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Abstract

Group Decision-Making Models for Cybernetic Systems

by

Margot Kimura

From law-making to the research publication process, we rely on groups to make

our most important decisions. The purpose of this dissertation is to gain a better

understanding of the performance of a group of decision-makers (DMs) in a simple

decision-making task.

We begin the first part of this dissertation by analyzing the Sequential Proba-

bility Ratio Test (SPRT), which is optimal for choosing between two hypotheses,

and models an individual DM in a two-alternative forced-choice task. We show its

equivalence to a simple form of the Drift-Diffusion Model (DDM), and solve the

resulting DDM for the performance of an observer using the SPRT. We verify our

analytical results with simulation, and investigate how our simulations are related

to various approximations.

We then use the individual model to develop intuitive mathematical models for

a group performing the same task. Previous works in this area have dismissed a full

characterization of the group’s decision time as being too complicated, focused on

simplified cases such as assuming that the group’s members are identical, and/or

x



considered only mean values. We find explicit general solutions for the group de-

cision rule under two previously proposed group rules (Race and Majority Total

schemes) and a novel rule, the Majority First scheme. We then generalize the Ma-

jority Total scheme to the η-Total rule and the Majority First scheme to the η-First

rule, and provide explicit solutions for the performance of a group under either fam-

ily of rules. Most notably, our models are simple enough to solve completely and

flexible enough to accommodate numerous hierarchical group topologies and related

group rules. In addition, our models can be applied to groups of devices, groups

of human or monkey observers, or cybernetic groups, with adequate experimental

manipulation.

In the second part of this dissertation, we analyze data from a human group-

based signal detection experiment. We first compare the performance of the indi-

vidual observers and the group, then analyze eleven different group rules that can

be used to aggregate the individuals’ responses, to find which are optimal and which

the observers actually used. We also investigate some common assumptions through

simulation. These results are relevant to applications involving a visual task, such

as cancer detection in mammograms or threat detection in baggage screening.

Our models and analysis aim to inform designing cybernetic decision-making

systems. Our goal is to establish a way to objectively and quantitatively compare

different group decision rules and model group performance in an intuitive manner

that is accessible to a wide range of communities.
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Chapter 1

Background

1.1 Introduction

Group decision-making is highly relevant to a wide range of subjects: from law-

making to the research publication process, we rely on groups to make our most

important decisions. As a result, group decision-making is studied in many fields

under very different applications. In different contexts, “group decision-making”

could refer to anything ranging from group motion coordination and pattern for-

mation [24, 27], to determining the optimal (legislative or board) committee size

[35, 47], to distributed detection (using sensors) [12], to reaching a consensus in

animals and insects [22, 61], to optimal stopping [53], to studying the ability of

groups of humans to combine information [102], to probabilistic search [20]. Each

area of study focuses on its own problems and applications of interest, has its own
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philosophy for approaching and defining a problem, and set of strategies for finding

a solution. Our goal is to gain a better understanding of the performance of a

group in a simple decision-making task. To this end, we have explored a number of

different approaches and philosophies relevant to decision-making, and arrived at

the subjects discussed in this dissertation.

Though we will present relevant background information where appropriate,

either within the text or through a reference to the Appendix, we begin with a

general introduction to basic concepts that are useful to all works presented in this

dissertation. We intend to provide enough detail for one to understand the gist of

some of the different philosophies that exist in areas related to decision-making.

In Section 1.2, we discuss basic ideas from statistics, focusing on highlighting the

differences between some common methods and philosophies. In Section 1.3, we

introduce the Likelihood Ratio Test (LRT), which is the optimal fixed-sample test.

We finish with Section 1.4, where we define some decision-making tasks from the

psychophysical literature and describe the general type of experiment that we will

consider, as well as discuss some basic concepts from Signal Detection Theory and

psychophysics, which will be relevant to our models and data.

In Chapter 2, we introduce the Sequential Probability Ratio Test (SPRT), the

optimal test for choosing between two hypotheses using the minimal (average) num-

ber of samples, which we will use to model an individual decision-maker (DM). We

first discuss its relevance to decision-making in human and monkey observers, and
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mention its historical uses. We then show its equivalence to a simple form of the

Drift-Diffusion Model (DDM), and solve the resulting DDM to find the performance

of an observer using the SPRT (or DDM). We verify our results with simulation,

and discuss how the simulation is affected by various parameter values and approx-

imations taken in the model.

We continue this style of analysis in Chapter 3, where we present some intuitive

mathematical models for group decision-making in a sequential task, inspired by

both human observer-based and device-based research. Most notably, our models

are simple enough to solve completely and flexible enough to accommodate nu-

merous hierarchical group topologies and related group rules. We derive explicit

solutions for a group of individual DMs using one of three simple group rules: Race,

Majority Total, and Majority First. We demonstrate the flexibility of our group

models with an example, where we analytically derive the performance of a non-

uniform group, and verify our results through simulation. We also discuss other

group decision-making models from the literature where appropriate. Finally, we

present two general families of group rules, the η-Total and η-First schemes, and

provide explicit solutions for each. Our models are formulated with the understand-

ing that they can be applied to groups of device-based DMs, human or monkey ob-

servers, or a group comprised of both, with adequate experimental manipulation.

We provide evidence from various literatures to support this notion.

In Chapter 4, we explore a different facet of a very similar problem: we analyze
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data from an experiment with a group of human observers using a Signal Detec-

tion Theory (SDT)-based approach. We show the performance of the individual

observers and groups, discuss the efficiency of the group, and determine which de-

cision aggregation rules are equivalent to the strategy that the group actually used.

Our main interests lie in determining what rule(s) are optimal and what rule(s) the

groups likely used. We also test some commonly-held assumptions on the “Ideal

Group” through simulation.

We finish with Chapter 5, where we offer some concluding remarks.

1.2 Some Basic Ideas From Statistics

The following is a brief overview of some basic ideas from Statistics and Statisti-

cal Hypothesis Testing which will be useful for understanding the analysis presented

later. We begin with a comparison between the Bayesian and Frequentist philoso-

phies to illustrate why we consider Bayesian Statistics to be more appropriate for

decision-making tasks. We then cover the differences between fixed-sample and

sequential methods, and finish with a statement and proof of Bayes’ theorem.

1.2.1 Bayesian vs. Frequentist Statistics

Two popular schools of thought in statistics are Bayesian Statistics, and Fre-

quentist Statistics. The following will very briefly and somewhat biasedly highlight

the philosophy behind each, then present an example which illustrates why Bayesian
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statistics is an appropriate choice for the problems considered in this dissertation.1

Frequentist Statistics

Frequentists believe that the “probability” of an event should be interpreted as

the long-run relative frequency of the event when the trial is repeated under “simi-

lar” conditions in a population. Also, parameters that are numerical characteristics

of the population are considered fixed but unknown. Given this, probabilities be-

tween 0 and 1 are only allowed for truly random quantities – since any unknown

parameters in a population are actually fixed, it is meaningless to make a proba-

bility statement about their value. To construct a probability statement about a

random variable, the Frequentist draws a sample from the population and calcu-

lates the sample’s statistic. This process is repeated until a probability distribution

of a sample’s statistic over all possible random samples from the population is de-

termined. The resulting probability distribution is called the sampling distribution

of the statistic. This distribution is then used to determine a confidence statement

about the parameter in question. Thus, the confidence is based on the average

behavior of the procedure under all possible samples [15]. For example, when esti-

mating a random variable in the Frequentist approach, a 95% confidence interval

is defined as an interval that is one result of a procedure that has a 95% chance of

producing an interval that contains the parameter one is trying to estimate.

1The material in Section 1.2.1 is based on lectures by Professor John Hsu, from the Statistics
and Applied Probability Department at the University of California, Santa Barbara, unless stated
otherwise.
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Frequentists also believe that events that happened in the past are no longer

random, so it is meaningless to discuss their probabilities. It is also worthwhile

to note that the Frequentist approach uses different statistical tests for different

properties and situations.

Bayesian Statistics

In contrast, Bayesians believe that the “probability” of an event is a measure

of a person’s degree of belief that the event will occur. Therefore, probability is

necessarily subjective and the calculated probability of an event may vary from

person to person. Unknown parameters of a population are treated as random

variables, and the rules of probability are used to directly make inferences about

the parameters.

Bayesians use a “prior” probability when calculating the posterior (or a posteri-

ori) probability of an event supported by data. The prior is the probability that the

Bayesian would use if no data was available to calculate the posterior probability.

After formulating a prior probability distribution on the possible parameter values,

the Bayesian then takes samples of data from the population and uses these values

to revise his or her beliefs about the parameters. In other words, Bayesian anal-

ysis uses the actual samples of data that occurred in calculating probability, not

all possible data sets which could have occurred (but did not). The combination

of the prior probabilities and the probabilities calculated from the data gives the
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posterior probability distribution, which represents the weights one gives to each

parameter value after analyzing the data [15]. Thus, Bayesian statistics provides

a consistent way to model how beliefs about parameters in the data are modified

through data analysis.

When estimating a random variable in the Bayesian approach, a 95% credible

set (or credible interval or posterior probability interval) is an interval in which

the Bayesian is 95% certain contains the parameter. This is more intuitive, and in

this sense, Bayesian statistics are predictive. The Bayesian approach to statistics

is centered around Bayes’ Theorem, which will be discussed later.

Disadvantages and Criticisms of Bayesian Statistics

The Bayesian approach is conceptually very simple, but in practice, it is difficult

to write a closed form expression for the posterior except in simple cases, such as

when one has normal data samples with a normal prior. In other cases, one must

integrate the data numerically, which rapidly becomes more difficult as the number

of parameters in the system increases [15].

One heavily criticized aspect of Bayesian statistics stems from its use of a prior

probability. The general argument is that there is no absolutely correct way to

define the prior for any given experiment, which subsequently makes the result (the

posterior) fundamentally flawed.

While this is a valid criticism, it should be noted that the effect of the prior
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on the posterior decreases rapidly as more data as collected; therefore, the poste-

rior only relies on the prior when there is an insufficient amount of data available.

Bayesians also maintain that any prior probability used in a good Bayesian anal-

ysis must be sufficiently justified. In cases where a good prior is difficult to find,

it is acceptable to use an uninformative prior, such as a uniform prior, to avoid

unnecessarily biasing the posterior. These two considerations noticeably weaken

the Frequentists’ arguments that the use of a prior invalidates the results found

using Bayesian methods.

Advantages of Bayesian Statistics

While it can be argued that Frequentist approaches are more “objective”, it can

also be argued that that objectivity comes at the price of disregarding any prior

knowledge about the process being measured. Since it is common for there to be

prior knowledge available about the process, throwing out the prior may be wasteful

and unnecessary. In this sense, using a prior probability in Bayesian statistics is an

advantage [15].

Another advantage of the Bayesian approach is that it allows one to make direct

probability statements about parameters, which provides an intuition significantly

more useful than the abstract confidence statements provided by Frequentist ar-

guments. This is actually very important: even though a statistician understands

the difference between the two, a client who has hired the statistician will often
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interpret a Frequentist confidence interval as a Bayesian credible set. In many sit-

uations, is also more important to consider intervals that are based on data which

actually occurred, rather than data which could have occurred but did not [15].

