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Abstract

Novel Vehicular Trajectories for Collective Motion from Coupled Oscillator

Steering Control

by

Margot Kimura

We explore the possibilities provided by an extension of the model for vehicle

motion coordination by Leonard, Paley, and Sepulchre - by utilizing a slightly

modified coupling function, we find that one can achieve a multitude of exotic

coordinated trajectories.

To explain the underlying mechanism, we begin with a general analysis of a

system of three vehicles with all-to-all coupling, in terms of both the full phase

(θ) system and the reduced phase (ψ) system. The reduced system, subject to the

Poincare-Bendixson Theorem, can only have two types of solutions: fixed points

and periodic orbits. Simulation shows that the exotic trajectories we find are a

result of periodic orbits in the reduced phase controller.

We then analyze the reduced phase controller with a particular coupling function

that gives rise to such trajectories and provide approximate solutions, supported by

simulation. We also build intuition on how solutions from the reduced controller are

related to vehicular motion. We show that a multitude of exotic trajectories exist

for this particular coupling function, and relate parameter values to the different
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patterns.

Finally, we catalog the other possible types of coupling topologies for three

vehicles, and repeat the above analysis for a different topology, which we have

nicknamed the Arbiter coupling topology. We demonstrate in an extension of the

previous example that one can find similar interesting vehicular trajectories for

topologies other than all-to-all, and show that these trajectories can be found in a

system of four vehicles under the Arbiter coupling topology.
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Chapter 1

Introduction

The notion of using results from the coupled oscillator literature to control the

motion of a group of vehicles is relatively new, and of interest because it is simple

yet robust, and has been proven to work in a real-world system. To introduce this

type of model, we will first begin with a brief background discussion while noting

some relevant previous works in the separate subjects of coupled oscillator systems

(Section 1.1), and the Dubins vehicle model (Section 1.2). We will then bring

the two together in the following section, where we introduce the group motion

coordination model by Leonard, Paley, and Sepulchre (Section 1.3), which will

serve as the basis for our work. This will segue into our analysis of our variant

of the Leonard, Paley, and Sepulchre (LPS) model, and the interesting vehicular

trajectories we find.
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1.1 Coupled Oscillator Systems

1.1.1 History

In 1665, the Norwegian mathematician Christiaan Huygens observed that the

frequencies of two pendulum clocks suspended from the same beam slowly adjusted

in time until they were identical, and the pendula phase-locked in anti-phase. This

was the first documented observation of the synchronization of coupled oscillators.

The two clocks were weakly coupled through the beam from which they both hung

- the swinging motion of each pendulum was minutely transferred to the other

pendulum via tiny movements in the beam. If the beam were perfectly rigid,

the two clocks would have continued swinging at their natural frequencies, never

synchronizing [16].

Since Huygens’ first documentation of this phenomena, the same phase-locking

behavior has been found in a multitude of natural and man-made systems composed

of coupled oscillators. Given that an oscillator can be thought of as anything

with sustained periodic behavior and that oscillators can phase-lock even if the

coupling is very weak, it should not be surprising that phase-locked solutions can

be found in such a wide range of dramatically different systems. A few examples of

coupled oscillator systems include chirping crickets1, an array of superconducting

Josephson junctions, flashing fireflies, coupled electricity generators, pacemaker

cells, and circadian rhythms [15, 16, 21]. A common result is synchronization,

1A cricket can be modeled as an oscillator in the following way: one can imagine the cricket’s
state as having a phase (angle), traveling around a circle, and every time the cricket’s state passes
zero phase, the cricket chirps.
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where the oscillators phase-lock with the same phase.

1.1.2 Basic Models

Despite the fact that Huygens’ observation was made so long ago, it was not until

relatively recently that a significant amount of research has been directed towards

studying the synchronization of coupled oscillators, perhaps due to the lack of a

model to describe the behavior. In 1967, Winfree [23] created a mathematical model

to describe how coupled oscillators evolve in time:

θ̇i = ωi +

(

N
∑

j=1

X(θj)

)

Z(θi), i = 1, ..., N.

Here, oscillator i has phase θi and natural frequency ωi. The coupling between

the oscillators is described by the functions X and Z: X(θj) shows the influence

of each of the other oscillators on oscillator i, and Z(θi), the sensitivity function,

determines the response of oscillator i [21, 23].

This model was further simplified and developed by Kuramoto [11, 21] in 1975,

to the following equation for N coupled oscillators:

θ̇i = ωi +
K

N

N
∑

j=1

sin(θj − θi). (1.1)

Like in the Winfree model, ωi describes the natural (uncoupled) frequency of oscil-

lator i and is drawn from a distribution, and the sum represents the total difference

between phase of oscillator i and the phase of each of the other oscillators it is

coupled to. The 1

N
factor normalizes the sum. The constant K, called the coupling

3



strength, indicates how much of an effect the coupling has on each oscillator’s phase

at each instant in time.

Kuramoto also noticed that his model could be written in terms of an order

parameter, which measures the net motion of the population. The complex order

parameter is expressed as [11, 21]

rpce
iψ =

1

N

N
∑

j=1

eiθj , (1.2)

where ψ ∈ [0, 2π) is the mean phase and rpc ∈ [0, 1] measures the phase coherence

of the population. This can be manipulated and then substituted into Eqn (1.1) to

yield

θ̇i = ωi +Krpc sin(ψ − θi), (1.3)

where i = 1, . . . , N . This emphasizes that the primary influence on the phase of

any particular oscillator is through the mean phase of the population, rather than

the phase of each individual oscillator. This equation also provides an explanation

for the mechanism underlying spontaneous synchronization: since the effective cou-

pling strength of any solution is influenced by the coherence of the population, if

a relatively large number of oscillators entrain to the synchronized state (rpc ≈ 1),

they will in turn increase the strength of synchronization and recruit more oscil-

lators to also synchronize. However, if the entrained oscillators have distributed

phase (rpc ≈ 0), then the overall population will reach a level where the coupling

will no longer have much influence, which explains why the distributed-phase so-
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lution is less commonly found in natural systems. An excellent discussion of the

history of these models as well as extensions can be found in [21].

Since Kuramoto’s work appeared, research on coupled oscillator systems has ex-

ploded. The behavior of similar systems have been studied for a variety of different

coupling functions and network architectures.

1.1.3 The Simplest System: N = 2

A significant amount of literature has focused on low-dimensional systems be-

cause they are more tractable to analyze than the general case. The simplest

possible system is the case of N = 2 identical oscillators.

A general 2π-periodic coupling function f depending only on the phase difference

of the two oscillators gives:

θ̇1 = ω +Kf(θ2 − θ1),

θ̇2 = ω +Kf(θ1 − θ2).

This system of equations can be simplified to a one-dimensional system: let ψ =

θ1 − θ2. Then we have:

ψ̇ = K(f(−ψ) − f(ψ)).

Results from [4, 10, 12] show that the system has two persistent fixed points,

which correspond to phase-locked solutions: ψ = 0 and ψ = π. The stability of all

fixed points of the system can be shown to depend on the system parameters and

5



the form of the coupling function.

1.1.4 Low Dimensional Solutions: N = 3

Once one considers three oscillators, the dynamics of the system immediately

become much richer. In both simulations and experiments for three coupled oscil-

lators, attractors, bifurcations, cluster states, periodic orbits, tori, and heteroclinic

cycles that may be robust have been found [2].

For the same class of coupling functions mentioned in the N = 2 case, the N = 3

system can be simplified to a two-dimensional system. This will be discussed in

greater detail in the next section. The most important feature of the simplifica-

tion is that the simplified subsystem provides a simple description of the types of

solutions possible for the original system. Since the ψ system is two-dimensional,

by the Poincare-Bendixson Theorem, we can be assured that there will not be any

solutions more complicated than periodic orbits or fixed points in the ψ coordi-

nates. Therefore, while we expect significantly more interesting results than in the

N = 2 case, we can also expect that they will remain relatively tractable. For these

reasons, we have focused our work on a system of three coupled oscillators.

1.1.5 More General Models

The transition from analyzing a system of three oscillators to four oscillators

immediately introduces significantly more difficulty in finding solutions, since the

Poincare-Bendixson Theorem is no longer valid for the ψ system.

