0.7138, e12 = e21 = 0.1373 ande22 = −0.0264 featuring symmetry-breaking (SB)
pitchfork, Hopf (H), standing wave heteroclinic (SWHe), parity-breaking (PB) and torus (T) bifurcations.

on µ̃ = (0, −1/e11) = (0, 1.400). The degenerate equilibria and some sample trajectories in parameter space are
shown inFig. 16; note the two branches of equilibria, sinceσµσB > 0. We find that the locus of SWHe bifurcations
lies entirelyoutside that of the H bifurcations, while the locus of T bifurcations extends from theµ = 0 point into
theµ1 > 0 half-plane.

The situation here is clearly much simpler than in Section4.1; asµ1 increases from (moderate) negative to
positive values forµ2 ∈ (0, µ̃), the only bifurcation sequence observed is SWHe→ H → PB→ T → SB, possibly
preceded by a further SB. A bifurcation diagram forµ2 = 0.2 is shown inFig. 17. The MM equilibria, born in a
SB bifurcation atµ1 ≈ −3.7945, lose stability in a subcritical H bifurcation atµ1 ≈ −0.5909. Between this and
the SWHe bifurcation atµ1 ≈ −0.6234 there exists an unstable SW solution, whose stable manifold divides the
basins of attraction of the stable MM and PMπ/2 equilibria. Unstable TW solutions bifurcate from the unstable MM
equilibria atµ1 ≈ −0.0880, and later gain stability in a T bifurcation atµ1 ≈ 0.1202, at which the stable MTW
solutions disappear. Stable heteroclinic cycles of AGH type[2] exist in the regionµ1 ∈ (−0.61, −0.05); for the
lowest values ofµ1 in this range the stable cycles co-exist with stable MM equilibria.

We close with a brief comment on the caseµ2 < 0. Here the trivial state is the unique global attractor forµ1 < 0;
moving into theµ1 > 0 half-plane, the mixed-mode equilibria bifurcate fromµ = 0 point and remain stable until
bifurcating to travelling waves as the PB curve ofFig. 15is crossed.

Fig. 16. Phase space of(26) for system parameters(67) at µ = µ̃ with sample trajectories. The nearly-coincident pure mode equilibria and
Takens-Bogdanov points are labelled PM and TB, respectively. Compare this figure, for whichσµσB > 0, with Fig. 5whereσµσB < 0.
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Fig. 17. Bifurcation diagram for(26)with parameters set according to(67) for fixedµ2 = 0.2.

5.2. 0:1:2 Resonance

We next turn to the full system(2) with system parameters(67), for which the curves of SB and PB bifurcations,
as well as that along which the MM equilibria diverge to infinity, coincide with those found in Section5.1.

We again turn to AUTO to numerically compute the locus of H, SWHe and T bifurcations departing from the
µ = 0 point, finding that the H bifurcation curve appears to diverge to infinity in the left half-plane and, in particular,
doesnot pass throughµ = µ̃, in accord with the theory of Section3.2. The locus of SWHe bifurcations, computed
with AUTO, are found to lie between the loci of SB and H bifurcations. The bifurcation sequence with fixed
µ2 ∈ (0, −1/e11) andµ1 increasing through negative values toµ1 = 0 is thus expected to be the same as found in
the degenerate 1:2 resonance. In theµ1 > 0 half-plane, however the picture differs somewhat from that of Section
5.1. Here it appears that most horizontal cuts throughFig. 18do not intersect the T bifurcation locus (at least for
moderateµ1) and hence TW solutions appear to be the final limiting state.

For horizontal cuts withµ2 set to a fixed value greater than−1/e11, the branch of H bifurcations which depart
theµ = µ̃ point is encountered, along with an associated SWHo bifurcation set.

We indicate by a dashed line inFig. 18the path followed throughµ parameter space as the Reynolds number,Re,
is monotonically increased in a 0:1:2 three-mode reduction of plane Couette flow in the minimal flow unit[4]. No
interesting bifurcations are encountered asRe is increased from zero, the only qualitative change being the birth of
MM solutions from the origin as the line crosses theµ1 = 0 axis (atRe = 76.70). The lack of interesting dynamics
at these parameter values illustrates why the 0:1:2 mode interaction alone is an unsatisfactory model; however, the

Fig. 18. Various bifurcation sets for(2) with B1 = 0.5974, B2 = −0.1149 andσµ = −1 featuring symmetry-breaking (SB) pitchfork, Hopf
(H), standing wave heteroclinic (SWHe), standing wave homoclinic (SWHo), parity-breaking (PB) and torus (T) bifurcations. The dashed line
µ(Re) corresponds to changing the Reynolds numberRe in the model obtained by restricting to the 0:1:2 modes in[4]. The equation for this
line isµ1(Re) = (0.1281Re − 9.8256)/10.7603, µ2(Re) = (−0.0503Re − 21.8841)/10.7603.
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addition of a few more modes to the basic 0:1:2 system leads to interesting, physically-relevant dynamical behavior
similar to that of the 0:1:2 resonance at somewhat different parameter values[4].