Bayesian statistics is conceptually very simple: it is based around a single statis-

tical tool: Bayes’ Theorem. In contrast, Frequentist analysis requires many different

statistical techniques. Bayes’ theorem also provides a way to find the predictive

distribution of future observations. This is not always easily done in the Frequentist

framework.

Bayesian methods also have a more straightforward way of dealing with “nui-

sance parameters”. These are parameters which one is not interested in, but one

must account for because they affect the analysis of the parameters of interest. In

the Bayesian approach, these parameters are always marginalized out of the joint

posterior distribution [15].

Lastly, and perhaps most significantly, it has been claimed that Bayesian meth-

ods often outperform Frequentist methods, even when judged by Frequentist criteria

[15]. This source also claims that (relatively) recent improvements in computation

has further progressed the Bayesian approach, by providing a means by which one

can draw an (approximate) random sample from the posterior distribution with-

out having to completely evaluate it, via the Gibbs Sample or Metropolis-Hasting

algorithms. In this way, one can approximate the posterior distribution to any

desired accuracy by taking a large enough random sample from it, which removes
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a significant difficulty in Bayesian statistics – now one can use Bayesian statistics

in practice for problems with many parameters, as well as for distributions from

general samples and from general priors. For more details, see [15].

A Caveat: The Dangers of Misunderstanding Statistics

A humorous example illustrating the dangers of misunderstanding the difference

between Frequentist and Bayesian statistics is shown in Figure 1.1. The hikers cal-

culate the probability of an American being killed by lightning using a Frequentist-

like approach, then interpret the resulting value in a Bayesian manner, thinking

that the probability calculated over the entire American population applies to them

individually. They neglect to use the calculated prior with additional data (as a

Bayesian would), or to use a proper population for their statistic (as a Frequentist

would), and as a result, they neglect to take into account the fact that being outside

in a lightning storm is a significantly higher risk factor than being American when

calculating the probability of death by lightning.

An Argument For Using Bayesian Statistics in Decision-Making

Frequentist and Bayesian approaches often return the same result, and there

are diabolical examples which disprove one approach or the other; however, this

dissertation focuses on the performance of groups in a decision-making task. Since

decision-making is necessarily a subjective process, we will be utilizing the Bayesian

approach to statistics. A standard (but biased) example is provided below to il-
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Figure 1.1: An humorous example of the dangers of misunderstanding statistics. Reprinted with
permission from xkcd.com.

lustrate why it makes sense to use a Bayesian approach to statistics in a decision-

making task.

A Biased Example Suppose Joe sees an advertisement in the newspaper for free

HIV testing at a local hospital and he decides to take advantage of the offer. He is

told that the test is 90% reliable, in the following sense: if a person has HIV, the

probability that the test will be positive is 0.9, and if the person does not have the

disease, there is a 0.1 probability that the test will give a positive response (false

positive). Now, suppose his test returns positive. Should he be worried? What is

the probability that he actually has HIV?

The Bayesian approach is relatively intuitive. If Joe’s personal medical history

is unknown, a Bayesian would use a non-informative prior, such as the probability

that a randomly selected person in the United States has HIV, to calculate the
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posterior probability that Joe has HIV, given the results of the medical test. If

that fraction is 1
10,000

, then the Bayesian would use Bayes’ Theorem to conclude

that Joe has a 0.0008993 probability of having HIV, given the positive test result.

Therefore, Joe should not be too worried yet, but he should take a second test

to be sure. Subsequent tests provide more information and update the posterior

probability that Joe has HIV. If Joe’s personal medical history is known, it is taken

into account through the prior, which may increase or decrease the previously-

calculated posterior probability.

On the other hand, a Frequentist would say that trying to assign a probability

between 0 and 1 is meaningless. Joe either does or does not currently have HIV,

so the probability is either 0 or 1, no matter how many tests he takes. It would

not make sense to have any other probability, because probabilities between 0 and

1 represent long-run relative frequencies in repeated trials, which is not possible for

a single person.

While a probability calculated from averaging over a population of people “sim-

ilar” to Joe may provide a good general statistic for the population, it does not tell

Joe what he wants to know: the probability that he has HIV given the results of

the test. Thus, despite that there is logic to the Frequentist’s analysis, it clearly

does not help Joe make a decision. One could argue that a Bayesian analysis is

prone to error because it uses a prior; however, we note that Joe can take repeated

observations (i.e., further tests) to decrease the effect of the non-informative prior
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and thereby arrive at a more accurate posterior probability. The above example

can also be applied to other realistic applications, such as trying to detect a con-

taminant or intruder, and quality control. We rest our case for using a Bayesian

approach in our work here, and move on to another distinctive divide in statistics

below.

1.2.2 Sequential vs. Fixed-Sample Methods

In addition to different philosophies about what probability means, there are

also different ways to relate statistical analysis to the experiment that provides the

data. Statistical analysis is often thought of as a process that begins once all of the

data has been collected; however, this is true only for fixed-sample methods. Below

we contrast these fixed-sample tests with sequential methods. For an in-depth

discussion, see [38].

Fixed-Sample Methods

Fixed-sample statistical methods are very commonly used, and widely known.

The name comes from the fact that the statistical analysis is performed on a data

set of fixed size, which means that the experiment that produces the data finishes

before the statistical analysis begins. These methods include ways to estimate the

number of trials required to reach a given level of certainty in the results, and are

typically favored because they are usually conceptually and mathematically simpler
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to perform, and can be done after the experiment is over. This makes experimental

design convenient as well, since the experimenter can know beforehand how many

samples or trials are required, run them, go home, and then do the statistical

analysis at her leisure.

Fixed-sample methods are most appropriate for applications in which the data is

intrinsically fixed and finite in size and time. An example is breast cancer detection:

for a given patient, there usually is a fixed set of mammograms for the doctors to

examine in order to decide whether or not the patient should get a biopsy. The

x-rays are all taken in one appointment, and it does not matter to the doctor

which order the technician took the images or which order the doctor analyzes the

different views, since they are meant to be 2-dimensional representations of a single

snapshot (in time) of a 3-dimensional image.

However, there are also applications that are intrinsically sequential in nature

because they produce observations in a spatial and/or temporal order. For these

experiments, fixed-sample methods are not optimal, and one may need to consider

sequential methods.

Sequential Methods

Sequential methods correspond to experiments that integrate statistical pro-

cessing into the procedure to determine the stopping condition. These methods

may be more complicated to calculate, and make the experiment more difficult to
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design and perform because it is not known beforehand how many trials or data

samples are required. While sequential methods may increase the complexity of the

experiment, they often reach conclusions with the same certainty as a fixed-sample

method in a fewer number of trials on average. Additionally, sequential methods

sometimes can provide a solution where fixed-sample procedures fail. For further

details, see [38].

1.2.3 Introduction to Bayesian Statistics

Bayes’ Theorem is attributed to Reverend Thomas Bayes: the theorem was first

written up in “An Essay Towards Solving a Problem in the Doctrine of Chances”,

which was found after Bayes’ death. It was published posthumously in “Philo-

sophical Transactions of the Royal Society” in 1763 by his friend, Richard Price

[5]. Bayes showed how inverse probability could be used to calculate the probabil-

ity of an antecedent event from the occurrence of the consequent event. In other

words, given the knowledge of the present, one could calculate the probability that

a particular related event occurred in the past. These methods were adopted by

Laplace and other scientists in the 19th century, but fell out of favor in the early

20th century. In the middle of the 20th century, De Finetti, Jeffreys, Savage, and

Lindley renewed interest in these methods when they developed a complete method

of statistical inference based on Bayes’ Theorem [15].
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Notation

We begin with a list of notation conventions for clarity.

• P (A): This is the prior probability of event A (i.e., the probability that event

A will occur without taking any data into account). It is often referred to

simply as the “prior”.

• P (A|B): This is the “posterior”, “a posteriori”, or “conditional” probability

of event A given the data that event B occurred. Conditional probability is

an idea central to Bayesian statistics. This value can be calculated via Bayes’

Theorem, which is discussed below.

• LR(A|B): This is the likelihood ratio that event A occurred, given that event

B occurred. The likelihood ratio test uses the maximum probability of a

result under two different hypotheses (here denoted A and AC) to decide

which hypothesis is more likely. Specifically, if LR(A|B) > 1, then it is more

likely that event A occurred. Otherwise, it is more likely that A did not occur,

which is denoted as AC , or the complement of A. Likelihoods can be combined

via multiplication if the data is independent and identically distributed. The

likelihood ratio is defined as follows:

LR(A|B) =
P (A|B)

P (AC|B)
. (1.1)
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It is simpler to visually see AC as the complement of event A, as shown in

Figures 1.2 and 1.3. In deciding between two hypotheses, H0 and H1, if event

A is defined as H0 being true, then event AC is defined as H1 being true.

Bayes’ Theorem

Bayes’ Theorem is typically stated as follows:

P (A|B) =
P (B|A)P (A)

P (B)
. (1.2)

In words, Bayes’ Theorem states that the posterior probability of event A occurring

when we know that B occurred is equal to the probability of event B occurring

given that A has occurred, multiplied by the prior probability that A occurs and

normalized by the probability that B occurs.

Bayes’ Theorem is also commonly found in a number of equivalent forms, in-

cluding

P (A|B) =
P (A ∩ B)

P (B)
, (1.3)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|AC)P (AC)
. (1.4)

Note that the probability that B occurs (regardless of whether or not A occurs)

can be expanded into the following forms:
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Figure 1.2: Proof of Bayes’ Theorem. The shaded area can be defined as both P (B|A)P (A)
and P (A|B)P (B). This gives Equation (1.7), which can be rearranged to give Bayes’ Theorem,
Equation (1.2).

P (B) = P (B ∩A) + P (B ∩ AC) = P (B|A)P (A) + P (B|AC)P (AC). (1.5)

An informal way of thinking about Bayes’ Theorem is given by

P (A|B) =
likelihood × prior

normalizing constant
. (1.6)

In practice, the denominator P (B) in Equation (1.2) is frequently ignored because

it functions simply as a normalization factor, and is a constant in calculating and

comparing the probabilities of various events Bi. Since it is the relative probabilities

that are important in these cases, normalizing the probabilities being compared (by

the same normalization factor) is often unnecessary.

Proof of Bayes’ Theorem The proof of Bayes’ Theorem is most easily given

visually.
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Given two partially overlapping circles, one labeled A and the other labeled B

as shown in Figure 1.2, suppose the area of each circle is related to the probability

of each event occurring. Thus, we can describe the region of overlap as P (A ∩ B).

As shown above, this value can equivalently be expressed as either P (B|A)P (A) or

P (A|B)P (B), so

P (A|B)P (B) = P (B|A)P (A). (1.7)

This can be arranged to give

P (A|B) =
P (B|A)P (A)

P (B)
,

which is Bayes’ Theorem. 2

Explanation of P (B ∩ A) This is best illustrated in terms of Bayes’ Theorem

involving multiple disjoint events. Let A1, . . . , Ar be r disjoint events, and suppose

that the probabilities P (Ai) for i ∈ {1, . . . , r} are specified. B is an event that may

or may not occur. Suppose further that P (B|Ai) is also available for each i.