6



In [8], Hansel, Mato & Meunier find heteroclinic orbits in systems of N cou-

pled identical oscillators. The system they analyze is very similar to what we will

examine in Section 2; specifically, the coupling function

Γ(x) = − sin(x+ α) + r sin(2x),

with various values of α. They also include the possibility of noise. Their results

show the existence of two two-cluster states - in group theory terms, (Sp×Sn1−p)×

(Sp×Sn2−p) solutions - between which the system oscillates, before slowly converging

to one of the two-cluster states. Here, ni (i = 1, 2) is the total number of oscillators

in the ith two-cluster state, p is the largest cluster from each two-cluster state and

satisfies p < ni for all i, and n1 + n2 = N . For the case of N = 4, the solution

spends some time near one two-cluster state, then quickly shoots off to somewhere

near the other two-cluster state, spends some time there, and then quickly returns

to the vicinity of the first two-cluster state. This explains their strange result that

the system is stable, in that it eventually settles to one of the two-cluster states,

but that the linearization of each of the two-cluster states is unstable. However,

they did not find these hetereoclinic connections for N = 3.

While there has been a fair amount of research on specific systems with large

numbers of oscillators, a single approach that captures all possible solutions has

not yet been completely formulated. However, there has been progress in providing

solutions for generalized systems. We will specifically mention two approaches we

have found.
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The first approach focuses on symmetry arguments to show solutions for a class

of networks. Specifically, the approach by Ashwin & Swift [4] assumes that the

network is comprised of identical dissipative oscillators with weak coupling, and

relies primarily on symmetry arguments to analyze networks with global coupling

or either directed or bi-directional coupling in a ring. In this paper, they also inves-

tigate limit cycle solutions, structurally stable heteroclinic cycles, and degenerate

behavior, where the oscillators decouple into subgroups [4].

The second approach focuses on the effect of network architecture on the results

of coupled dynamical systems, or “cells”. This very general approach, by Golubit-

sky & Stewart [20], as well as Leite and Dias (private communication), allows for

different types of cells as well as different coupling laws between cells. By docu-

menting the types of coupling, number of coupling links, and types of individual

cells in the system, they have found a way to reduce a high-dimensional system

to an equivalent lower-dimensional system which is much simpler to study. While

some information is lost in simplifying the system and the preservation of the sta-

bility of solutions is not guaranteed, they have proven that solutions found for the

low-dimensional analog exist in the original system. They have also shown that

some results are due to the symmetry of a system, but that symmetry is not the

only mechanism by which such solutions are possible [20].

8



1.2 Dubins’ Vehicle

A widely studied motion control law for a single vehicle is given by the three-

dimensional Dubins system [6, 22]:

ẋ = cos(θ)

ẏ = sin(θ)

θ̇ = u

(1.4)

subject to the constraint that

|u| ≤ R. (1.5)

The minimum time problem for this system was originally proposed by Markov

in 1889, and was analyzed in detail by Dubins in 1957 [6, 22]. Dubins found that

a minimal time path necessarily exists for a particle traveling with constant unit

speed along a continuously differentiable path in real Euclidean space from point u

to point v with initial velocity vector U , terminal velocity vector V , and minimum

radius of curvature R, if the path had an average curvature of less than or equal

to R−1. He named such a trajectory an R-geodesic. He proved that in the plane,

an R-geodesic is necessarily a continuously differentiable curve consisting of not

more than three pieces, each of which is either a straight line segment or an arc

of a circle of radius R. Specifically, for a path consisting of straight lines (L), and

circular arcs (C) of radius R, the optimal paths allowed are C, L, LC, CL, CC,

CCC, and CLC, where the middle C arc in the CCC path has to be of length

9



≥ π. The above Dubins system has initial and terminal positions in (x, y), initial

and terminal velocities in θ, and control variable u [6, 22]. This model for vehicle

motion lends itself well to modeling realistic systems, such as cars and aircraft.

The Dubins system has been studied for a variety of properties. See [22] for a

discussion and further analysis of the model.

1.3 Putting it All Together: The LPS Model

A number of schemes have been shown to be useful in the coordination of a

group of vehicles, with each vehicle following a relatively simple control law. One

scheme in particular takes advantage of existing results from the coupled oscillator

community by using a Kuramoto-style equation to control the steering ofN Dubins-

style vehicles. Then, one can manipulate the stability of solutions in the phase

model to provide coordinated group motions of the vehicles. We have based the

majority of our work on studying a variant of this model by Leonard, Paley, and

Sepulchre [13, 14, 15, 17, 18, 19], (similar to [9]), which will hereafter be referred to

as the LPS model. For simplicity, their model assumes that the N Dubins-style

vehicles are identical, move with constant unit speed, and are globally (all-to-all)

coupled:

ṙn = eiθn,

θ̇n = un(r, θ), n = 1, ..., N.

(1.6)

The complex vector rn denotes the position of particle n, while the angle θn denotes

10



the orientation of its (unit) velocity vector. Since rn = xn+ iyn, with (xn, yn) ∈ R
2,

we will hereafter use the following equivalent equations for the position of each

particle:

ẋn = cos(θn),

ẏn = sin(θn).

(1.7)

It can be shown that the above system is invariant to rigid group rotation

and translation for controllers that are functions of only the relative positions and

headings of the particles, defined as rmn = rm− rn and θmn = θm− θn, respectively

[13, 14, 15, 17, 18, 19]. The steering control of the vehicles un can be decomposed

into the sum of three subcontrollers:

un = ω0 + uspacn (r, θ) + uheadn (θ), n = 1, ...N, ω0 ∈ R. (1.8)

The ω0 term, typically a constant, determines whether the vehicles will move in

straight lines (ω0 = 0) or circles (ω0 6= 0), and the direction of rotation around the

circle (given by the sign of ω0 6= 0). The heading controller, uheadn , depends only

on the relative orientation of the vehicles and governs the overall motion of the

group, while the spacing controller, uspacn , attracts the solutions to a given spatial

formation to correct for random initial conditions. Given knowledge of the work

done on coupled oscillators, it is intuitive to define the phase controller for the

system as [15, 17, 19]:

θ̇n = uphasen = ω0 + uheadn (θ). (1.9)
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A valid phase controller is given by a simplified version of the Kuramoto equation

(1.1), in which all oscillators have the same natural frequency ω0. This controller

has been shown to generate trajectories that are either circular or linear, and in-

phase, in anti-phase, or in a distribution of phases. Trajectories can also be classified

in terms of the order parameter (1.2): synchronous solutions have order parameter

with magnitude (equivalently, phase coherence) rpc = 1, and balanced or incoherent

solutions have order parameter with magnitude rpc = 0. It is useful to note that

the magnitude of the order parameter, rpc, is equivalent to the speed of the center

of mass, or the average linear momentum of the group [12, 13, 15, 17].

One can also recover a phase controller of the same form as the simplified Ku-

ramoto model by designing the control with the gradient of a rotationally symmetric

phase potential. Specifically, this gives

uphasen = ω0 +
k

N

N
∑

j=1

sin(θmn). (1.10)

It has been found that for k > 0, the synchronized phase arrangements are the

only asymptotically stable solution, whereas for k < 0, only the balanced solutions

(satisfying order parameter = 0) are asymptotically stable [12, 13, 15, 17].

Constructing the spacing controller is more complicated in general, since it is

designed to stabilize a specific formation. In [14, 15, 17, 18, 19], the derivation

of a controller that stabilizes a circular formation and a proof of stabilization is

given. The basic idea of the construction is to design a potential function which is

minimum when the vehicles are in the desired configuration. Then, for uheadn = 0,
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it is possible to construct a Lyapunov function to demonstrate that the desired

formation is asymptotically stable. For the overall system, one can use a composite

Lyapunov function, made up of a linear combination of the Lyapunov functions used

for the spacing and heading controls, to prove the stability of the overall desired

configuration [13, 14, 15, 17, 18, 19].

The benefits of this style of model for controlling the motion of a group are

clear: the model takes advantage of results from research on coupled oscillators

and translates it into a simple but robust law governing individual vehicle motion

that produces the desired overall group motion.