6. Example 3: Perturbations from µ0,1,2 = 0

At the outset of this paper, we rescaled(1) under the assumption of finiteµ0. We now discard this assumption,
and consider the 0:1:2 resonance as a problem with three (small) bifurcation parametersµ0, µ1 andµ2, allowing
us to perturb from a (partially) integrable case. Throughout this section we restrict to the real subspace of(1) with
c scaled out, and hence consider analogues of the first, second and fourth equations of(5) with µ0 written for σµ

(andy1,2 = 0). We focus on the caseB1 > 0 > B2, for which an interesting family of periodic orbits are born in a
‘Silnikov’ homoclinic bifurcation[12].

Forµj = 0 the ‘energy’ function(3), which defines a family of ellipsoids in phase space, remains constant; for
µj �= 0, we have

Ė = µ0a
2
0 + 2µ1x

2
1 + 2µ2x

2
2. (68)

It will be convenient to define a new variable ˜a0
def= a0/

√
2 and system parametersB̃1,2

def= √
2B1,2 so that the level

sets ofE become geometrical spheresE = ã2
0 + x2

1 + x2
2, and the (real) ODEs take the form

˙̃a0 = µ0ã0 + B̃1x
2
1 + B̃2x

2
2,

ẋ1 = (µ1 − B̃1ã0)x1 + x1x2,

ẋ2 = (µ2 − B̃2ã0)x2 − x2
1.

(69)

Forµj = 0 the fixed points of (69) include two equilibria on the ˜a0 axis at

(ã0, x1, x2) = (±
√

E, 0, 0), (70)

with eigenvalues

λ = 0, ∓B̃1
√

E and ∓ B̃2
√

E. (71)

For B̃2 < 0 < B̃1, these are saddles; those with positive (resp., negative) ˜a0 having their stable eigenspaces in the
x1 (resp.,x2) direction and unstable eigenspaces in thex2 (resp.,x1) direction. There are also four MM equilibria
at the points

(ã0, x1, x2) = (ã0, ±
√

−B̃1B̃2ã0, B̃1ã0), (72)

where

ã0 = ±
√

E

1 + B̃1(B̃1 − B̃2)
; (73)

the eigenvalues at these points are

λ = 0,

(
ã0B̃2

2

)(
1 ±

√
1 + 8(B̃1/B̃2 + B̃3

1/B̃2 − B̃2
1)

)
. (74)

The radical in(74) may be positive for some choices ofB̃1 and B̃2, but is negative for allB̃2 < 0 provided
B̃1 > 1/2

√
2. SinceB̃2 is assumed negative, the real part of the nontrivial eigenvalues will share the sign of ˜a0.

Thus, withB̃1 > 1/2
√

2 Eq.(69) with µ0,1,2 = 0 has two spiral sources in the ˜a0 > 0 half-space, and two spiral
sinks in the ˜a0 < 0 half-space, on each invariant sphere.
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In terms of the spherical polar coordinate representation

ã0 = r cosθ, x1 = r sin θ cosϕ, x2 = r sin θ sin ϕ, (75)

(where we restrictθ to [0, π] andϕ to [0, 2π)) (69)becomes

ṙ = (µ0 cos2 θ + (µ1 cos2 ϕ + µ2 sin2 ϕ) sin2 θ)r,

θ̇ = sin θ[(µ1 cos2 ϕ + µ2 sin2 ϕ − µ0) cosθ − r(B̃1 cos2 ϕ + B̃2 sin2 ϕ)],

ϕ̇ = (µ2 − µ1 + (B̃1 − B̃2)r cosθ) sin ϕ cosϕ − r sin θ cosϕ.