Now, suppose B occurs, and we wish to see how this additional information

affects the initial probabilities P (Ai). (See Figure 1.3 for an illustration of the

problem description.) This is given by:

P (Ai|B) =
P (Ai ∩ B)

P (B)
,
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Figure 1.3: Suppose the Ai are r disjoint events, where i = 1, . . . , r. In this picture, the area
assigned to each Ai represents the probability of that event occurring. One way to see this is to
randomly select a point within the picture to determine which event occurred - whichever region
the point falls into corresponds with the event that actually occurred. The randomly selected
point is more likely to lie within one of the larger regions. Now suppose we know that event
B occurred. Equation (1.8) shows how the additional information that B occurred affects the
probabilities each Ai occurred. Note that in this case, since B occurred, P (A2|B) = 0.

where

P (A ∩B) = P (B|Ai)P (Ai),

and

P (B) = P (A1 ∩ B) + P (A2 ∩ B) + · · ·+ P (Ar ∩ B)

= P (B|A1)P (A1) + · · ·+ P (B|Ar)P (Ar).

So, given that event B occurred, the new probability of each (disjoint) event Ai

occurring is equal to the probability of B occurring if Ai has occurred, multiplied

by the probability that Bi occurs, normalized by the probability that B occurs.
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This gives us a discrete formula for Bayes’ Theorem,

P (Ai|B) =
P (B|Ai)P (Ai)

r∑

n=1

P (B|An)P (An)

. (1.8)

We now introduce the optimal fixed-sample test, the LRT.

1.3 Optimal Fixed-Sample Test: Likelihood Ra-

tio Test (LRT)

For a set number of observations N (i.e., for a fixed-sample experiment), the

optimal test for deciding which hypothesis is true is given by the LRT. The LRT is

similar to the SPRT, which we will use in our mathematical group decision-making

models. It is also generally assumed that human observers utilize a LRT-like test in

making a decision in a Signal Detection task; therefore, we introduce this method

first. We primarily consider simple or point hypothesis tests in our work: we wish to

decide between two simple hypotheses, H0 and H1. The Neyman-Pearson Lemma

[62] states that the uniformly most powerful (UMP) test for fixed-sample simple

hypothesis testing is the LRT, which we define below. (See the Appendix, Section

A.2, for the definition of a UMP test.)

Let Y = y1, y2, . . . , yN be a random sequence of N independent and identically

distributed (iid) observations. For a two-alternative forced-choice (2AFC) experi-
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ment, we wish to determine which probability distribution these observations were

drawn from. To do this, we calculate the likelihood ratio (LR):

LR =
p1

p0
=
p1(y1)p1(y2) . . . p1(yN)

p0(y1)p0(y2) . . . p0(yN)
, (1.9)

and compare it to a constant, K:

If LR < K, choose H0 (1.10)

If LR > K, choose H1. (1.11)

The constant K is a free parameter, and can provide some bias towards one

hypothesis: if K > 1, the probability of choosing H0 increases, and if K < 1, the

probability of choosing H1 increases. If K = 1, the test simply determines which

hypothesis is more likely (i.e., it is a maximum likelihood test), and the procedure

guarantees the smallest overall error rate. Note that for the LRT, the order in

which the data is analyzed does not matter (because it is a fixed-sample test), and

in experiments whose data will be analyzed using this test, the observers typically

have a fixed amount of time to analyze the data, in addition to having only a fixed

amount of data available.
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1.4 Experiment Basics

In this section, we introduce some different types of decision-making experiment

tasks, as well as different answering paradigms one can adopt in each type of ex-

periment. We will also provide a general framework for how an experiment is set

up and run, and discuss error and measures of performance.

1.4.1 Basic Tasks

There are several categories of experiment tasks that are used to measure the

perception and decision-making capabilities of decision-makers (DMs). These tasks

are typically very simple, so experimenters add noise (typically Gaussian white

noise) to each image to make the task more difficult for the DM. Sometimes the

prior for each hypothesis is available to the DM, and sometimes it is not, depending

on what the experimenter is testing. As a note, when running and analyzing the

results of an experiment with human observers, it is convention to refer to individual

observers by their initials. We first list some common types of tasks to illustrate the

differences among them and to provide some intuition on what kinds of tasks our

decision-making models may be useful or adapted for, then detail some common

response paradigms.
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Types of Tasks

Detection: The DM’s task is to detect if the signal is present or absent. In the

signal absent case, there is only noise on the display; thus, this is sometimes referred

to simply as the “Noise” case. In the signal present case, there is a signal that is

embedded in noise. For simplicity, we refer to this as the “Signal” case, but it is

understood that the both the signal and noise are displayed. This is sometimes also

referred to as a “Yes/No” task (i.e., the answer to the question “Do you detect the

signal in this sample?”).

Discrimination: The DM’s task is to decide if the stimulus shown is Stimulus A

or Stimulus B. Loosely, one could interpret this as a Signal Detection Task, if one

considered the stimulus of interest (say, A) to be Signal and the other stimulus (B)

to be Noise. Conversely, one could consider the detection task to be a discrimination

task between a signal present response and a signal absent response. However, in

Psychology, this is generally considered to be a fundamentally different task, even

if the same or very similar math can be used to analyze both signal detection tasks

and discrimination tasks. The tasks we consider fall into either the discrimination

or detection categories. We primarily state the following tasks for completeness.

Identification: This is typically a memory-based task. The DM is shown a set

of stimuli in one session, and asked to remember the items in the set. In a later

session, which may happen minutes or even weeks later, the DM is shown a set of
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stimuli that is partly composed of stimuli from the first session and partly composed

of stimuli not previously presented. The DM’s task is to identify each stimulus as

being either “new” (i.e., was not in the original set) or “old” (i.e., was in the original

set).

Scaling: The DM’s task is to judge how much of something is present, with

respect to a reference that is usually not present during the task. The quality (i.e.,

size, angle, frequency) being scaled depends on the experiment’s specific stimulus.

Matching: This task is very similar to the “Scaling” task; however, in “matching”

tasks, the observer is given a means by which he/she can adjust the experimental

stimulus until it appears to match the reference that is present during the task.

While the experimental stimulus and the reference may be identical when aligned,

the background and position of each may be different.

Search: This generically refers to any task where the observer is not certain

where the Signal (target) will appear (if present), and the observer must determine

in which location the target appeared (if present). It sometimes includes searching

an entire (continuous) image, or checking several possible (discrete) locations where

the target could appear. In some variations of the task, the observer is given the

prior probability that the target is at each location, and in some tasks, the observer

must infer these on his own.
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Types of Response Paradigms

Free-Response: The observer is allowed to observe the stimulus for as long as

the observer wishes before choosing one alternative. This paradigm is frequently

used in experiments where one is interested in measuring the reaction or decision

time (DT) of the observer. Typically, the goal of experiments using this response

paradigm is to look at how DT is related to performance or accuracy [13].

In some other classifications, this sometimes refers to a test in which the observer

can respond freely, and is not limited to a fixed list of responses.

Interrogation: The observer is allowed to look at the information for a fixed

amount of time, after which he/she is prompted to respond.

Forced-Choice: The observer is given a set number of alternatives to choose

among, only one of which is the correct answer [59].

1.4.2 Basic Decision Making Problem Formulation

Consider the basic two-alternative forced-choice (2AFC) task, where one wants

to choose between the null hypothesis (H0) and the alternative hypothesis (H1).

This can generically be applied to most of the Psychophysical tasks described above.

Here we set up the general procedure for a decision-making experiment that occurs

for each observation, regardless of the number of observations taken per decision.

We borrow some terminology from [94]. In this dissertation, we will generically
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associate a Signal response with H1 and a Noise response with H0, and use the two

sets of labels interchangeably.

Truth

In this first step, the “truth” of the experiment is laid out. This involves specify-

ing the values which accurately represent the alternatives in the task, and selecting

which is correct. In practice, selecting the correct hypothesis is typically done using

a pseudo-random number generator, weighted by prior probabilities that may or

may not be available to the observer doing the task. An example of this is shown

in Figure 1.4. Suppose the 2AFC task is to decide whether or not an intruder

is present in a remote room, and the observation given is the temperature of the

room. Then, in Figure 1.4, the red line shows the true temperature of the room

when the intruder is not present, and the green line shows the true temperature

of the room when the intruder is present. The Truth step represents an idealistic

situation, where there is no noise.

Probabilistic Transition Mechanism

All measurements are affected by noise. In this step, noise smears out the “true”

values into distributions. It is often assumed that the noise is Gaussian, but other

distributions can be used to characterize the noise. The Probabilistic Transition

Mechanism selects a sample at random from the correct distribution, and returns

this value to the observer. In an experiment, this is equivalent to taking a sample

27



0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Observation Value

P
ro

b
a
b
il
it

y
o
f
O

b
se

rv
a
ti

o
n

True Values

 

 

Noise
Signal

Figure 1.4: Two true values in an example of a 2AFC task. The red value corresponds to “Noise”
(H0) being correct, and the green value corresponds to “Signal” (H1) being correct.

of data – the observer does not have direct access to the truth, but does have access

to a sensor (e.g., the observer’s eyes, a device such as a thermometer, etc) that can

access the system containing the truth. The sensor returns a noisy sample from the

correct distribution.

Continuing the previous example, Figure 1.5 shows the full distributions of

possible observations that could be given to the observer after the true values were

processed by the Probabilistic Transition Mechanism.

Observation Space

The observer may not exactly know the full distributions produced by the Prob-

abilistic Transition Mechanism, but she knows the observation space, or the set of

possible observations that the Probabilistic Transition Mechanism can produce.

Furthermore, it is assumed that the observer has an internal representation of the

distributions that is sufficiently accurate to perform the task. It is a fine point to
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Figure 1.5: True distributions of the two alternatives in a 2AFC task. This represents the obser-
vation space after the Probabilistic Transition Mechanism.

note that there are effectively two observation spaces: the first which represents the

observations put out by the system, and the second which represents the observa-

tions as received by the observer. Though it is often assumed that the two are the

same (and we will use this assumption because it is reasonable for our experiments),

it is important to note that they are not necessarily (and generally not) the same.

If the Signal distribution is correct, the observer could be given an observation

like the one shown in blue in Figure 1.6. The green dot on the blue line shows the

probability that the sample came from the Signal distribution and the red dot shows

the probability that the observation came from the Noise distribution. These values

are typically processed using a LRT to determine which is more likely. Generically,

in a simple situation, such as the one in Figure 1.6, the distribution with a higher

value at the given observation value is more likely (i.e., has a higher probability of

occurring).
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Figure 1.6: The observation space, with the sample observation value shown in blue. In our ex-
ample, the correct distribution is Signal, but this need not necessarily be true for this observation.
The green dot on the observation line shows the probability that the observation came from the
Signal distribution, and the red dot shows the probability that the observation came from the
Noise distribution. In this case, the Signal distribution is more likely.

Decision Rule

Here, the observer partitions her observation space with a decision rule, dividing

the space into regions corresponding to each alternative, then applies her decision

rule to the observation. In the sequential case, the observer calculates the evidence

from the observation, adds it to the decision variable, then checks if one of the

termination conditions has been satisfied. If the termination condition has been

satisfied, the observer selects the appropriate hypothesis, and if it has not, the

observer takes another sample of data. In the fixed-sample case, the observer

compares the observation to the decision rule and returns a decision.