In the LPS model, vehicle behavior (i.e., motion in either circles or straight

lines) is switched by changing the parameters ω0 and k appropriately. A different

switching scheme is presented for two vehicles in [10]. In this scheme, the system

is tuned to a bistable state, and switching between stable solutions is induced by

an input to one of the vehicles. Moreover, this scheme can be optimized to get

switching for the lowest signal strength.

However, in both of these models, the coupling function is restricted to the first-

mode sine term only. It may prove worthwhile to explore the effects of different

coupling functions, such as including higher-mode terms, to see what other types

of coordinated motion are possible. As shown in Section 1.1, coupled oscillator

systems have been studied for coupling functions other than the basic sine of the

phase differences. Using these slightly more complicated coupling functions in the

LPS model, we have found that one can get trajectories that are much more exotic
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than straight lines or circles, which may have advantages that will be discussed

later. We will simplify our analysis by focusing on only the phase component of

the vehicular motion, and by restricting the system to three vehicles. We will

first analyze the properties of the general phase control, and then present a more

detailed analysis of the resulting trajectories for a specific coupling function.
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Chapter 2

Identical All-to-All Coupling:

Phase Dynamics

2.1 Equations and Symmetry

A system of three identical oscillators with all-to-all identical phase-difference

coupling is given by

θ̇n = ω0 + k
∑

m6=n

f(θm − θn), n = 1, 2, 3, (2.1)

where θn ∈ [0, 2π) and the coupling function f is 2π-periodic. This system of

equations is equivariant with respect to the group S3 × T 1, where S3 is the six-

element permutation group generated by

σ1 : (θ1, θ2, θ3) → (θ2, θ1, θ3),

σ2 : (θ1, θ2, θ3) → (θ2, θ3, θ1),

(2.2)

and T 1 is the circle group with action
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τφ : (θ1, θ2, θ3) → (θ1 + φ, θ2 + φ, θ3 + φ) (2.3)

for all φ ∈ [0, 2π). This means that if (θ1(t), θ2(t), θ3(t)) is a solution to Eqn (2.1),

then, for any γ ∈ S3 × T 1, so is γ · (θ1(t), θ2(t), θ3(t)).

As mentioned earlier, Eqn (2.1) can be reduced to a two-dimensional system by

introducing the 2π-periodic variables ψ1 = θ1 − θ2 and ψ2 = θ1 − θ3:

ψ̇1 = θ̇1 − θ̇2 = k(f(−ψ1) + f(−ψ2) − f(ψ1) − f(ψ1 − ψ2)),

ψ̇2 = θ̇1 − θ̇3 = k(f(−ψ1) + f(−ψ2) − f(ψ2) − f(ψ2 − ψ1)).

(2.4)

Eqn (2.4) inherits equivariance with respect to the actions obtained from Eqns

(2.2) and (2.3) on the ψ variables:

σ̂1 : (ψ1, ψ2) → (−ψ1, ψ2 − ψ1),

σ̂2 : (ψ1, ψ2) → (ψ2 − ψ1,−ψ1).

(2.5)

Note that τ̂φ : (ψ1, ψ2) → (ψ1, ψ2) acts as the identity for all φ. The actions σ̂1

and σ̂2 generate the permutation group S3. We will sometimes find it convenient

to think of ψ1 and ψ2 as being restricted to [0, 2π), and other times it will be useful

to allow them to take any real value.

2.2 Solutions and Bifurcations

Phase-locked solutions are characterized by each pair of θ variables always dif-

fering by a fixed value. Thus in the ψ variables, phase-locked solutions correspond
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(a) S3 Solution (b) S2×S1 Solution (c) Z3 Solution

Figure 2.1: Phase locked solutions guaranteed to exist for any coupling function f . The locations
of the dots on the phase circle are determined by the values of θ for the oscillators, with the number
indicating how many oscillators share the same phase. These solutions are labeled according to
their isotropy subgroup, as described in the text.

to fixed points. The existence, symmetry properties, stability properties, and pos-

sible bifurcations of phase-locked solutions are discussed below. As convenient, we

will discuss these solutions in either the θ or the ψ variables. As we shall see, given

a simple nondegeneracy condition, there are three types of phase-locked solutions

that are guaranteed to exist for any coupling function f of the form in Eqn (2.1).

The three solutions are the S3, S2 × S1, and Z3 solutions, as shown in Figure 2.1.

See [3, 4, 5] for alternative discussions.

2.2.1 The S3 Solution: Fixed Point at (ψ∗
1, ψ

∗
2) = (0, 0)

Proof of Existence

We prove the existence of a fixed point (ψ∗
1, ψ

∗
2) for Eqn (2.4) by showing it

satisfies ψ̇1(ψ
∗
1 , ψ

∗
2) = ψ̇2(ψ

∗
1, ψ

∗
2) = 0. Substituting (ψ∗

1 , ψ
∗
2) = (0, 0) gives

ψ̇1 = k(f(0) + f(0) − f(0) − f(0 − 0)) = 0,

ψ̇2 = k(f(0) + f(0) − f(0) − f(0 − 0)) = 0.
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This holds for any function f , so (0, 0) always exists as a fixed point. Because ψ1

and ψ2 are 2π-periodic, this also implies the existence of fixed points at (ψ∗
1, ψ

∗
2) =

(2πj, 2πm) for any integers j,m.

Symmetry

This phase-locked solution is invariant under the symmetry S3 = 〈σ1, σ2〉 in the

θ variables, and S3 = 〈σ̂1, σ̂2〉 in the ψ variables, hence the name “S3 solution”.

Since it corresponds to θ1 = θ2 = θ3, it is also sometimes referred to as the “in

phase” or “synchronous” solution.

Stability Analysis

The Jacobian for Eqn (2.4) at the fixed point (ψ∗
1 , ψ

∗
2) = (0, 0) has a double eigen-

value λ1,2 = −3kf ′(0). Thus, the stability of the fixed point depends solely on the

sign of the real part of kf ′(0): if kf ′(0) is positive (resp., negative), then the S3

solution is stable (resp., unstable).

Bifurcations

Suppose that there is a bifurcation parameter which causes the shape of the

coupling function f to change. It is immediately evident that the stability of the

S3 fixed point changes if the value kf ′(0) passes through zero as this parameter

is varied. Because the fixed point at (ψ∗
1, ψ

∗
2) = (0, 0) will persist for all f , this

corresponds to an S3-symmetric transcritical bifurcation.

Assuming that there are no fixed points on the invariant lines ψ1 = 0, ψ2 = 0,
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or ψ1 = ψ2, for (ψ1, ψ2) ∈ [0, 2π), at this bifurcation, a triangular heteroclinic con-

nection appears between the fixed points at (ψ∗
1 , ψ

∗
2) = (0, 0), (2π, 0), and (0, 2π).

Since these points are identified by the 2π-periodicity of ψ1 and ψ2, this can also

be referred to as a homoclinic connection. Thus, [3] call this an S3 Transcriti-

cal/Homoclinic bifurcation, or S3THB. If the heteroclinic loop is attracting at the

bifurcation, the system will have a stable limit cycle very close to the triangle on

the side of the bifurcation where the S3 solution is unstable. Such a bifurcation

will occur in the example below.

2.2.2 The S2×S1 Solutions: Fixed Points at (ψ∗
1, ψ

∗
2) = (0, 2π−

δ), (2π − δ, 0), and (δ, δ) for δ ∈ (0, 2π)

Proof of Existence for (ψ∗
1, ψ

∗
2) = (0, 2π − δ)

Evaluating Eqn (2.4) at (ψ∗
1, ψ

∗
2) = (0, 2π− δ) and using the 2π-periodicity of f

gives

ψ̇1 = k(f(0) + f(−(−δ)) − f(0) − f(0 − (−δ)))

= k(f(δ) − f(δ))

= 0,

ψ̇2 = k(f(0) + f(δ) − f(−δ) − f(−δ − 0))

= k(f(0) + f(δ) − 2f(−δ)).