(76)

As expected, settingµ0,1,2 = 0 yields trivial radial dynamics ˙r = 0 and thus an invariant spherer = √
E, while the

angular variables reveal that fixed points lie at (ϕ, θ) = (mπ/2, nπ) for any integersm = 0, 1, 2, 3 andn = 0, 1 and
at (ϕ, θ) such that

tan ϕ = ±
√

−B̃1/B̃2, tan θ = ±
√

B̃1(B̃1 − B̃2). (77)

These latter conditions yield four equilibria, at

(ϕ, θ) = (ϕ̄, θ̄), (π − ϕ̄, θ̄), (π + ϕ̄, π − θ̄) and (2π − ϕ̄, π − θ̄), (78)

where

ϕ̄ = arctan
√

−B̃1/B̃2 and θ̄ = arctan
√

B̃1(B̃1 − B̃2). (79)

For the system parametersB1 = 0.5974, B2 = −0.1149 of Section5, ϕ̄ ≈ 1.1575 and̄θ ≈ 0.9106. The phase
space of(76)for this case (atr = 1) is shown inFig. 19. The fixed points(70)at the north and south poles are blown
up to invariant circles atθ = 0, π, and the four equilibria(78) appear as spiral sinks and sources above and below
the equatorθ = π/2. Almost every initial condition is attracted to one of the sinks.

We now consider how this picture changes as the bifurcation parameters are perturbed away from zero. First,
for the special caseµ0,1,2 ≡ µ, the first equation of(76) decouples as ˙r = µr. In the ã0, x1, x2 coordinates, this
implies a solution of(69)of the form

(ã0, x1, x2) = (ã0(0)eµt, ±
√

−B̃1B̃2 ã0(0)eµt, B̃1ã0(0)eµt), (80)

on the invariant radial linesx1 = ±
√

−B̃1B̃2 ã0, x2 = B̃1 ã0. Moreover, the terms involvingµj in the second and
third equations of(76)vanish identically, so that theθ, φ dynamics remain as inFig. 19while solutions move radially
according to(80). No mixed modes exist in this case.

Fig. 19. Flow of the system(76)on r = const. withµj = 0.
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For generalµj �= 0 we may computeapproximate invariant lines by substituting the ansatz

x1 = ±
√

−B̃1B̃2 (ã0 + α1) and x2 = B̃1 (ã0 + α2) (81)

into (69)and equating coefficients of ˜a0 and (ã0)0 (constant) (those of ˜a2
0 vanish identically, as above). This yields

two pairs of equations:

O(ã0) : µ1 + B̃1α2 = µ0 + 2B̃2
1B̃2(α2 − α1), µ2 − B̃2α2 + 2B̃2α1 = µ0 + 2B̃2

1B̃2(α2 − α1);

O(1) : (µ1 + B̃1α2)α1 = B̃2
1B̃2(α2

2 − α2
1) µ2α2 + B̃2α

2
1 = B̃2

1B̃2(α2
2 − α2

1).
(82)

These four equations can only be satisfied for the special choiceµj ≡ µ as above (whenceαj = 0), but the first
pair admits the solution

α1 = (µ1 − µ2)(2B̃1B̃2 − 1)

2B̃2[B̃1(B̃2 − B̃1) − 1]
+ (µ1 − µ0)(B̃1 + B̃2)

2B̃2[B̃2
1(B̃2 − B̃1) − B̃1]

,

α2 = µ1 − µ0 + B̃2
1(µ1 − µ2)

B̃2
1(B̃2 − B̃1) − B̃1

(83)

for arbitraryµj. Choosingαj thus, we balance the linear and quadratic terms, implying that, for large|ã0|, the affine
linear subspaces(81)are increasingly good approximations to the distinguished solution curves of(76) that perturb
from the lines(80) for µj �= 0.

The mixed modes(43)discussed in Section3.1may be written as

(ã0, x1, x2) =
(

µ1B

µ0 + B̃1B
,
±
√

−µ0µ1(µ0µ2 + B2)

µ0 + B̃1B
,

−µ0µ1

µ0 + B̃1B

)
, (84)

whereB = µ2B̃1 − µ1B̃2. These fixed points exist only forµ0µ1(µ0µ2 + B2) < 0 and they bifurcate from the
pure modes (µ2/B̃2, 0, ±√−µ0µ2/B̃2), at

µ0 = −B2

µ2
, (85)

which, under the redefinitionµj �→ µj/|µ0| employed above, coincides with(45). Whenµ0 → 0 they collapse
onto the (invariant) ˜a0-axis atã0 = µ1/B̃1, which is filled with fixed points atµ0 = 0. Similarly, thecondition (47)
at which the mixed modes reach infinity becomes

µ0 = −B̃1B. (86)

Asµ0 → −B̃1B, the ratios|x1/ã0| and|x2/ã0| in (84)approach
√

−B̃1B̃2 andB̃1 as required by the approximation
(81).