An example decision rule for the fixed-sample 2AFC case is shown in Figure

1.7. The black dashed line represents the decision rule, against which the observer

compares the observation (blue). In this example, the observer would respond

30



0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Observation Value

P
ro

b
a
b
il
it

y
o
f
O

b
se

rv
a
ti

o
n

Decision Rule

 

 

Noise
Signal

Figure 1.7: The observation space, with the sample observation value shown in blue and the
decision rule shown in black (dashed). Since the observation is to the right of the decision rule,
the observer selects the Signal response.

Signal because the observation is to the right of the decision rule (and therefore,

Signal is more likely to be true).

1.4.3 Measures of Performance

Now that we have established some types of experiments that are frequently

considered and how they are set up and run with respect to the observation space,

we can discuss the measures of performance that we will be using to rate the abilities

of the observer.

Error Rate (ER)

There are four possible outcomes in a 2AFC experiment, as shown in Table 1.1:

either H0 or H1 is true, and the observer selects either H0 or H1. If the observer

selected H1 and it is true, that is considered a hit. Similarly, if the observer selected
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H1 is true H0 is true
Decide H1 Hit, or Correct Detection False Alarm or Type I Error (α0)
Decide H0 Miss or Type II Error (α1) Correct Rejection

Table 1.1: All possible outcomes of a 2AFC task.

H0 and it is true, that is considered a correct rejection. Both of these values

contribute to the Percent Correct (PC). If the observer selects H1 when H0 is true,

then the trial is considered a false alarm (or false positive, or Type I error), and

if the observer selects H0 when H1 is true, the trial is considered a miss (or false

negative, or Type II error). Both of these errors contribute to the general Error

Rate (ER).

A false alarm rate is typically denoted by α in the literature and a miss rate

by β; however, in our mathematical models, we will use the convention that the

false alarm rate is denoted by α0 and the miss rate is denoted by α1. Our notation

for the error should be interpreted as “αi represents the probability of rejecting Hi

when it is true.”

When we do not differentiate between the two types of error, we will refer to the

error rate generically as the ER for a given observer or sensor. This is equivalent to

considering the two types of error to be equally undesirable. When appropriate, we

may specifically distinguish between the minimum error rate allowed (a theoretical

value called the “set ER”) and the actual error rate found by simulation (actual

ER), but in general, we will drop the qualifiers when the context is clear. Similarly,

when we do not differentiate between the two types of correct responses, we will
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refer to the observer’s performance using the PC.

Cost Functions Often, there are costs or benefits associated with the different

possible outcomes described in Table 1.1, and these can be taken into account via a

cost function. A cost function formally states the specific cost of actions related to

making a decision. Cost functions typically include the cost associated with taking

data and/or time, and the cost associated with making each type of error. A number

of different cost function-related strategies are discussed in [94]. While defining a

cost function allows one to definitively state that one’s decision-making scheme is

optimal (with respect to that particular cost function), we will not be focusing on

cost functions in this work. To declare a strategy as optimal, one must characterize

all possible situations and outcomes and formulate a clearly defined cost function;

this leads to a relatively narrow definition of reality. In many situations, the costs

of different outcomes is known only approximately, because the exact value is not

known in advance (i.e., unless it happens). We also argue that for many good

strategies, it is likely possible to post-facto construct a reasonable cost function

that makes that strategy optimal. In this sense, focusing on cost functions seems

slightly artificial for a system that is likely to encounter an unpredictable set of

situations.
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Sensitivity, d′

In characterizing the capabilities of an observer, it is natural to discuss the

observer’s “sensitivity”. PC provides information on how well the observer performs

in the task, and thereby provides some indication of the observer’s ability at the

task; however, the most commonly used measure comes from Signal Detection

Theory, and is known as d′ (“dee-prime”). d′ is a better measure than PC, because

it is invariant to changes in other factors, such as criterion [59]. Though there are

several ways to calculate this value, the most common and simplest definition is

d′ = z(HR) − z(FA), (1.12)

where z is the inverse of the normal distribution function [59], and it is assumed

that the distributions in the observation space are normal. From the definition, we

can see that an observer with a high hit rate (HR) and high false alarm rate (FA)

can potentially have the same d′ as an observer with a low HR and low FA. This

is reasonable: if the observers have the same ability at the task and differ only in

their tendency to respond Signal, they should have the same d′ value. This will be

explained in terms of the observation space below.

In theory, d′ ranges in value from 0 to infinity. Zero values correspond to an

observer who randomly guesses at the solution, and infinite values correspond to an

observer with perfect performance. In practice, zero and infinite values are avoided

by introducing the following corrections for perfect performance:
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F̂A =
1

2N
,

ĤR = 1 − 1

2N
,

(1.13)

where F̂A and ĤR are the corrected values, and N is the number of trials in the

study.

Though Equation (1.12) is frequently used, it implicitly includes some assump-

tions on the underlying observation space. It is sufficient for our models in Chapters

2 and 3; however, we will need a more general definition in our data analysis, which

we will introduce in Chapter 4.

Performance and Bias in the Observation Space

The observation space provides more information than just the distributions

used to generate the observations – it also contains information about the ob-

server’s ERs and d′. In Figure 1.8, we use the same observation space as above,

with the same optimal criterion, to illustrate how to calculate the observer’s perfor-

mance from the observation space. Figure 1.8(a) shows the HR, which is found by

integrating the area under the Signal distribution to the right of the criterion. This

is the HR because it represents the total probability of answering Signal (since the

distribution is to the right of the criterion) when Signal is the correct answer (since

the Signal distribution is only used to determine the experiment’s outcome when

Signal is the correct answer). The FA is shown in Figure 1.8(b), and is found by

integrating over the Noise distribution to the right of the criterion. This is the FA

35



because it is the total probability that the observer answers Signal when the Noise

distribution is correct. Similar intuition applies to Figures 1.8(c) and (d), which

represent the miss rate and correct rejection rate, respectively.

This representation also makes intuitive sense: if H1 is true, then the observer

can get only either a hit or a miss, so one can find the probability that H1 is true

by adding the observer’s hit and miss rates. The same holds for H0, with the false

alarm and correct rejection rates.

The criterion is optimal because it maximizes the HR while minimizing the FA

rate. Moving the criterion changes both the HR and the FA; however, it does not

change the observer’s d′. This is more easily seen by comparing Figure 1.8 to Figure

1.9, which shows an observer with the same d′ as the one shown in Figure 1.8, but

with a different, non-optimal criterion. In this example, the observer is biased

towards responding Noise. This results in a lower HR, but also a significantly lower

FA rate.

The general consensus is that observers are not able to move their distributions

(i.e., change their sensitivity), but are able to shift their criterion [53, 88], which is

another reason why d′ is considered a better measure of performance than PC: PC

changes as the criterion is moved, while d′ does not. We will focus on this measure

in our fixed-sample analysis, since decisions are made there for each observation.

In our sequential analysis, d′ enters solely through the separation between the two

distributions that are used to generate the observations in the experiment. Since
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(a) Hit Rate (b) False Alarm Rate

(c) Miss Rate (d) Correct Rejection Rate

Figure 1.8: The observation space, used to show the observer’s performance and ERs with an
optimal criterion. (a) The HR is the total probability that the observer will select Signal when
Signal is true. This is equivalent to integrating the area under the Signal distribution curve
(because it is true) to the right of the criterion (which indicates that the observer selects this
response), which is shown as a shaded region. The same idea applies to the (b) FA, (c) miss rate,
and (d) correct rejection rate.

we use two distributions that differ only in mean and have a standard unit devi-

ation, the d′ of the observer is equal to the difference between the means of the

distributions.

In the two examples in Figures 1.8 and 1.9, the observers’ d′ values can be

thought of in terms of the distance between the two distributions, since the two

distributions differ only in mean. If the observer’s observation space is more com-
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(a) Hit Rate (b) False Alarm Rate

(c) Miss Rate (d) Correct Rejection Rate

Figure 1.9: The observation space, showing the performance of an observer using a non-optimal
criterion. The observer shown here has the same d′ as the observer shown in Figure 1.8, but it
is clear that this observer has a different (a) PC, (b) FA, (c) miss rate, and (d) correct rejection
rate.
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plicated (e.g., the distributions have different standard deviations or at least one

distribution is bimodal, etc.), then another formula and possibly multiple criteria

must be used. One can generically think of d′ as being represented by the area of

overlap between the two distributions, since this sets a limit on the group’s error

rates: with the optimal criterion, a greater area of overlap results in a higher level

of error and a lower d′, and a smaller area of overlap results in a lower level of error

and a higher d′.

An example of a more complicated observation space with the optimal criteria is

shown in Figure 1.10. In this case, the optimal decision criterion requires more than

one criterion. To the left of the first dashed black line at about x = 53, the Noise

response is more likely. Directly to the right of that, up to the second dashed black

line near x = 58, Signal is more likely. Between that criterion and the last criterion

near x = 70, Noise is again more likely, and to the right of the last criterion, Signal

is more likely. See [29, 59] for more details on complicated observation spaces.

Decision Time (DT)

One last measure of performance that we will focus on in our mathematical

models is decision time (DT). We primarily focus on DT for our sequential method-

based mathematical models, since one of the main benefits of sequential methods

is its average decision speed, which can equivalently refer to DT or the number

of samples required to reach a decision. Our fixed-sample analysis is relevant to
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Figure 1.10: An example of a more complicated observation space with the optimal criteria. In
this case, the optimal decision criterion requires more than one criterion. The optimal criteria
partition the observation space into regions where one hypothesis is more likely than the other.
The light red-colored regions show the observation values for which Noise is more likely, and the
light green-colored regions show the observation values for which Signal is more likely. This is
equivalent to dividing the observation space into regions in which one curve has a higher value;
therefore, the optimal criteria are defined by the locations at which the two distributions cross.

applications where DT is not a large concern, so DT is not considered an important

performance parameter for that work.
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Chapter 2

Individual Model: The

SPRT-Based DDM

2.1 Introduction

The Sequential Probability Ratio Test (SPRT) is a hypothesis testing procedure

from sequential analysis that is optimal in the sense that it minimizes the average

number of samples required to reach a decision while not exceeding specified error

rates. This holds true for all tests, whether sequential or fixed-sample, whose error

probabilities are at most equal to those of the SPRT [98, 99].

There are many situations in which the sample size is not fixed in advance or

when one wants to minimize the number of samples. For example: in ammunition

quality control, tested samples are unusable; in clinical trials, there is a moral
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obligation to use the minimal number of test subjects to achieve the desired error

rate; and in situations where the goal is to maximize a reward rate in time, where

there may be a time penalty for incorrect answers.

We primarily consider the solution to a two-alternative forced-choice (2AFC)

task. Though there are multiple definitions of what constitutes a 2AFC task, we

follow the convention laid out in [13]: A 2AFC task is one in which the decision-

maker (DM) must choose between two specific hypotheses, while making the fol-

lowing three assumptions: (i) evidence favoring each alternative is integrated over

time, (ii) the process that provides the DMs with observations is subject to random

fluctuations, and (iii) a decision is made when sufficient evidence has accumulated

favoring one of the alternatives. An example of a 2AFC task is deciding if there is

a signal (e.g., intruder, contamination, etc.) in a given area.