Thus, the S2×S1 solution is guaranteed to exist if there exists a δ∗ that satisfies

f(0) + f(δ∗) = 2f(−δ∗). The following argument illustrates that for any coupling
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function f satisfying the nondegeneracy condition f ′(0) 6= 0, at least one such δ∗

exists. First, define two new functions

c1(δ) = f(0) + f(δ),

c2(δ) = 2f(−δ).

(2.6)

The goal is to show that there exists a δ∗ ∈ (0, 2π) satisfying c1(δ
∗) = c2(δ

∗). By

periodicity we know that c1(δ + 2π) = c1(δ), and c2(δ + 2π) = c2(δ). Letting ′

denote derivation with respect to delta, or d
dδ

, we have that c1
′(δ) = f ′(δ) and

c2
′(δ) = −2f ′(−δ). This implies that

c1
′(0) = f ′(0) = f ′(2π)

c2
′(0) = −2f ′(0) = −2f ′(2π).

(2.7)

Thus, c1(0) = c2(0) but c1
′(0) = −2c2

′(0). Moreover, the same relationships hold

at 2π. Therefore, at some point between 0 and 2π, c1(δ) and c2(δ) must intersect,

giving a viable value for δ∗. See Figure 2.2 for an illustration of this argument.

While this argument guarantees that there is at least one δ∗ satisfying this equal-

ity, it is possible to have more than one, corresponding to multiple phase-locked

solutions with ψ1 = 0. Note that the intersection c1(0) = c2(0) does not provide a

viable S2 × S1 solution because this is the degenerate case of δ∗ = 0, which is the

S3 solution.

Similar arguments show that the symmetry-related fixed points (ψ∗
1, ψ

∗
2) = (2π−

δ, 0), (δ, δ) also exist for any coupling function f . Note that this implies the existence

of fixed points at (ψ∗
1 , ψ

∗
2) = (2πj, 2πm− δ), (2πj− δ, 2πm), and (2πj+ δ, 2πm+ δ)
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c1

c2

δ∗

c(δ)

δ0 2π

Figure 2.2: A cartoon of the functions c1(δ) and c2(δ) as defined in Eqn (2.6). Since the slopes
of the functions have opposite signs at δ = 0 (and at δ = 2π), they must intersect at some point
δ∗, which corresponds to the phase difference between the groups of oscillators for the S2 × S1

solution.

for any integers j,m.

Symmetry

The phase-locked solution corresponding to (ψ∗
1, ψ

∗
2) = (0, 2π − δ) is invariant

under the group S2 = 〈σ1〉 in the θ variables, and S2 = 〈σ̂1〉 in the ψ variables.

Following [4], this is referred to as an S2 × S1 solution; the S2 corresponds to the

permutation just mentioned, and the S1 refers to the identity permutation acting

on the other oscillator. The other phase-locked solutions are related to this one by

symmetry, and are invariant under conjugate subgroups.

Stability Analysis

The Jacobian at the fixed point (2π − δ, 0) has eigenvalues λ1 = k[−f ′(δ) −

2f ′(−δ)] and λ2 = k[−2f ′(0)− f ′(δ)]. Note that the symmetry-related fixed points

at (2π − δ, 0) and (δ, δ) have the same stability. These points have three possible

stability types:

(1) if k[f ′(δ)+ 2f ′(−δ)] > 0 and k[2f ′(0)+ f ′(δ)] > 0, the three fixed points are
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sinks,

(2) if k[f ′(δ)+ 2f ′(−δ)] < 0 and k[2f ′(0)+ f ′(δ)] < 0, the three fixed points are

sources, or

(3) if k[f ′(δ) + 2f ′(−δ)] > 0 and k[2f ′(0) + f ′(δ)] < 0, or k[f ′(δ) + 2f ′(−δ)] < 0

and k[2f ′(0) + f ′(δ)] > 0, the three fixed points are saddles.

Bifurcations

Bifurcations occur when either f ′(δ) + 2f ′(−δ) = 0 or f ′(δ) + 2f ′(0) = 0.

Depending on the relative values of f ′(δ), f ′(−δ), and f ′(0) for different parameters

of f , the fixed points’ stability can change to or from a sink, source, or saddle in

a pitchfork or saddle-node bifurcation, cf. [3]. Such solutions are involved in the

S3THB bifurcation described above, and can also be involved in the related global

saddle-node heteroclinic bifurcation identified in [2].

2.2.3 The Z3 Solutions: Fixed Points at (ψ∗
1, ψ

∗
2) = (2π

3 ,
4π
3 )

and (4π
3 ,

2π
3 )

Proof of Existence for (ψ∗
1, ψ

∗
2) = (2π

3
, 4π

3
)

Evaluating Eqn (2.4) at (ψ∗
1, ψ

∗
2) = (2π

3
, 4π

3
) and using 2π-periodicity of f gives
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ψ̇1 = k(f(−2π
3

) + f(−4π
3

) − f(2π
3

) − f(2π
3
− 4π

3
)),

= k(f(−2π
3

+ 2π) + f(−4π
3

+ 2π) − f(2π
3

) − f(2π
3
− 4π

3
+ 2π))

= k(f(4π
3

) + f(2π
3

) − f(2π
3

) − f(4π
3

))

= 0,

ψ̇2 = k(f(−2π
3

) + f(−4π
3

) − f(4π
3

) − f(4π
3
− 2π

3
))

= k(f(−2π
3

+ 2π) + f(−4π
3

+ 2π) − f(4π
3

) − f(4π
3
− 2π

3
))

= k(f(4π
3

) + f(2π
3

) − f(4π
3

) − f(2π
3

))

= 0.

A similar argument shows that a fixed point exists at (ψ∗
1 , ψ

∗
2) = (4π

3
, 2π

3
) for

any coupling function f . Note that this implies the existence of fixed points at

(ψ∗
1, ψ

∗
2) = (2πj + 2π

3
, 2πm+ 4π

3
), and (2πj + 4π

3
, 2πm+ 2π

3
) for any integers j,m.

Symmetry

The fixed point (ψ∗
1, ψ

∗
2) = (2π

3
, 4π

3
) corresponds to a solution for which θ1 =

θ2 + 2π
3

and θ2 = θ3 + 2π
3

. This is typically called the “splay state” because θ1, θ2,

and θ3 are equally spaced around the unit circle. This solution is invariant under

the three-element cyclic group Z3 generated by

(θ1, θ2, θ3) →

(

θ2 +
2π

3
, θ3 +

2π

3
, θ1 +

2π

3

)

, (2.8)

hence the name “Z3 solution”. In terms of the ψ variables, this solution is invariant

under 〈σ̂2〉, which is isomorphic to the group Z3.
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The fixed point (ψ∗
1, ψ

∗
2) = (4π

3
, 2π

3
) is invariant under the group Z3 generated

by

(θ1, θ2, θ3) →

(

θ3 +
2π

3
, θ1 +

2π

3
, θ2 +

2π

3

)

(2.9)

in the θ variables, and 〈σ̂2σ̂1〉 in the ψ variables.

Stability Analysis

The Jacobian at this fixed point (2π
3
, 4π

3
) has eigenvalues λ1,2 = k(−3

2
(f ′(2π

3
) +

f ′(4π
3

))± 3i
2
|f ′(4π

3
)− f ′(2π

3
)|). Thus, unless f ′(4π

3
) = f ′(2π

3
), this fixed point will be

either a spiral sink or a spiral source.

Bifurcations

At f ′(2π
3

) + f ′(4π
3

) = 0, the fixed point switches between a spiral sink and a

spiral source, which is an indication of a Hopf bifurcation, as found in [3].