It is easiest to describe the mixed modes asµ0 varies for fixedµ1, µ2. There are several cases, depending
on the signs ofµ1, µ2 andB. We shall focus on those forµ1 > 0 > µ2 (with B̃2 < 0 < B̃1 as already noted).
From(84)–(86), the mixed modes depart from the pure modes and move towards infinity with ˜a0, x2 > 0 for µ0 ∈
(−B2/µ2, −B̃1B), and return from infinity with ˜a0, x2 < 0 for µ0 > −B̃1B, and approach (0, ±√−µ1µ2, −µ1)
as |µ0| → ∞. Far from the origin, stability properties transverse to the (approximate) invariant lines(81) are
determined by the dynamics on the invariant spheres forµj = 0; hence, the mixed modes are unstable transverse
to (81) approaching ˜a0, x2 = +∞, and stable transverse to(81) as they reappear from ˜a0, x2 = −∞. Along the
invariant lines stability is determined by the sign of the (θ, φ)-dependent coefficient of the first (radial) equation of
(76). Substituting theO(ã0) terms of(81)into the polar coordinate transformation(75), we find that this is dominated
for larger by sign(µ0 + B̃1B). We conclude that the MM equilibria are saddle points with two-dimensional unstable
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Fig. 20. Periodic orbit with bifurcation parametersµ0,1,2 = (0.01, 0.02, −0.02) and system parametersB1 = 0.5974, B2 = −0.1149, projected
onto the (θ, φ) plane superimposed upon the trajectories ofFig. 19(dotted). See the text for a discussion of phases I–VII.

and one-dimensional stable (two-dimensional stable and one-dimensional unstable) manifolds forµ0 < −B̃1B

(µ0 > −B̃1B), respectively.
Forµ0 > −B̃1B and sufficiently close to this value, the mixed mode saddle points are of ‘dissipative’ type, their

positive real eigenvalues being smaller than the magnitude of the negative real parts of their complex conjugate pair.
These fixed points are involved in a homoclinic bifurcation of Silnikov type[12], in which a family of remarkable
periodic orbits is created. These were first found in numerical simulations, but they may be largely understood
by reference to the behavior of solutions of(69) on the invariant planeP = {(ã0, x1, x2) | x1 = 0}, along the

approximately-invariant lines and, for larger =
√

ã2
0 + x2

1 + x2
2, near the approximately-invariant spheres. The

orbits display seven distinct phases, denoted I–VII, and an example is shown inFigs. 20 and 21. Due to reflection
symmetryx1 �→ −x1 aboutP, it suffices to consider onlyx1 ≥ 0.

Fig. 21. Various projections of periodic orbit withµ0,1,2 = (0.01, 0.02, −0.02) andB1 = 0.5974, B2 = −0.1149.
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First note that solutions starting nearP remain nearP for finite times, approaching it when the transverse
dynamics governed by the second component of(69) is attractive, i.e. in the region (µ1 − B̃1ã0 + x2) < 0. The
dynamics onP is topologically equivalent to that pictured inFig. 1with time reversed, since the signs ofµ0 (orσµ),
µ2 andB̃2 in the present case are all opposite to the corresponding parameter signs inFig. 1. Hence, all solutions
starting sufficiently close toP (excepting those on stable manifolds of the mixed modes), eventually enter the half
space ˜a0 < 0 and approach the negative ˜a0-axis. Here the quantity (µ1 − B̃1ã0 + x2) becomes positive, and so|x1|
begins to grow until the solution leaves the neighborhood ofP. This occurs explosively, since along the negative
ã0-axis we have ˜a0(t) = ã0(0) exp(µ0t), and using this in the linearized flow transverse toP, we obtain

ẋ1 = (µ1 − B̃1ã0(t))x1 ⇒

x1(t) = x1(0) exp

[
µ1t − B̃1ã0(0)

µ0
(exp(µ0t) − 1)

]
∼ exp

[
µ1t − B̃1ã0(0)

µ0
exp(µ0t)

]
, (87)

and the second (superexponential) factor in the first exponent is positive for ˜a0(0) < 0. Flow near the positive
ã0-axis, circulating with|x2| growing and shrinking, and along the negative ˜a0-axis forms phases I–III, and the
superexponential explosion(87) initiates phase IV.