We first provide a brief history of the SPRT, then discuss its relevance in recent

literature. We then present the SPRT, demonstrate its optimality, and show how it

is related to the Drift-Diffusion Model (DDM), on which we will base our analytical

results. We first solve the DDM for general average performance indices, mean Error

Rate (ER) and mean Decision Time (DT), and later specialize those results to the

constant-drift constant-diffusion case. We then solve the SPRT-based DDM for

the full probability distribution function (pdf) of DTs and verify our results using

simulation. We finish by investigating some issues that arose during simulation.
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2.1.1 A Brief History of the SPRT

Below we briefly describe the development of the SPRT and related methods,

then discuss the SPRT’s relevance in current literature.

The first formalized sequential procedure was the “double-sample” inspection

method by H. F. Dodge and G. G. Romig in 1929 [81]. This scheme differed from

previous methods in that it was possible for results from the first sample to make

it unnecessary to take the second sample. While W. Bartkey generalized this to a

multi-stage procedure in 1943, and other multi-stage procedures were proposed, it

was not until the last two years of World War II that sequential methods such as

the SPRT and Banburismus were systematically developed [81].

Banburismus was developed by Alan Turing and his colleagues at Bletchley

Park in the early 1940s. The process was named in honor of the town of Banbury,

where the special sheets of paper used to perform computations for the process

were printed. Turing’s group was originally founded for the purpose of statistical

quality control, but is most famous for using Banburismus to break the supposedly

unbreakable Enigma code used by the German Navy [39]. Banburismus allowed the

codebreakers to infer details about the configuration of the Enigma machines from

the intercepted messages [23]. In other words, Turing’s group searched for evidence

in the intercepted messages to support or refute various hypotheses about the en-

coding scheme, and to find messages that were encoded by Enigma machines with

identical configurations. Banburismus has three main features: first, it provides a
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means to quantify the weight of evidence provided by individual clues. Second, it

provides a way to update that quantity to account for new information. Lastly,

Banburismus provides a decision rule to determine when there is sufficient evidence

to render judgment [39].

Around the same time, the Statistical Research Group (SRG) based at Columbia

University developed the SPRT as a means to reliably test the quality of items such

as artillery while saving on sampling costs [81]. The SRG was supported by the Ap-

plied Mathematics Panel of the National Defense Research Committee, which was

a part of the Office of Science Research and Development. The group was started

by Warren Weaver and Harold Hotelling. On a social note, despite being assembled

via “the old boy network”, the SRG was a socially diverse group, consisting of 18

principles and about 60 others, including about 30 young women, two blacks, and

two “persons with severe physical handicaps” [100]. The original idea that led to

the development of the SPRT largely came from Milton Friedman and W. Allen

Wallis, who, lacking a formal background in statistics, initially approached Jacob

Wolfowitz for help in developing the idea. Wolfowitz was uninterested, however, so

Wallis and Friedman gave the idea to Abraham Wald. Though initially uninter-

ested in the problem, Wald quickly gained enthusiasm as he discovered its potential

[38, 100]. Wald’s theoretical results on the SPRT were presented in two of SRG’s

restricted reports in 1943 and 1944, and later in a book in 1947 [98]. Wald and

Wolfowitz proved the optimality of the SPRT in 1948 [99].
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Though Banburismus and the SPRT were developed mostly independently, they

share many characteristics, and essentially are equivalent tests. We focus on the

SPRT in our models because it is the most familiar, and is more relevant in the

recent literature we consider, as we will detail below.

Recent Applications in Neuroscience

The DDM, a continuum-limit of the SPRT, has been used to model oculomotor

decision-making in the brain, supported by experiments with in vivo recordings

from monkeys performing the random dynamic dot task, in which a proportion of

dots on a computer screen move coherently either to the right or left, with speed and

number determined by given distributions, and the rest of the dots move randomly

[44]. The experimenters implanted electrodes in the monkeys’ brains to monitor

neural activity in relevant areas. The 2AFC task associated with this experiment is

to decide if more of the coherent dots were moving to the left or to the right. The

DDM has been demonstrated to be a reasonable model for predicting macaques’

response time using data from their middle temporal (MT) and lateral intraparietal

(LIP) areas [16], or frontal eye field [34]. We explain the relevance of the SPRT to

decision making in these regions of the brain below.

The MT is the first area in the visual pathway where a majority of neurons are

directionally selective, so one would expect the firing rate of the neurons selective

for rightward motion to be slightly higher if more of the correlated dots were moving
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to the right, and likewise if the majority of correlated dots were moving to the left.

However, the actual output from the MT is very noisy, and for a task in which the

correlation is small, it is very difficult to decide which direction to choose based

on information from the MT alone. The LIP area is involved in eye control –

there are neurons that are selective for leftward saccades and neurons selective for

rightward saccades. In the experiment, measurements from the neurons in the LIP

indicated that the neurons were actually integrating the small differences in the

firing rates in the MT. A nice correlation was found between the time when the

monkey made its decision and when the neuron firing rate in the LIP area passed

a certain threshold value [16], similar to the SPRT and DDM. A cartoon example

of this is shown in Figure 2.1 [13]. In the MT, shown in Figure 2.1(a), it is not

immediately clear which direction is favored: after close inspection, the leftwards

firing generally seems slightly higher, but it is not always higher, and when it is,

it is not higher by much. In contrast, it is immediately clear which direction is

preferred in the LIP response, shown in Figure 2.1(b).

Similar results were found using data from the superior colliculus in different

tasks [71, 74]. A number of DDM-related models were also used to fit psychophysical

data from monkeys learning a decision-making task [30]. A nice review of several

mathematical models used in this area is given in [13, 85]. These works have inspired

the development of reward-maximizing neural network models [17, 83].

A DDM-based model by Ratcliff et al. called Ratcliff’s Wiener (RW) diffusion
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(a) MT Response (b) LIP Response

Figure 2.1: Cartoon showing the output of the MT and the LIP of a monkey performing the
dynamic random dot experiment, from [13]. Though it is not immediately clear which direction
the brain selects for in the MT response, it is very clear from the LIP response. The LIP is thought
to integrate the difference in signal from the MT. The rightward response decreases towards zero,
while the leftward response continues to climb. Similar to the SPRT or DDM, the monkeys were
found to respond when the signal in the LIP reached a threshold value. Thus, the SPRT is a
relevant model for modeling decision making in monkeys.

model was shown to be relevant for human decision-making in psychophysical tasks

in a large body of work [73, 76]; see [75] for a comprehensive review of relevant

literature. The RW model has been used to model individual differences and corre-

lations between model parameters and data, the effects of aging [70], IQ [77], sleep

deprivation [72] and dysphoria [101] on observers performing 2AFC tasks. A num-

ber of popular sequential sampling models were summarized and compared in [78],

and evaluated by their performance in modeling data from three different 2AFC

experiments. The models discussed include RW diffusion, Ornstein-Uhlenbeck (O-

U) diffusion, accumulator, Poisson counter, leaking competing accumulator, leaky

accumulator with relative criteria, and Usher and McClelland models. It was found

that there was a substantial overlap among the different models, but that in gen-

eral, the RW diffusion model, O-U diffusion model with small-to-moderate decay,
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and the two leaky accumulator models provided the best performance. In [55], a

similar study was done for several sequential sampling models using racing diffu-

sion processes to perform a multiple-alternative task, and some general issues in

formulating multiple-alternative models were raised. A method for averaging the

performance of a group of individuals was demonstrated in [69]. We note that the

individual model we derive below is equivalent to the RW model’s single diffusion

process [68]; however, no derivation of Ratcliff’s single diffusion process solution

was provided in [68]. We provide our independently-formulated derivation below

for completeness. We also note that the RW model was intended for matching

tasks, and is therefore fundamentally different from our group models.

A reward-based study at Princeton University with undergraduates perform-

ing the random dynamic dot task was presented in [14]. The results indicate that

the constant-drift, constant-diffusion DDM (called the “pure” DDM) does not ac-

curately account for all empirical phenomena. As a result, they developed the

“extended” DDM to include variable drift rates, non-decision-making-related delay

times, and initial bias. The extended DDM was found to account for a wider range

of empirical phenomena but was significantly more difficult to analyze. A main

finding relevant to our work is the result that the human observers’ performance

could be modeled reasonably well by a pure DDM: introducing variable drift rates

tended to slightly decrease the predicted DT for a given ER, while varying the

initial bias tended to slightly increase the predicted DT; thus, accounting for both
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resulted in performance similar to accounting for neither. It was additionally found

in [84] that grouped data matched well with a DDM optimized for maximum reward

rate.

Based on these studies, we present the following solution to a pure DDM as

a model which could be used to fit the performance of a human observer or to

design a detector. Though our solutions are arguably a special case of the models

presented in [13], we have not yet seen the specific treatment we present.

2.1.2 The Sequential Probability Ratio Test (SPRT)

We begin with the standard definition of the SPRT, with likelihood ratios, so

we can show a derivation of the boundary conditions, establish ways to account for

bias, and show the expected number of samples required to reach a decision while

being consistent with previous works. We then introduce the log-likelihood-based

SPRT, which we will use in our models.

Standard Definition of the SPRT

Suppose Y is a random variable with unknown pdf p over the observation space.

The SPRT chooses between H0:p = p0 and H1:p = p1 with ERs no greater than a

specified α0 and α1. The pdfs p0 and p1 are assumed to be known.

Since we assume that the observations are iid, the general procedure for the nth

stage of the SPRT is similar to the LRT discussed in Section 1.3: first, take the nth
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observation of Y , denoted yn. Then, update the stage-n likelihood ratio, given by

LRn =
n∏

i=1

p1(yi)

p0(yi)
. (2.1)

After processing observation yn, then select one of three actions, based on the value

of LRn:

b0 < LRn < b1 : Take another sample of data,

LRn ≤ b0 : Choose H0,

LRn ≥ b1 : Choose H1.

The SPRT (and experiment) continues as long as b0 < LRn < b1, where b0 and

b1 are constants and b0 < 1 < b1. The latter condition ensures that the test selects

the more likely hypothesis.

Relationship between Boundaries and Error Rates It is intuitive that the

boundaries b0 and b1 are related to the error rates α0 and α1: boundaries that are

further away from the decision variable’s initial condition provide more accurate

decisions because the decision variable is less susceptible to being driven across a

boundary by noise. (It is implicitly assumed that LR = 1 is the initial condition.)

Here, we make this idea concrete.

Let T be the number of observations required for the SPRT to finish. Note that

T is not a predetermined number; however, by assumption, T is a finite number.
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Let Y1T be the set of all T -length sequences of observations (YT ) such that the

SPRT chooses H1 at step T . In other words, for any YT ∈ Y1T ,

p1(y1)p1(y2) . . . p1(yT )

p0(y1)p0(y2) . . . p0(yT )
≥ b1,

⇔ p1(y1)p1(y2) . . . p1(yT ) ≥ b1p0(y1)p0(y2) . . . p0(yT ).