2.3 A Particular Example

As an example, we now consider the coupling function

f(ϕ) = µ1 sin(ϕ) + µ2 cos(ϕ) + µ3 sin(2ϕ), (2.10)

which will provide a spectrum of novel trajectories when applied to vehicle motion

coordination using the LPS model. This coupling function is compared with a

sinusoidal coupling function (as used in [15]) in Figure 2.3: our example coupling
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f(θ)

µ1 sin(θ) + µ2 cos(θ) + µ3 sin(2θ)

sin(θ)

θ

Figure 2.3: Comparison between the coupling function (2.10) with µ1 = 0.1, µ2 = 1, and µ3 =
−0.06 and sinusoidal coupling function f(θ) = sin(θ).

function can be viewed as a perturbation of a phase shift of the sinusoidal coupling

function. The above analysis predicts that both a S3THB bifurcation involving the

S3 and S2 × S1 solutions and, independently, a Hopf bifurcation involving the Z3

solutions will occur at µ1 + 2µ3 = 0. Numerical bifurcation analysis shows that

for µ2 = 1, µ3 = −0.06, k = 1 and when treating µ1 as the bifurcation parameter,

the Hopf bifurcation is subcritical, and that the branch of unstable periodic orbits

turns around in a saddle-node bifurcation of periodic orbits to give stable periodic

orbits; see Figure 2.4. This figure also shows that the phase space for the system

can be divided into two triangles bounded by the invariant lines ψ1 = 0, ψ1 =

2π, ψ2 = 0, ψ2 = 2π, and ψ1 = ψ2. Trajectories in these triangles are related by

symmetry, and the resulting vehicular trajectories are identical. Thus, without loss

of generality, we will assume that all initial conditions are chosen such that the

system moves in the lower right triangle.
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In the following, we focus on parameter values µ1 = 0.1, µ2 = 1, and µ3 = −0.06,

with phase space as shown in the panel (c) of Figure 2.4. Here almost all initial

conditions will converge to either the stable limit cycle or the stable Z3 solution at

(2π
3
, 4π

3
).
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Z3

p.o.

µ1

(c) µ1 = 0.1

ψ2 ψ2ψ2

ψ1 ψ1 ψ1

ψ1,Max

(a) µ1 = 0.03

Spiral Sink

Source
S3

Z3

Saddle Point

ψ1

ψ2

S2 × S1

Sink

Spiral Source

Saddle Point

Z3

S3S2 × S1

ψ1

ψ2

(e) µ1 = 0.13

S3

S2 × S1

(b) µ1 = 0.04 (d) µ1 = 0.12

Figure 2.4: The bifurcation diagram in terms of µ1, showing the phase portraits at several values
of µ1 of interest for µ2 = 1 and µ3 = −0.06. In the (ψ1, ψ2) plane, yellow dots represent saddle
points, red shows sources or unstable periodic orbits, and blue represents sinks or stable periodic
orbits. Solid (resp., dashed or dotted) lines in the bifurcation diagram indicate stable (resp.,
unstable solutions).
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Chapter 3

Identical All-to-All Coupling:

Vehicular Trajectories

We now illustrate the richness of possible vehicular trajectories for Eqn (1.6)

with identical all-to-all phase-difference steering control by considering the coupling

function given in Eqn (2.10) with parameters µ1 = 0.1, µ2 = 1, and µ3 = −0.06, as

for the above example. If the system converges to the stable Z3 solution, then the

vehicles will move either in circles or in straight lines, depending on the value of ω0,

with each instantaneously moving in a direction with an angle of 2π
3

with respect

to the others. Such motion has been found for the LPS model with the coupling

function f(θ) = sin(θ) [13, 14, 15, 17, 18, 19]. However, if the system converges

to the stable limit cycle, then the vehicles can display more exotic trajectories, as

seen for example in Figure 3.1. For this reason, we will focus our analysis on the

solutions that converge to the stable limit cycle.
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x

y

Figure 3.1: An example trajectory for v1 with parameters µ1 = 0.1, µ2 = 1, µ3 = −0.06, ω0 = k =
1. This trajectory is taken over many cycles of the system in the (ψ1, ψ2) plane.

Motion along the limit cycle is not uniform: the system slows near each of the

fixed points, and moves quickly in regions away from a fixed point. As will be

explained in the following, it is from this non-uniform motion that the trajectories

get their peculiar shapes. We first present an explanation of the vehicular motion in

an intuitive way, then validate the intuition with results from numerical simulations.

Without loss of generality, we will primarily restrict discussion to the motion of

vehicle 1 (denoted v1) only.

3.1 The Intuitive Description

We first divide the motion of the system in the (ψ1, ψ2) plane and the motion

of v1 into constituent parts. We will then relate the position of the system along

the stable periodic orbit in the (ψ1, ψ2) plane to trajectories of the vehicles in the

(x, y) plane to provide intuition on how these kinds of trajectories are formed.

The motion of the system can be naturally divided into six boxes along the limit
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cycle, as seen in Figure 3.2. In the first, third, and fifth boxes, the system slowly

passes near an S2 ×S1 fixed point. Starting from the lower-left corner and working

counter-clockwise, we will call these boxes A, B and C. In the second, fourth, and

sixth boxes, the system is leaving the vicinity of one fixed point and approaching

another. Starting from the line ψ2 = 0 and going counterclockwise, we will call

these boxes 1, 2 and 3.

The overall vehicle motion in Figure 3.1 can be decomposed into identical units,

each of which contains a cluster and a tail. We will name the tail connecting

the units a long excursion. Each cluster can be further broken down to show

two general types of behavior: small approximately circular orbits, which we will

call small orbits, and the roughly semi-circular excursions that connect the small

orbits, which we will refer to as short excursions. The vehicle path in a single

unit can be described as a cycle through a small orbit followed by a short excursion

to another small orbit, followed by a second short excursion to a third small orbit,

followed by a long excursion to the next cluster. This is illustrated in Figure 3.2.

Simulations of the vehicles show that when the system in the (ψ1, ψ2) plane is in

a lettered box (near a fixed point), the vehicles move in a small orbit, and when the

system is in a numbered box, the vehicles undergo an excursion. This is expected,

since the vehicles would move in a circle if the system were actually at the fixed

point because, at a fixed point, generically, θ̇j = constant 6= 0. Therefore, one can

intuitively expect the vehicles to show a sort of switching behavior between small

orbits and excursions as the system moves in the ψ plane.
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Three units: one full circuit

Corresponding motion of the system

Boxes: B → 2

in the (ψ1, ψ2) plane

1

4

1
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3

3
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5

Boxes: 2 → C → 3

1

3
2

Boxes: 3 → A→ 1

of a small orbit

Boxes: 1 → B

ψ1

4

One unit ψ2

Short excursion to Small orbit to another
short excursion

Small orbit to long
another small orbit excursion

Transition in and out

Figure 3.2: Behavior of v1 in the (x, y) plane with corresponding position of the system in the
(ψ1, ψ2) plane. The top explains the motion of v1 within one unit: follow the ordered arrows in
the time-series of pictures. The bottom-left panel shows one full circuit of vehicle motion and the
bottom-right panel shows the various boxes in the (ψ1, ψ2) plane.
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Box ψ Behavior θ Behavior Vehicle Motion
1 ψ1 ↑ to ≈ 2π θ1 & θ3 ↑ at the same rate v1 & v3: short exc

ψ2 ≈ 0 θ2 temporarily ↓ v2: long exc
2 ψ2 ↑ to ≈ 2π θ1 & θ2 ↑ at the same rate v1 & v2: short exc

ψ1 ≈ 2π θ3 temporarily ↓ v3: long exc
3 ψ1 ≈ ψ2 ↓ θ2 & θ3 ↑ at the same rate v2 & v3: short exc

together to ≈ 0 θ1 temporarily ↓ v1: long exc

Table 3.1: Relative phase and resulting behavior of all 3 vehicles in terms of position in the (ψ1, ψ2)
plane. Here, ↑ means “increase(s)”, ↓ means “decrease(s)”, and “exc” is short for “excursion(s).”
The definition of “excursion” is given in the text.

Earlier, we restricted discussion to the motion of v1 because the motion of v2

and v3 were identical to but out of phase with the motion of v1. This alternating

motion is summarized in Table 3.1.