Once|x1| isO(1), x2 grows again by virtue of the−x2
1 term in the third equation of(69), all three components

increase and the quadratic terms dominate, so that the orbit tracks the flow of theµj = 0 system on an invariant
sphere, spiraling towards one of the (stable) foci with ˜a0, x2 < 0 in phase V:Fig. 20. It is now close to an attracting
(approximate) invariant line, and will either escape to infinity or approach a neighborhood ofP along that line,
depending upon the flow direction at the point of initial approach. If the mixed mode saddle lies ‘outside’ this point,
or lies in the region ˜a0, x2 > 0, the dynamics returns the solution toP in phases VI and VII, the latter occuring close
to P where linear terms dominate and (µ1 − B̃1ã0 + x2) < 0. This completes the periodic cycle; which however
can be rather rich, since nearP several circuits ‘around’ the pure mode PMπ/2 may occur if the returning orbit lands
near PMπ/2 (the case ofFigs. 20 and 21has only a single circuit).

The above argument suggests only that there is an attracting set in the neighborhood of a closed curve that follows
the route I–VII, but we may prove that this set exists, and that it is a stable periodic orbit, by appeal to a version of
the Silnikov theorem appropriate to a dissipative spiral saddle for the eigenvalue conditions noted above ([15], p.
583, Fig. 4.8.26) and[16], cf. ([12], Theorem 6.5.1).

It remains then to verify that, for at least one parameter valueµ0 > 0, the incoming branches of the unstable
manifold(s) of the mixed mode(s) MM0,π/2, which follow the approximately-invariant lines(81) in towardsP,
return to MM0,π/2. We first note that the flow onP (Fig. 1with time reversed) implies that only solutions lying in
the stable manifolds of the pure modes can limit onP (for µ1 > 0 the stable manifold of the origin lies inP). Thus,
while codimension two heteroclinic bifurcationsmay occur in whichWu(MM0,π/2) limit on PM0 or PMπ/2, as one
variesµ0 with all other parameters fixed these will generically not be encountered.

We next observe that, asµ0 increases in the range (−B̃1B, ∞), MM0,π/2 move monotonically inward along the
lines, carrying their (local) stable manifoldsWs(MM0,π/2) with them. At large|r|, Ws(MM0,π/2) remains close to
the invariant spheres; consequently solutions departing fromP in any bounded neighborhood of the origin, including
solutions inWu(MM0,π/2), lie ‘inside’ Ws(MM0,π/2) for µ0 larger than, but sufficiently close to−B̃1B.

In contrast, we will show that the estimate(87) implies that, asµ0 increases, the point on the negative ˜a0-axis
at whichWu(MM0,π/2) explodes away fromP moves monotonically out towards ˜a0 = −∞. Indeed, eliminatingt
from the linearizedx1 andã0 equations of(69)and writing the initial values ofx1 anda0 asx10 anda00, respectively,
we have:

dx1

dã0
= µ1x1

µ0ã0
− B̃1x1

µ0
⇒ |x1| = |x10|

∣∣∣∣ ã0

ã00

∣∣∣∣
µ1
µ0

exp

[
− B̃1

µ0
(ã0 − ã00)

]
. (88)

Forµ1, B̃1 > 0 and (ã0 − ã00) < 0 fixed, both the second and third factors in this expression decrease asµ0 (> 0)
increases, so if we can show that|x10|, the distance fromP at whichWu(MM0,π/2) first becomes close to the negative
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ã0-axis, also decreases asµ0 increases, our claim will follow. The points of first encounter ofWu(MM0,π/2) with
P may be estimated from(81)by settingx1 = 0 to obtainã0 ≈ −α1, x2 ≈ B̃1(α2 − α1), with αj given in(83):

(ã0, x2) ≈
(

µ0(B̃1 + B̃2)

2B̃2[B̃2
1(B̃2 − B̃1) − B̃1]

+ const.,
µ0(B̃1 − B̃2)

2B̃2[B̃1(B̃2 − B̃1) − 1]
+ const.

)
, (89)

where the constant terms depend uponµ1, µ2, B̃1, B̃2 but are independent ofµ0. This implies that, asµ0 increases,
the approximate ‘landing points’ inx2 < 0 move along a line

x2 = B̃1(B̃1 − B̃2)

(B̃1 + B̃2)
ã0 +O(µ−1

0 ), (90)

thus approaching the ˜a0-axis, and the increase inµ0 contributes to take solutions further from the origin as they track
the circles in which the invariant sphere intersectsP. The time spent in phases I and II where (µ1 − B̃1ã0 + x2) < 0
andP is attractive is therefore increased, effectively reducing the value of|x10| appropriate for the estimate(88).
Consequently, for sufficiently largeµ0 > −B̃1B, Wu(MM0,π/2) leavesP ‘outside’Ws(MM0,π/2).