We now integrate both sides over Y1T and sum over all possible T to get

∞∑

T=1

∫

Y1T

p1(y1)p1(y2) . . . p1(yT ) ≥ b1

∞∑

T=1

∫

Y1T

p0(y1)p0(y2) . . . p0(yT ),

which simplifies to

p1(Y1) ≥ b1p0(Y1), (2.2)

where pj(Y1) is the probability of choosing H1 given that Hj is true. By the

definition of the error rates α0 and α1 we have

p0(Y1) ≤ α0,

p1(Y0) ≤ α1.

Since pi(Y1) + pi(Y0) = 1 for i = 0, 1, this implies that
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p0(Y0) ≥ 1 − α0,

p1(Y1) ≥ 1 − α1.

To define the boundary, we take p0(Y1) = α0 and p1(Y1) = 1 − α1. Plugging

this into Equation (2.2) we have

1 − α1 ≥ b1α0,

⇒ b1 ≤
1 − α1

α0

.

(2.3)

Similarly, let Y0T be the set of T -length sequences of observations (YT ) such

that the SPRT chooses H0 at step T . So, for any YT ∈ Y0T ,

p1(y1)p1(y2) . . . p1(yT )

p0(y1)p0(y2) . . . p0(yT )
≤ b0,

⇔ p1(y1)p1(y2) . . . p1(yT ) ≤ b0p0(y1)p0(y2) . . . p0(yT ).

Integrating over Y0T and summing over all possible T gives

∞∑

T=1

∫

Y0T

p1(y1)p1(y2) . . . p1(yT ) ≤ b0

∞∑

T=1

∫

Y0T

p0(y1)p0(y2) . . . p0(yT ),

which simplifies to
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p1(Y0) ≤ b0p0(Y0). (2.4)

Again, to define the boundary, we take p1(Y0) = α1 and p0(Y0) = 1 − α0.

Plugging these values into Equation (2.4), we get

α1 ≤ b0(1 − α0),

⇒ b0 ≥
α1

1 − α0

.

(2.5)

The inequalities in Equations (2.3) and (2.5) become equalities only if the deci-

sion variable hits a boundary exactly (rather than overshooting the boundary). In

practice, it is customary to apply the small-overshoot assumption [54, 98], which

allows us to define the boundaries by the (slightly) conservative values

b0 =
α1

1 − α0
, (2.6)

b1 =
1 − α1

α0

. (2.7)

For now, we will take the small-overshoot assumption. We will later revisit this

assumption in greater detail in our simulations in Section 2.6.2.

Earlier, in our definition of the SPRT, we introduced the condition b0 < 1 < b1.

Under the above relations, this condition becomes
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α1

1 − α0

< 1 <
1 − α1

α0

. (2.8)

Thus, we require that α1 < 1 − α0 and α0 < 1 − α1. This is very reasonable: it is

equivalent to requiring that the probability of choosing the correct hypothesis be

greater than the probability of choosing the incorrect hypothesis.

Bias Let π0 (resp., π1) be the observer’s prior bias that H0 (resp., H1) is correct.

There are two ways in which we can take prior bias into account: we can either

shift the likelihood ratio’s initial condition, LR0 and use the previously-calculated

boundaries, or we can use the initial condition LR0 = 1 and shift the location of

the boundaries. These are equivalent ways of accounting for bias.

Shifted Initial Condition In cases where it is convenient to set the location

of the boundaries using Equations (2.6) and (2.7), we can account for the observers’

prior bias through the decision variable’s initial condition. In this case, we set

LR0 =
π1

π0
, (2.9)

to shift the initial condition towards the boundary corresponding to the more likely

hypothesis. Note that we require α0 < min(π0, π1) and α1 < min(π0, π1).

Shifted Boundaries In cases where it is convenient to have a unity initial

condition, we can account for the observer’s prior bias by shifting the boundaries.
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In this case, the new boundaries are

b̂0 =
π1

π0

b0, (2.10)

b̂1 =
π1

π0
b1. (2.11)

Expected Number of Samples Wald [98] also gives approximate expressions

for the expected numbers of observations Ei[N ], i = 0, 1. Using the relations in

Equations (2.6) and (2.7), they are

E1[N ] ≈ α1 log(b0) + (1 − α1) log(b1)

E1

[
log
(

p1(y)
p0(y)

)] (2.12)

E0[N ] ≈ (1 − α0) log(b0) + α0 log(b1)

E0

[
log
(

p1(y)
p0(y)

)] . (2.13)

The SPRT with Log-Likelihoods

Here, we establish the form of the SPRT that we will use in the rest of this

dissertation.

We introduce the decision variable x that tracks position in the one-dimensional

decision space (B0, B1) after receiving observation yn. Since the observations are iid,

we can use the log-likelihood ratio to update the location of the decision variable.

After the nth observation is processed, the decision variable is
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xn = log(LRn) + x0 =
n∑

i=1

log

[
p1(yi)

p0(yi)

]
+ x0. (2.14)

We will account for bias in the initial condition:

x0 = log

(
π1

π0

)
, (2.15)

where B0 < x0 < B1. After processing this observation, we then select one of the

following actions:

B0 < xn < B1 : Take another sample of data,

xn ≤ B0 : Choose H0,

xn ≥ B1 : Choose H1,

where

B0 = log

(
α1

1 − α0

)
, (2.16)

B1 = log

(
1 − α1

α0

)
. (2.17)

As before, we require B0 < 0 < B1 to ensure that the test chooses the hypothesis

that is more likely.

If we assume α0 = α1 = ε, which is reasonable for the case where we want to
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have a minimum amount of any type of error, then the boundaries are

B0 = log

(
ε

1 − ε

)
≡ −z, (2.18)

B1 = log

(
1 − ε

ε

)
≡ z. (2.19)

(Note that here, −B0 = B1). We also require that ε < min(π0, π1).

2.1.3 Optimality of the SPRT

Let P (reject Hi|Hi) be the probability that hypothesis Hi is true but has been

rejected, for i = 0, 1. Let Ei[N ] be the expected number of observations required to

reach a decision when hypothesis Hi is true. Then, we have the following theorem:

SPRT Optimality Theorem Among all tests (fixed sample or se-
quential), for which

P (reject Hi|Hi) ≤ αi, i = 0, 1 (2.20)

and for which E0[N ] and E1[N ] are finite, the SPRT with error proba-
bilities P (reject Hi|Hi) = αi, i = 0, 1 minimizes both E0[N ] and E1[N ]
[99].

This theorem was proven by Wald and Wolfowitz in 1948; however, we provide a

sketch of two simpler proofs from [13], the first of which follows a proof by Lehmann

[54]; also see [37].
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A Sketch of the Proof of the SPRT Optimality Theorem

Let w0 be the loss from choosing H1 when H0 is true, and w1 be the loss from

choosing H0 when H1 is true. H0 is true with prior probability π0 and H1 is true

with prior probability π1 = 1−π0. Let κ be the cost of taking one observation. For

Hi true, we define the risk Ri as the sum of the expected loss due to an incorrect

decision and the expected cost of reaching a decision:

Ri = αiwi + κEi[N ], i = 0, 1.

Since we are looking at expected values, we assume that these values are calcu-

lated over a large number of trials. The total average risk of a decision procedure

ϕ is given by

r(π0, π1, κ, w0, w1, ϕ) = π0R0 + π1R1

= π0(α0w0 + κE0[N ]) + π1(α1w1 + κE1[N ]).

Now we note that the SPRT minimizes r(π0, π1, κ, w0, w1, ϕ) in the following

sense: for any SPRT with b0 < 1 < b1 and any 0 < π1 < 1 (since this also makes

0 < π0 < 1 true), there exist positive constants κ, w0, and w1 such that the SPRT

minimizes r(π0, π1, κ, w0, w1, ϕ) for those values of π1, κ, w0, and w1 [37, 54].

Consider a different decision procedure ϕ∗, with error probabilities α∗
i ≤ αi and
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finite expected sample size E∗
i (N), i = 0, 1. For this decision procedure, the average

risk is given by

r(π0, π1, κ, w0, w1, ϕ
∗) = π0(α

∗
0w0 + κE∗

0 [N ]) + π1(α
∗
1w1 + κE∗

1 [N ]).

Since we can choose κ, w0 and w1 so that the SPRT minimizes the average risk

for any π1, for those values, we have

r(π0, π1, κ, w0, w1, ϕ) ≤ r(π0, π1, κ, w0, w1, ϕ
∗)

π0(α0w0 + κE0[N ]) + π1(α1w1 + κE1[N ]) ≤ π0(α
∗
0w0 + κE∗

0 [N ])

+π1(α
∗
1w1 + κE∗

1 [N ])

≤ π0(α0w0 + κE∗
0 [N ])

+π1(α1w1 + κE∗
1 [N ]).

This gives

π0E0[N ] + π1E[N ] ≤ π0E
∗
0 [N ] + π1E

∗
1 [N ].

Because this expression must hold for any π1, we can conclude that

E0[N ] ≤ E∗
0 [N ] and E1[N ] ≤ E∗

1 [N ]. 2
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SPRT Optimizes Reward Rate

In [13], it was also shown that the SPRT optimizes the reward rate introduced

by Gold and Shadlen [39]. The proof requires that the ERs be allowed to vary and

that the number of observations required be minimized.

As before, we assume that the ERs are equal, α0 = α1 = ε, and that the

mean DT is the average time needed to make a decision. We define the reward

rate (RR) as the probability of a correct response divided by the average time

between responses. In calculating the average time between responses, we include

an imposed time delay D ≥ 0 between trials, and a time penalty Dp ≥ 0 for

incorrect responses. Thus,

RR =
1 − ε

DT +D +Dpε
.

For this proof, we follow a similar line of reasoning as before: for a given de-

cision procedure ϕ∗, suppose that the RR is maximized for ε = ε∗. The SPRT

Optimality Theorem gives that the SPRT decision procedure ϕ has the property

that DT(ϕ, ε∗) ≤ DT(ϕ∗, ε∗). Thus,

RR(ϕ∗, ε∗) =
1 − ε∗

DT(ϕ∗, ε∗) +D +Dpε∗
≤ 1 − ε∗

DT(ϕ, ε∗) +D +Dpε∗
= RR(ϕ, ε∗).

In other words, for any decision procedure ϕ∗, one can always find an SPRT
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with a RR at least as high. Furthermore, there is a particular value of ε which

maximizes the reward rate of the SPRT. This value of ε is generally difficult to

determine in practice because different ERs generally correspond to different DTs.

2

2.1.4 Continuum Limit

Rather than deriving the continuum limit, we provide a sketch of the proof

shown in [13]. Some care is required to preserve the variability of xn when taking

the limit. Up to an unimportant scale factor relating the “time steps” n and the

continuous time t, the limiting procedure is as follows:

Let ∆xr have mean m and variance D2, which is assumed to be finite. Now

define the family of random functions of t ∈ [0, T ] indexed by M = 1, 2, ... (where

T is some large time) as

xM(t) =
1√
M

k∑

r−1

(∆xr −m) +
1

M

k∑

r=1

∆xr, (2.21)

where k = ⌊Mt
T
⌋, the largest integer smaller than Mt

T
. Note the different normal-

ization factors in the equation for xM : this reflects the different rates at which

fluctuations and means accumulate as the random increments are summed.