3.2 Numerical Analysis and Validation

3.2.1 Box Definition

To validate the above intuition, we need to be more precise about the boundaries

of the boxes. Since the vehicles are always moving in a smooth and roughly circular

trajectory, it is natural to define the boxes in terms of the instantaneous radius of

curvature of the vehicles’ trajectories. This was calculated from simulation data

for each point by finding the radius of the circle defined by that point and its two

neighboring points. Using this for measuring the motion of v1 gives the plot in

Figure 3.3. The long excursion includes a segment where the radius of curvature

passes through infinity. However, since we will use the radius of curvature as a

measure for constructing the lettered boxes, which involves only the minima of
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Figure 3.3: Measurements of the radius of curvature for v1 moving in the trajectory shown in
Figure 3.1 with the approximations at each nearby fixed point. It is evident from the periodic flat
troughs that the radius of curvature of the vehicle’s motion spends a significant amount of time
at an approximately constant value. Moreover, the value of that constant value is very close to
the radius of curvature the vehicles’ motion would have if the system were at the S2 × S1 fixed
point.

Figure 3.3, it does not matter that the radius of curvature blows up during the

long excursion. The lettered boxes were chosen by calculating where the radius of

curvature for v1 was within 0.01 of the minima of each trough, as seen in Figure

3.4. Boxes 1, 2, and 3 are then defined as the intervening lengths of the periodic

orbit in the ψ plane.

3.2.2 Box Analysis: Approximate Solutions

Within each box, we present an approximate solution with a few simplifying

assumptions.

Near a fixed point, the behavior of the system is approximately the same as

if the system were actually at the fixed point. From this observation, we provide
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Figure 3.4: An enlargement of Figure 3.3, showing how close the actual instantaneous radius of
curvature of v1 comes to the approximated values, and how the radius of curvature defines the
location of the lettered boxes. The dotted line represents what the radius of curvature would be
at the S3 solution, and the red solid line represents the radius at the S2 × S1 solution. The line
segments show where the radius of curvature of v1 is within 0.01 of its minimum for each box.
The edges of the boxes correspond to the intersections of these line segments with the radius of
curvature of v1. The numbered boxes are then assigned as the intervening spaces between lettered
boxes.

an approximate solution for the behavior of the vehicles when the system is in one

of the lettered boxes. At a fixed point, the coupling function becomes a constant.

Plugging into our full system equations in θ, we have

θ̇1 = θ̇2 = θ̇3 ≡ ̟,

where ̟ is a constant. This is easily integrated, giving:

θi(t) = ̟t+ θ0i.

This corresponds to the following equations in the (x, y) plane:

ẋi = cos(̟t+ θ0i),

ẏi = sin(̟t+ θ0i).
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These equations can also be integrated, yielding

xi = 1

̟
sin(̟t+ θ0i),

yi = − 1

̟
cos(̟t+ θ0i),

corresponding to motion in a circle of radius 1

̟
.

For the particular coupling function discussed in the example above, ̟ = ω0 +

2kµ2. Plugging in the values for ω0, k, and µ2 used in the example, we find that

the vehicles move in circles with radius 1

3
if the system is at an S3 solution. When

the system is at one of the S2 × S1 solutions, found for these parameters to be at

(0.11511, 0.11511), (0, 2π− 0.11511), or (2π− 0.11511, 0), the radius of the motion

of v1 is approximately 0.334317. From panel (c) of Figure 2.4 we see that the

trajectory comes closer to the S2 × S1 solutions than to the S3 solutions. Thus, we

expect the radius of the vehicular motion of v1 in the lettered boxes to be closer

to the radius predicted by having the system at the S2 × S1 solution. As one can

see in Figure 3.4, this approximation is very close to the results obtained from the

actual simulation.

In the numbered boxes, we can approximate the behavior of the system by

noting that in Box 1, ψ2 ≈ 0, in Box 2, ψ1 ≈ 0, and in Box 3, ψ1 ≈ ψ2 and both

decrease from a value close to 2π to a value close to 0 at about the same rate.

Taking ψ2 = 0 (which is approximately true in Box 1) in Eqn (2.4), we obtain

ψ̇2 = 0 and

ψ̇1 = θ̇1 − θ̇2 = k(f(−ψ1) + f(0) − 2f(ψ1)), (3.1)
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a one-dimensional differential equation. Similarly, taking ψ1 = 2π = 0 (which is

approximately true in Box 2) in (2.4) gives the same formula as (3.1) but with

ψ1 → ψ2.

Finally taking ψ1 = ψ2 ≡ ψ (which is approximately true in Box 3), we obtain

ψ̇1 = ψ̇2 = ψ̇ = k(2f(−ψ) − f(0) − f(ψ)), (3.2)

which is related to Eqn (3.1) through ψ1 → −ψ.

3.2.3 Validation

As shown in Figure 3.4, the trajectories of the vehicles while in the lettered boxes

is quite close to the radius of curvature predicted by the approximate solutions. The

lettered boxes were defined by noting where the radius of curvature of the motion

of the vehicles was within 0.01 of the minimum radius from simulation data for the

system. For reference, we also show the radius corresponding to the S3 solution.

In the numbered boxes, we have found one-dimensional equations to approxi-

mate the dynamics of the system in Eqn (3.1). Numerical integration of the approx-

imate solutions very closely match the data from simulation in all three boxes. The

approximate solutions are nearly identical in Boxes 1 and 2, so only the simulation

for Box 1 is shown. We have found that the one-dimensional approximation for

the system’s behavior is valid even in appropriate parts of the lettered boxes, as

one might expect from the assumptions that generated the approximations and the

graph of the (ψ1, ψ2) plane in Figure 3.2. The results of numerically integrating the

behavior in Boxes 1 and 3 compared to simulation data for v1 are shown in Figures
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Figure 3.5: Demonstration of the validity of the approximation leading to Eqn (3.1): the graphs of
the approximate solutions in Box 1 and actual simulation data show that the assumptions taken
are reasonable.

3.5 and 3.6, respectively.

3.2.4 The Spirograph in the Kaleidoscope

The ω0 and k terms effectively control the curvature of the individual trajecto-

ries and the speed at which the system moves through the ψ plane, respectively. It

has been found in simulations that the shape of the vehicular trajectories, even in

transients, depends only on the ratio ω0

k
, and that changing either ω0 or k indepen-

dently will scale the pattern. This can be seen most easily in an equivalent form of

Eqn (2.1):

θ̇n = k

(

ω0

k
+
∑

m6=n

f(θm − θn)

)

, n = 1, 2, 3. (3.3)

In this more explicit form, it is clear that the variable k just scales time, while

the actual dynamics depend only on the constant ω0

k
, which can be thought of as
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Figure 3.6: Demonstration of the validity of the approximation leading to Eqn (3.2): the graphs of
the approximate solutions in Box 3 and actual simulation data show that the assumptions taken
are reasonable.

the effective natural frequency. Since we have constrained our vehicles to have

constant unit speed, the only way that the vehicles can compensate for a larger

(resp., smaller) k (with appropriately scaled ω0), which would make the vehicles

move more quickly (resp., slowly), is to produce a smaller (resp., larger), scaled,

version of the exact same pattern, even in transients. This behavior is demonstrated

in Figure 3.7.

There are many possible trajectories found by varying the ω0

k
ratio, which have

a base shape resembling a pattern from a Spirograph1. It is possible to obtain

a regular overall trajectory (global) shape with any number of sides that either

passes through the approximate center of the polygon, or travels exclusively along

1A “Spirograph” is a toy invented by Denys Fisher, and was first introduced to the United
States in 1966 by Kenner, Inc. The name “Spirograph” is a trademark of Hasbro, Inc. The toy
allows the user to create intricate designs: the user puts a pen on a point within a circle, which
rotates around the inside or outside of another shape, typically also a circle. The geometric curves
produced by a Spirograph are mathematically known as hypotrochoids and epitrochoids [1]. An
interactive applet demonstrating what patterns are possible with a Spirograph can be found at
[7].
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y

x

Figure 3.7: Five trajectories with the same initial conditions in (x, y) and (ψ1, ψ2), and with the
same value for ω0

k
, but with different values of k (and appropriately scaled ω0).

the edges. In other words, the radius of the global shape can be made to be

anywhere between zero and infinity. Moreover, as one steps through the possible

values of ω0

k
, the radius runs continuously from zero through infinity and back to

zero again, providing a kaleidoscope-like effect. Each slope through the origin of

the (ω0, k) plane provides a different global shape.