It follows from continuous dependence of solutions on parameters that there is at least oneµ0 for which attracting
homoclinic cycles to MM0,π/2 exist, and the (modified) Silnikov result implies that there exist stable periodic orbits
near this value. For example, forµ1 = 0.02, µ2 = −0.02, B1 = 0.5974, andB2 = −0.1149 (as considered in
Section5) such that−B̃1B = 0.01153, the homoclinic orbit occurs atµ0 ≈ 0.01181. Here the eigenvalues of the
MM are 0.000156 and−0.08332± 0.73736i. The unique stable periodic orbit associated with this homoclinic orbit
can be followed to lower values ofµ0, as inFig. 21.

While we appeal to theµ0,1,2 → 0 limit in accounting for the behavior of these periodic orbits in terms of
solutions on invariant spheres, the parameter-rescaling symmetry (aj, µj, t) �→ (αaj, αµj, t/α) noted in Section1
implies that any solution found (perturbatively) for smallµj has an ‘expanded’ counterpart for largeµj. Hence
these orbits (and, indeed, all others) exist in an unbounded sector of parameter space. We note that these periodic
orbits, which lie in the real subspace, appear to be stable and attracting for general initial conditions in the full
5-dimensional phase space: all solutions appear to eventually relax on a rotation of the real subspace, and approach
one of the pair of periodic orbits therein. Analogous periodic orbits are not possible for the related 1:2 system, since
they clearly require thea0 direction (seeFig. 21).

7. Conclusions

In this paper we studied a five- (real) dimensional quadratic system originally derived though projection of the
Navier-Stokes equations onto a subspace of three Fourier modes of wavenumbers 0, 1 and 2[3,4], but relevant to
more general three-wave interactions in systems with O(2) symmetry. In addition to this symmetry, the equations
have a rather special structure: their homogeneous quadratic terms preserve an energy-like function, and they
exhibit a scaling ‘parameter symmetry.’ Two limits are notable: when the three bifurcation parameters vanish, the
conservative system preserves a family of invariant spheres, and when two of the parameters (µ1, µ2) are small
relative to the third (µ0), the (fast) 0-mode equation may be removed and the system collapsed to a degenerate case
of the 1:2 resonance studied in[2] and[11].

We re-examined the 1:2 resonance and shed some light on the previously unstudied degenerate case. In addition
to all the solution types described in[1,2,11], we found a parameter value ( ˜µ) at which loci of symmetry-breaking,
parity-breaking and Hopf bifurcations pass through theµ1 = 0 axis. This organizing center corresponds to a de-
generate Takens-Bogdanov bifurcation point contained in either a closed curve, or two open arcs, of equilibria,
depending upon the signs of the system parameters.

We used the 1:2 analysis as a stepping stone to the problem of the 0:1:2 three-wave resonance. Most notably, this
system possesses analogues of the structurally stable heteroclinic cycles of[2] connecting pure modes, as well as
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new cycles involving transits among both pure and mixed modes. We then considered the 1:2 and 0:1:2 resonance
problems for two particular cases of system parameters typifying these new behaviors. We found significant dif-
ferences between the 1:2 and 0:1:2 systems for the same parameter values, and were able to explain some of these
differences. For example, the presence or absence of an additional locus of Hopf bifurcations emanating from ˜µ in
the 0:1:2 case depends only on the system parameter values (Fig. 3, Eqs.(63) and (64)). We also found a class of
‘strange’ periodic orbits that exist over a relatively large bifurcation and system parameter region, whose existence
we prove by appeal to Silnikov bifurcation theory, and whose structure we interpret via the conservative limit.

While we have studied only the quadratic system(1) here, we expect that many of the phenomena described will
persist locally, nearaj = 0 for sufficiently small |µj|, for O(2)-equivariant systems with cubic and higher order terms
that continue to preserve an ‘energy like’ integral analogous to(3). Of course, the parameter-rescaling symmetry
(aj, µj, t) �→ (αaj, αµj, t/α) will no longer hold, but hyperbolic sets and codimension one and two bifurcations
will continue to occur[12].
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