For any value of M , xM(t) has mean m⌊t/T ⌋ and variance D2⌊t/T ⌋ (e.g, for

xn =

n∑

r=1

log

[
p1(yr)

p0(yr)

]
, xM (t) has mean mn and variance D2n).

Donsker Invariance Principle: Under some conditions, the distribu-
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tion of a functional of normalized sums of iid random variables converges
to the distribution of this functional of the Wiener process. (See Theo-
rem 37.8 in [9]; also [10]).

The Donsker Invariance Principle, together with the Law of Large Numbers, implies

that as M → ∞,

xM(t) → DW (t) +mt ≡ x(t), (2.22)

whereW (t) is a Wiener process (see the Appendix, Section B.1) and the convergence

of the random functions xN (·) is in the sense of distributions.

In other words, the limiting process x(t) satisfies the stochastic differential equa-

tion (SDE)

dx = mdt+DdW, (2.23)

x(0) = 0, (2.24)

with boundaries B0 < 0 < B1. Below, we solve for m and D in terms of the pdfs.

Drift and Diffusion Constants for the SPRT-based DDM

The drift m and variance D2 of ∆xr in Equations (2.23) - (2.24) depend on the

pdfs pi(yr). For example, for Gaussians with µ1 > µ0 and σ0 = σ1 ≡ σ, applied to

the rth observation, we have
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p1(yr) =
1√

2πσ2
e−

(yr−µ1)2

2σ2 ,

p0(yr) =
1√

2πσ2
e−

(yr−µ0)2

2σ2 .

The corresponding ∆xr, the distance traveled by the decision variable on the rth

time step, is:

∆xr = log

[
p1(yr)

p0(yr)

]
,

= log




1√
2πσ2

, e−
(yr−µ1)2

2σ2

1√
2πσ2

e−
(yr−µ0)2

2σ2


 ,

=
µ2

0 − µ2
1 + 2yrµ1 − 2yrµ0

2σ2
,

=
yr(µ1 − µ0)

σ2
− (µ1 + µ0)(µ1 − µ0)

2σ2
,

∆xr =
µ1 − µ0

σ2

(
yr −

µ1 + µ0

2

)
. (2.25)

We can now find the statistics of ∆xr. If Hi is true, then the expected value

and variance of observation yr are
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E(yr) = µi, (2.26)

V ar(yr) = σ2. (2.27)

Given this, we can find the expected value of ∆xr:

E[∆xr] = E

[
µ1 − µ0

σ2
yr −

(µ1 − µ0)(µ1 + µ0)

2σ2

]
,

=
µ1 − µ0

σ2
E[yr] −

(µ1 − µ0)(µ1 + µ0)

2σ2
,

=
−µ2

1 + µ2
0 + 2(µ1 − µ0)µi

2σ2
. (2.28)

If H1 is true, µi = µ1:

E[∆xr|H1 true] =
−µ2

1 + µ2
0 + 2µ2

1 − 2µ0µ1

2σ2
,

=
µ2

1 − 2µ0µ1 + µ2
0

2σ2
,

=
(µ1 − µ0)

2

2σ2
. (2.29)

If H0 is true, µi = µ0:
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E[∆xr|H0 true] =
−µ2

1 + µ2
0 + 2µ0µ1 − 2µ2

0

2σ2
,

=
−µ2

0 + 2µ0µ1 − µ2
1

2σ2
,

= −(µ0 − µ1)
2

2σ2
. (2.30)

In summary,

E[∆xr] ≡ m =





(µ1−µ0)2

2σ2 for H1 true,

− (µ1−µ0)2

2σ2 for H0 true.

(2.31)

By definition, the variance is

V ar(∆xr) = E[(∆xr −m)2] = E[(∆xr)
2 − 2∆xrm+m2],

= E[(∆xr)
2] − E[2∆xrm−m2]︸ ︷︷ ︸

2mE[∆xr]−m2=(E[∆xr])2

,

= E[(∆xr)
2] − (E[∆xr])

2. (2.32)

First we find E[(∆xr)
2]. We assume that hypothesis Hi is true, and Hk is not true.
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E[(∆xr)
2] = E

[(
µ1 − µ0

σ2

{
yr −

µ1 + µ0

2

})2
]
,

= E

[
(µ1 − µ0)

2

σ4

(
y2

r − (µ1 + µ0)yr +
(µ1 + µ0)

2

4

)]
,

=
(µ1 − µ0)

2

σ4
(E[y2

r ] − (µ1 + µ0)E[yr])︸ ︷︷ ︸

E[y2
r ] − µi︸︷︷︸

E[yr]

E[yr] − µk E[yr]︸ ︷︷ ︸
µi

,

= E[y2
r ] − (E[yr])

2

︸ ︷︷ ︸
σ2

−µkµi︸︷︷︸
µ0µ1

+
(µ1 − µ0)

2(µ1 + µ0)
2

4σ4
,

=
(µ1 − µ0)

2

σ4
(σ2 − µ0µ1) +

(µ1 − µ0)
2(µ1 + µ0)

2

4σ2
,

=
(µ1 − µ0)

2

σ4

(
σ2 − µ0µ1 +

1

4
(µ1 + µ0)

2

)
,

=
(µ1 − µ0)

2

σ4

(
σ2 +

1

4
(µ1 − µ0)

2

)
. (2.33)

Now, to calculate the variance, substitute Equations (2.31) and (2.33) into (2.32):

V ar(∆xr) =
(µ1 − µ0)

2

σ4

(
σ2 +

1

4
(µ1 − µ0)

2

)
− (µ1 − µ0)

4

4σ4
,

=
(µ1 − µ0)

4

σ2
+

(µ1 − µ0)
4

4σ4
− µ1 − µ0)

4

4σ4
,

V ar(∆xr) =
(µ1 − µ0)

2

σ2
≡ D2. (2.34)
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The total distance that the decision variable has traveled after n observations is

given by

xn =

n∑

r=1

∆xr =

n∑

r=1

log

[
p1(yr)

p0(yr)

]
. (2.35)

In logarithmic variables, the trajectory −→xn is a discrete-time, biased random walk

(with x0 = 0), since the increments ∆xr are iid. As the time between arriving incre-

ments of information goes to zero (equivalently, as sampling becomes continuous),

this process approaches the continuous-time process x(t). In this limit, the SPRT

approaches the DDM, which is of interest because it has been demonstrated to be

a biologically relevant model for decision making, and because it can be converted

to a Kolmogorov or Fokker-Planck Equation (FPE), as discussed in the following

section, which we can solve.

2.2 DDM → Fokker-Planck Equation (FPE)

We are interested in converting the DDM to a FPE because we can solve it to find

expressions for the measures of performance that we are interested in. To see the

equivalence between the FPE and the DDM (SDE), consider the time development

of an arbitrary function f [x(t)]. If we use Ito’s Formula (Equation (B.11) in the

Appendix), we get
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〈df [x(t)]〉
dt

=

〈
df [x(t)]

dt

〉
=

d

dt
〈f [x(t)]〉

=

〈
a[x(t), t]∂xf +

1

2
(b[x(t), t])2∂2

xf + b[x(t), t]∂xfdW (t)

〉

=

〈
a[x(t), t]∂xf +

1

2
(b[x(t), t])2∂2

xf

〉
,

since 〈dW (t)〉 = 0. Note that for a discrete random variable X(ω), we denote its

mean value by

〈X〉 =
∑

ω

X(ω)P (ω).

In the discrete case, ω represents all (countably specifiable) basic events, and P (ω) is

the probability of the set containing only the single event ω. If X(ω) is a continuous

variable, then

〈X〉 =

∫

ω=Ω

X(ω)p(ω)dω.

We know that x(t) has a conditional probability density function p(x, t|x0, t0).

Using this, we find
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d

dt
〈f [x(t)]〉 =

〈
df [x(t)]

dt

〉
=

∫
df [x(t)]

dt
p(x, t|x0, t0)dx

=

∫
a[x(t), t]p(x, t|x0, t0)∂xfdx

+
1

2

∫
(b[x(t), t])2p(x, t|x0, t0)∂

2
xfdx. (2.36)

Now we integrate the first term of Equation (2.36) by parts:

Let u = a[x(t), t]p(x, t|x0, t0) dv = ∂xf [x(t)]dx

du = ∂x {a[x(t), t]p(x, t|x0, t0)} dx v = f [x(t)]

∫
a[x(t), t]p(x, t|x0, t0)∂xf [x(t)]dx = uv|boundary −

∫
f [x(t)]∂x {a[x(t), t]p(x, t|x0, t0)} dx.

The boundary term disappears because we will be considering a system with ab-

sorbing boundaries; see Section 2.3 below.

Similarly, integrating the second term by parts twice, we get

∫
f [x(t)]∂2

x

{
(b[x(t), t])2p(x, t|x0, t0)

}
dx.
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Note that

d

dt
〈f [x(t)]〉 =

d

dt

∫
f(x)p(x, t|x0, t0)dx =

∫
f(x)∂tp(x, t|x0, t0)dx.

Combining results, we get

∫
f [x(t)]∂tp(x, t|x0, t0)dx =

∫
f [x(t)] (−∂x {a[x(t), t]p(x, t|x0, t0)}+

1

2
∂2

x

{
(b[x(t), t])2p(x, t|x0, t0)

})
dx.

Since f [x(t)] is arbitrary, we now have the relation

∂tp(x, t|x0, t0) = −∂x {a[x(t), t]p(x, t|x0, t0)} +
1

2
∂2

x

{
(b[x(t), t])2p(x, t|x0, t0)

}
,

(2.37)

which is the forward Fokker-Planck Equation (fFPE) for a 1-dimensional system.

2.3 Some General Solutions to the 1-Dimensional

FPE

For our stochastic decision variable x(t), consider the SDE
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dx = a(x)dt+
√
b(x)dW

x(0) = x0.

(2.38)

Suppose that H1 is correct, so the first passage of x through B0 corresponds to

an incorrect decision. We now solve for general expressions for the average perfor-

mance using the fFPE, Equation (2.37), which is a second-order parabolic partial

differential equation (PDE). We have an initial condition, but also require boundary

conditions for the system to be solvable.

For our system, we will use absorbing boundary conditions. Absorbing boundary

conditions mean that as soon as the decision variable touches the boundary, it is

removed from the system; hence the boundary absorbs. Therefore, the probability

of being on the boundary is zero, and the boundary conditions are

p(x, t) = 0 for x ∈ (B0, B1). (2.39)

See Section B.5 in the Appendix for more detail on boundary conditions.

Now that we have appropriate boundary conditions for our system, we can solve

for the mean DT and probability of exit through each boundary for the general

problem. We modify the analysis in [36] to solve for our results.
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2.3.1 Mean Decision Time

Let T be the time that the decision variable exits (B0, B1): in other words, the

time when the DM reaches a decision. We assume that the decision variable begins

at x0 at time t = 0, with B0 < x0 < B1. We want to find the mean DT as a function

of initial position, T (x0). This is equivalent to a first passage time problem for a

particle undergoing drift-diffusion in an interval.