To sample over the different types of trajectories possible for ω0 > 0 and k > 0,

we first held ω0 = 1 and varied k from 0 to 1, and then held k = 1 and varied

ω0 from 0 to 1, as shown in Figure 3.8. Some example trajectories are shown in

Figures 3.9 and 3.10. From simulations, we have found that the global radius goes

to approximately infinity when ω0

k
= 0.1292 + 0.1189n, where n is an integer.
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Figure 3.8: The trajectories along each line with slope ω0

k
vary only in scale. By holding ω0 = 1

and sampling over k ∈ [0, 1], as shown by the dashed line, and by holding k = 1 and sampling
over ω0 ∈ [0, 1], as shown by the dash-dot line, all possible trajectories for ω0 > 0 and k > 0 are
sampled.
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Figure 3.9: A few examples of vehicular trajectories for v1 from coupling function (2.10) with
µ1 = 0.1, µ2 = 1, and µ3 = −0.06, while holding ω0 = 1 and varying k from 0 to a value close to
1.
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Figure 3.10: A continuation of Figure 3.9: A few example vehicular trajectories for v1 holding
k = 1 and varying ω0 from 1 to 0.
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Chapter 4

Results for Heterogeneous

Coupling Topology

We have also found interesting ψ dynamics and vehicular trajectories for cou-

pling topologies other than all-to-all. We assume that all coupling links are weighted

equally, and that it is possible to have uni-directional coupling1, but that there

cannot be more than one coupling link in a particular direction between any two

oscillators. Given this, there are thirteen different coupling topologies possible for

three oscillators. These assumptions are reasonable because we have not included

anything in the model that allows each vehicle to weight input unevenly, which

would be the case of having two coupling links in the same direction between the

same two agents. On a generic level, we have provided a means for categorizing each

topology in Figure 4.1, which also shows all-to-all coupling: each link is assigned a

1The direction of the arrow indicates which oscillator can access the relative information - the
oscillator at the point of the arrow has access to the relative information of the oscillator at the
back of the arrow.
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Figure 4.1: The numbering scheme for the topology classification. The shown all-to-all coupling
topology is denoted as 123456.

number, and each coupling topology is characterized by the link numbers it has.

Using this numbering scheme, the twelve other topologies are shown in Figure

4.2. Scheme 1234 provides some interesting vehicular trajectories, and will be

investigated further in this section. We have nicknamed scheme 1234 the “Arbiter”

configuration.

4.1 Results for the Arbiter Configuration

For the Arbiter configuration and the particular coupling function used in the

Example in Section 2.3 with k = 1, µ1 = 0.1, µ2 = 1, and µ3 = −0.06, we have

found a stable periodic orbit in the (ψ1, ψ2) coordinates, which indicates that we

may find interesting vehicular trajectories. The Arbiter configuration is realistic

for the case where the vehicles are almost aligned, with each vehicle spaced far

enough apart that the vehicles on the ends of the line cannot sense each other, and

therefore must communicate with each other via the vehicle in the center.
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Figure 4.2: Twelve different coupling topologies: we assume that all of the oscillators and coupling
links are identical and that there cannot be more than one link between any two oscillators in any
direction. Given these constraints, these twelve plus the all-to-all coupling scheme in Figure 4.1
represent all possible coupling topologies.
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4.1.1 Solutions

The equations for the Arbiter configuration for N = 3 are

θ̇1 = ω0 + k (f(θ2 − θ1) + f(θ3 − θ1)) ,

θ̇2 = ω0 + kf(θ1 − θ2),

θ̇3 = ω0 + kf(θ1 − θ3).

(4.1)

Transforming Eqns (4.1) into the ψ coordinates as in Section 2.3 gives

ψ̇1 = k (f(−ψ1) + f(−ψ2) − f(ψ1)) ,

ψ̇2 = k (f(−ψ1) + f(−ψ2) − f(ψ2)) .

(4.2)

It is evident that the (ψ1, ψ2) equations are equivariant under permutation of

ψ1 and ψ2, and that the lines ψ1 = 2πn and ψ2 = 2πn, where n is an integer, are no

longer invariant. The system does have an invariant line at ψ1 = ψ2. Along this line,

ψ1 = ψ2 ≡ ψ, so we have that if there exists a ψ∗ such that 2f(−ψ∗) − f(ψ∗) = 0,

then there will be at least one fixed point on the invariant line. An argument for

the existence of such a ψ∗ will be given in the S2 × S1 fixed point analysis below.

The solutions guaranteed to exist for the all-to-all coupling topology are now

subject to some conditions to exist for the Arbiter coupling topology.

The S3 Solution: Fixed Point at (ψ∗
1, ψ

∗
2) = (0, 0)

For the S3 phase-locked solution to exist, we must have that 2f(0) − f(0) = 0,

or, equivalently, that f(0) = 0. Should this solution exist, linearization of the

ψ equations shows that the fixed point will have eigenvalues λ1 = −3kf ′(0) and
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λ2 = −kf ′(0), so the S3 solution cannot have complex eigenvalues and will be

either a sink or a source if it exists. A bifurcation of this fixed point requires that

f ′(0) = 0.

The Z3 Solutions: Fixed Points at (ψ∗
1, ψ

∗
2) = (2π

3
, 4π

3
) and (4π

3
, 2π

3
)

The Z3 phase-locked solutions require that f(4π
3

) = f(2π
3

) = 0 to exist. Should

this solution exist, the Jacobian of the ψ equations have the eigenvalues λ1,2 =

−k
(

f ′(2π
3

) +f ′(4π
3

) ±
√

f ′(2π
3

)f ′(4π
3

)
)

. If f ′(2π
3

)f ′(4π
3

) < 0 and −k
(

f ′(2π
3

) +

f ′(4π
3

)
)

< 0 (resp., −k
(

f ′(2π
3

) + f ′(4π
3

)
)

> 0), then this point will be a spiral

sink (resp., spiral source). If If f ′(2π
3

)f ′(4π
3

) > 0, then the point can be either

a sink, source, or saddle. If f ′(2π
3

) + f ′(4π
3

) = 0, then we would expect a Hopf

bifurcation.

The S2 × S1 Solution: Fixed Points with ψ1 = ψ2

The condition for the existence of the existence of the S2 × S1 solution is that

there exists a δ∗ such that 2f(−δ∗) − f(δ∗) = 0. As noted earlier, this is the same

condition for the existence of a fixed point on the invariant line ψ1 = ψ2 ≡ ψ. As

before, we will assign two new functions, c1(δ) = 2f(−δ) and c2(δ) = f(δ), and a

valid δ∗ will satisfy

c1(δ
∗) = c2(δ

∗). (4.3)

If |f(δ)| > 0 for all δ, then this solution is not guaranteed to exist, since it is
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then possible to have |c1(δ) − c2(δ)| > 0 for all δ, implying that Eqn (4.3) may

not be satisfied for any δ. Therefore, we assume that there exists a φ1 such that

f(φ1) = 0, but f ′(φ1) 6= 0. Then, by periodicity of f , there must be some φ2 such

that f ′(φ2) = 0 but f ′(φ2) 6= 0. We will also assume that the S3 solution does not

exist (i.e., δ∗, φ1, φ2 6= 0). Then we have that f(θ), for θ ∈ [0, 2π), will have both

positive and negative values. As before, the definitions of c1(δ) and c2(δ) give that

c1(0) = 2c2(0), but c′1(0) = −2c′2(0). Given these constraints, we expect to have

one of the two situations shown in Figure 4.3. In both situations, we expect to find

an even number of S2 × S1 solutions provided f ′(δ∗j ) 6= 0 for all j ∈ Z > 0.

Without loss of generality, we will assume that c1(0) > c2(0) > 0. This implies

that c1(2π) > c2(π) > 0. Then, by the periodicity of f , we have that

min c2(δ) = min f(δ) ≡ β,

min c1(δ) = min(2f(−δ)) = min(2f(δ)) = 2 min f(δ) = 2β,

where β < 0. This is shown clearly in Figure 4.4. This implies that there exists

a δ∗∗ such that c1(δ
∗∗) < c2(δ

∗∗). Therefore, by the intermediate value theorem,

we have that there must be at least two valid values δ∗1,2 such that c1(δ
∗
1) = c2(δ

∗
1)

and c1(δ
∗
2) = c2(δ

∗
2). Furthermore, all further viable values for δ∗2j+1, for j ∈ Z ≥ 1,

must be accompanied by a viable value for δ∗2j+2; that is, δ∗s will occur in pairs.

If the S3 solution exists but the other conditions hold, one can apply the previous

argument to show that there will still be an even number of intersections; however,

one of those intersections will be the degenerate case where δ∗ = 0. That solution

will not be a general S2 × S1 solution; that is the S3 solution. Because of this, we
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Figure 4.3: Illustration of the two possible scenarios used in the argument for the existence of
the S2 × S1 phase-locked solution for the Arbiter coupling topology with a general 2π-periodic
coupling function f . Here we assume that the S3 solution does not exist, and that there exists
a φ1 such that f(φ1) = 0 but f ′(φ1) 6= 0. In (a), we show the case where c′1(0) < 0, and in (b),
the case where c′

1
(0) > 0. The light blue lines show c′

1
(0) = c′

1
(2π) and the light green lines show

c′2(0) = c′2(2π).
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β
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Figure 4.4: Illustration of the argument that given the constraints mentioned in the text, that there
must be at least two possible values for δ∗. Without loss of generality, we can set c1(0) > c2(0) > 0,
which gives c1(2π) > c2(2π) > 0 by periodicity. However, by noting that min f(−δ) = min f(δ),
it is obvious that min c1(δ) = 2 min c2(δ). Therefore, c1(δ) and c2(δ) must cross at a minimum
of two points. The points where the two functions cross are viable values for δ∗, and proves the
existence of the S2 × S1 solution.

expect an odd number of S2 × S1 solutions should the S3 solution exist, but that

there will be at least one viable value for δ∗ given the conditions mentioned above.

4.1.2 Application to the Particular Example

Using the example coupling function (2.10) with µ1 = 0.1, µ2 = 1, µ3 = −0.06,

and k = 1, it is possible to solve for the exact fixed points of the system for the

parameters given. This particular system has saddle points at (ψ∗
1, ψ

∗
2) = (4.29213,

4.29213) and (1.35235, 1.35235), and spiral sinks at (ψ∗
1, ψ

∗
2) = (4.8432, 1.63105)

and (1.63105, 4.8432). These are shown in Figure 4.5.

The motion from the coupling function (2.10) with this communication topology

also produces interesting trajectories, reminiscent of those found in Section 2.3. The

ψ plane for N = 3 in Figure 4.5 has the corresponding vehicular motion shown in

Figure 4.6. For the same reasons as in Section 3.2.4, one can also produce a variety

of trajectories by varying the values of ω0 and k, as shown in Figure 4.7.
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Figure 4.5: The (ψ1, ψ2) plane for the Arbiter coupling topology with N = 3, and coupling
function (2.10) with µ1 = 0.1, µ2 = 1, µ3 = −0.06, ω0 = 1, k = 1. The existence of a stable
periodic orbit suggests that this system may provide interesting patterns of vehicular motion.
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Figure 4.6: Motion of v1 using the Arbiter coupling topology with N = 3 corresponding to the
motion of the system along the stable periodic orbit in Figure 4.5.
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Figure 4.7: Various vehicular trajectories generated using the Arbiter coupling topology and the
example coupling function (2.10) with µ1 = 0.1, µ2 = 1, µ3 = −0.06, while varying the values of
ω0 and k, as was done in Figures 3.9 and 3.10.
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Figure 4.8: The (ψ1, ψ2, ψ3) space for the Arbiter coupling topology and the example coupling
function (2.10) with µ1 = 0.1, µ2 = 1, µ3 = −0.06, ω0 = 1, and k = 1. Here ψ1 and ψ2 are defined
as for N = 3, and ψ3 ≡ θ1 − θ4. As in the N = 3 case, the system has a stable periodic orbit.

This periodic orbit also persists for the coupling function (2.10) and the Arbiter

configuration withN = 4, as shown in Figure 4.8, which produces the corresponding

vehicular motion in Figure 4.9.

Bifurcations

A cartoon of the bifurcations for this system is shown in Figure 4.10. As µ1 de-

creases from about 0.2, a pair of periodic orbits is born in a saddle-node bifurcation

of periodic orbits, and then the stable periodic orbit terminates in a homoclinic

bifurcation. Due to symmetry, there are two pairs of periodic orbits in the (ψ1, ψ2)

plane. In the bifurcation diagram for the periodic orbits, as µ1 continues to de-

crease, the stable periodic orbit is reborn in a homoclinic bifurcation, and eventually

the two periodic orbits terminate in a saddle-node of periodic orbits. Numerical

bifurcation analysis of the fixed points shows that the saddle point involved in

the homoclinic bifurcation undergoes pitchfork bifurcation and that the three fixed
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Figure 4.9: Motion of v1 using the Arbiter coupling topology for N = 4 corresponding to the
motion of the system along the stable periodic orbit in Figure 4.8.

points depicted below the periodic orbits come together via a pitchfork bifurcation,

as µ1 either increases or decreases past the limits of the periodic orbits, as shown

in Figure 4.10.
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(e) µ1 = 0 (f) µ1 = 0.1

(a) µ1 = −0.8 (b) µ1 = −0.6 (c) µ1 = −0.5

p.o.

p.o.

(d) µ1 = −0.11

µ1

f.p.

f.p.

ψ1

Figure 4.10: A cartoon of the bifurcation diagram for the Arbiter communication topology and the
example coupling function (2.10) in terms of the parameter µ1. In both the bifurcation diagram
and in the phase portraits, sources are colored red, sinks are blue, and saddle points are yellow.
Unstable periodic orbits are shown in red, and stable periodic orbits are shown in blue.
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Chapter 5

Conclusion

We have provided a brief explanation of the LPS model, with relevant back-

ground information from related fields. Our work focuses on a variant of the LPS

model, which produces novel vehicular trajectories. Since the results of the LPS

model can be analyzed in terms of the solutions to a simplified Kuramoto equation,

we have provided an analysis of our phase controller, with our modified coupling

function, for three vehicles. We have shown a simple way to reduce the order of

the phase system by one. Therefore, limiting our system to three vehicles allows us

to invoke the Poincare-Bendixson Theorem and limit the solutions of the reduced

phase system to periodic orbits and fixed points. While this is a very simple solu-

tion in the reduced phase system, it corresponds to exotic vehicular trajectories. In

addition to illustrating the range of possible vehicular trajectories, we have devel-

oped an intuitive way to relate motion of the system in the reduced ψ coordinates

to motion of the vehicles in the plane, and shown that interesting behavior can be
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found for coupling topologies other than all-to-all.

The trajectories shown in the previous section may have applications in sensor

area covering problems in which one is particularly interested in certain parts of

the plane, with the option of either passing through the center or moving along the

circumference of the area to be covered. For example, the trajectory shown in 1c of

Figure 3.9 may be useful for the case where one wants agents to carefully patrol four

evenly distributed areas as well as check the area in the center of those four areas

periodically. If one desires to check sections of a circular area but is not interested

in the area in the center of the sections, a trajectory such as 2e of Figure 3.10 may

be appropriate. Should the areas inside the circular area be of higher interest than

the perimeter, then a trajectory such as 2n of Figure 4.7 may be of interest. If one

desires to patrol an annulus, a trajectory similar to 4e of Figure 3.10 may be useful.

If a faster but less detailed check of perimeter areas are needed, then a trajectory

shape closer to the one shown in Figure 4.9 may be more appropriate.

The trajectories found here are quite sensitive to uncertainty in the parameters

of the coupling equations. Should these trajectories prove to be potentially useful

for a particular area coverage problem, it may be worthwhile to work through

the spacing control, and to make the global behavior robust to perturbations in

the parameters. The trajectories found and the explanation of what causes these

interesting group motions also provides insight on how to shape the trajectories of

vehicles by controlling the features of the (ψ1, ψ2) plane, as well as how this type

of system may be extended to the more general case, where N > 3.
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