To do this, we erect absorbing boundaries at B0 and B1. Thus, if x ∈ (B0, B1),

it has never left (or touched the boundaries of) that interval. Given the above, the

probability that x ∈ (B0, B1) at time t is given by integrating the probability that

the decision variable is at a given location at time t given that it started at x0 at

time t = 0, over the interval. We define this to be g(x0, t):

∫ B1

B0

p(ξ, t|x0, 0)dξ ≡ g(x0, t).

Note that g(x0, t) = P (T ≥ t).

Since the system is time homogeneous (the transition probability density is

invariant to translations in time),

p(ξ, t|x0, 0) = p(ξ, 0|x0,−t).

In first passage time problems, it is useful to use the backward Fokker-Planck

Equation (bFPE). For the bFPE, solutions exist for times τ ≤ t, and the bFPE
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expresses the development of the system in τ , or in backwards time. In this sense,

p(ξ, 0|x0, 0) = δ(x0 − ξ)

is more of a final condition rather than an initial condition. The bFPE is equivalent

to the fFPE, but provides a more convenient form.

The bFPE is

∂tp(ξ, t|x0, 0) = a(x0)∂x0p(ξ, t|x0, 0) +
1

2
b(x0)∂

2
x0
p(ξ, t|x0, 0), (2.40)

with

p(ξ, 0|x0, 0) = δ(x0 − ξ). (2.41)

We can integrate Equation (2.40) over the interval (B0, B1) to get an equation

in terms of g(x0, t):

∫ B1

B0

∂tp(ξ, t|x0, 0)dξ =

∫ B1

B0

(
a(x0)∂x0p(ξ, t|x0, 0) +

1

2
b(x0)∂

2
x0
p(ξ, t|x0, 0)

)
dξ,

∂t

∫ B1

B0

p(ξ, t|x0, 0)dξ

︸ ︷︷ ︸
g(x0,t)

= a(x0)∂x0

∫ B1

B0

p(ξ, t|x0, 0)dξ

︸ ︷︷ ︸
g0(x0,t)

+
1

2
b(x0)∂

2
x0

∫ B1

B0

p(ξ, t|x0, 0)dξ

︸ ︷︷ ︸
g0(x0,t)

,

∂tg(x0, t) = a(x0)∂x0g(x0, t) +
1

2
b(x0)∂

2
x0
g(x0, t), (2.42)
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with

g(x0, 0) =





1 B0 < x < B1,

0 elsewhere.

(2.43)

If x0 = B0 or B1, the decision variable is immediately absorbed, so

g(B0, t) = g(B1, t) = 0. (2.44)

Since g(x0, t) is equivalent to P (T ≥ t), the mean of a function f(T ) is

〈f(T )〉 = −
∫ ∞

0

f(t)dg(x0, t).

Let f(T ) = T . Then we have that the mean decision time of the decision

variable is T (x0) = 〈T 〉, where

T (x0) =

∫ ∞

0

t∂tg(x0, t)dt. (2.45)

Note that T (x0) =
∫∞
0
g(x0, t)dt, by integration by parts:

Let u = t, dv = ∂tg(x0, t)dt,

du = dt, v = g(x0, t).
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T (x0) = −
(
uv|∞0 −

∫ ∞

0

vdu

)
,

= −tg(x0, t)|∞0 +

∫ ∞

0

g(x0, t)dt,

T (x0) =

∫ ∞

0

g(x0, t)dt, (2.46)

since g(x0,∞) = 0 (we assume that the decision is made in finite time).

We can derive an ordinary differential equation for T (x0):

∫ ∞

0

∂tg(x0, t)dt

︸ ︷︷ ︸
=g(x0,∞)−g(x0,0)=−1

=

∫ ∞

0

(
a(x0)∂x0g(x0, t) +

1

2
b(x0)∂

2
x0
g(x0, t)

)
dt,

= a(x0)∂x0

∫ ∞

0

g(x0, t)dt

︸ ︷︷ ︸
T (x0)

+
1

2
b(x0)∂

2
x0

∫ ∞

0

g(x0, t)dt

︸ ︷︷ ︸
T (x0)

,

so we have

a(x0)∂x0T (x0) +
1

2
b(x0)∂

2
x0
T (x0) = −1 (2.47)

with the boundary conditions

T (B0) = T (B1) = 0. (2.48)
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Similarly, for T (n)(x0) =< T n >, we have that

T (n)(x0) =

∫ ∞

0

tn−1g(x0, t)dt

and

−nT (n−1)(x0) = a(x0)∂x0T (n)(x0) +
1

2
b(x0)∂

2
x0
T (n)(x0), (2.49)

so moments of the decision time can be found through repeated integration.

Letting

ψ(ξ) = exp

[∫ ξ

B0

2a(ω)

b(ω)
dω

]
, (2.50)

f(ξ) =
2

ψ(ξ)

∫ ξ

B0

ψ(s)

b(s)
ds, (2.51)

F x2
x1

=

∫ x2

x1

1

ψ(ξ)
dξ, (2.52)

Gx2
x1

=

∫ x2

x1

f(ξ)dξ, (2.53)

the mean DT is [13, 36]

T (x0) =
F x0

B0
GB1

x0
− FB1

x0
Gx0

B0

FB1
B0

. (2.54)
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2.3.2 Probability of Exit Through Each Boundary

Let Πi(x0) be the probability with which the DM chooses hypothesis Hi for a

given initial condition x0. In trials where H1 is true, then Π0(x0) sets the ER and

Π1(x0) sets the PC.

Probability of Exit Through B0

The total probability that the decision variable exits through B0 after time t,

given that it started at x0, is given by the time integral of the probability current

(flux) through B0. We define this probability as

g0(x0, t) = −
∫ ∞

t

J(B0, s|x0, 0)ds, (2.55)

=

∫ ∞

t

(
−a(B0)p(B0, s|x0, 0) +

1

2
∂B0 [b(B0)p(B0, s|x0, 0)]

)
ds.(2.56)

The negative sign indicates that the flux points left.

Given that the decision variable exits through B0, the probability that it exits

after time t is

P (T0 > t) =
g0(x0, t)

g0(x0, 0)
, (2.57)

where we assume that T0 is the time at which the decision variable exits through

B0, conditioned on the DM choosing H0.
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Since p(B0, t|x0, 0) satisfies a bFPE, we have that

a(x0)∂x0g0(x0, t) +
1

2
b(x0)∂

2
x0
g0(x0, t) = −

∫ ∞

t

∂sJ(B0, s|x0, 0)ds, (2.58)

= J(B0, t|x0, 0), (2.59)

= ∂tg0(x0, t). (2.60)

Given that the decision variable exits through B0, the mean exit time for a

decision variable starting at x0 and exiting through B0 is T0(x0):

T0(x0) = −
∫ ∞

0

t∂tP (T0 > t)dt (2.61)

=

∫ ∞

0

g0(x0, t)

g0(x0, 0)
dt. (2.62)

Let Π0(x0) be the probability that the decision variable starting at the initial

condition x0 exits through B0. Thus,

Π0(x0) = g0(x0, 0). (2.63)

We can find an expression for this by integrating Equation (2.60) with respect to t:
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∫ ∞

0

∂tg0(x0, t)dt =

∫ ∞

0

[
a(x0)∂x0g0(x0, t) +

1

2
b(x0)∂

2
x0
g0(x0, t)

]
dt,

g0(x0,∞) − g0(x0, 0) = a(x0)∂x0

[∫ ∞

0

g0(x0, t)dt

]
+

1

2
b(x0)∂

2
x0

[∫ ∞

0

g0(x0, t)dt

]
. (2.64)

Note that g0(x0,∞) = 0 and

∫ ∞

0

g0(x0, t)dt =

∫ ∞

0

g0(x0, t)

g0(x0, 0)
g0(x0, 0)dt,

= g0(x0, 0)

∫ ∞

0

g0(x0, t)

g0(x0, 0)
dt,

= Π0(x0)T0(x0). (2.65)

Then Equation (2.64) becomes

−Π0(x0) = a(x0)∂x0 [Π0(x0)T0(x0)] +
1

2
b(x0)∂

2
x0

[Π0(x0)T0(x0)] . (2.66)

The corresponding boundary conditions are

Π0(B0)T0(B0) = Π0(B1)T0(B1) = 0. (2.67)

The first term indicates that it takes zero time for a decision variable starting on
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B0 to reach the B0 boundary, and the second term indicates that the probability

of exiting through B0 when the decision variable starts at B1 is zero.

If we let t → 0 in Equation (2.58), we see that J(B0, 0|x0, 0) must vanish if

B0 6= x0, since our initial condition is p(B0, 0|x0, 0) = δ(x0 − B0). Therefore,

the right-hand side of Equation (2.60) goes to zero. On the left-hand side of the

equation, g0(x0, t) → g0(x0, 0) = Π0(x0), and we have

a(x0)∂x0Π0(x0) +
1

2
b(x0)∂

2
x0

Π0(x0) = 0,

Π0(B0) = 1,

Π0(B1) = 0,

Π0(x0) + Π1(x0) = 1.

The last condition comes from our requirement that the system reaches a decision

in finite time.

From [13], we find that the solution can be given in terms of the functions in

Equations (2.50) - (2.53). The solution is

Π0(x0) =
FB1

x0

FB1
B0

. (2.68)

Note that the solution given by Equations (5.2.189) - (5.2.190) in [36] for this

equation does not check out in Mathematica, whereas the solution above (from
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[13]) does.

Probability of Exit Through B1

By definition, Π1(x0) is given by Π1(x0) = 1 − Π0(x0); however, this can also

be found the same way we found Π0(x0): let g1(x0, t) be the total probability that

the decision variable exits through B1 after time t. Since the flux now points to the

right, we have

g1(x0, t) =

∫ ∞

t

J(B1, s|x0, 0)ds, (2.69)

=

∫ ∞

t

(
a(B1)p(B1, s|x0, 0) − 1

2
∂B1 (b(B1)p(B1, s|x, 0))

)
ds.(2.70)

Let T1(x0) be the mean exit time for a decision variable starting at x0 and

exiting through B1, given that the decision variable will eventually exit through

B1. Note that

P (T1 > t) =
g1(x0, t)

g1(x0, 0)
,

T1(x0) =

∫ ∞

0

g1(x0, t)

g1(x0, 0)
dt,

∫ ∞

t

p(B1, s|x, 0)ds = g1(x0, t).

Like before, p(B1, t|x0, 0) satisfies a bFPE:
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∂tp(B1, t|x0, 0) = a(x0)∂x0p(B1, t|x0, 0) +
1

2
b(x0)∂

2
x0
p(B1, t|x0, 0), (2.71)

which can be integrated with respect to t to give

a(x0)∂x0g1(x0, t) +
1

2
b(x0)∂

2
x0
g1(x0, t) =

∫ ∞

t

∂sJ(b, s|x0, 0)ds, (2.72)

= −J(B1, t|x0, 0), (2.73)

= ∂tg1(x0, t). (2.74)

This in turn can be integrated with respect to t to get

Π1(x0) = a(x0)∂x0 [Π1(x0)T1(x0)] +
1

2
b(x0)∂

2
x0

[Π1(x0)T1(x0)] , (2.75)

with Π1(B0)T1(B0) = Π1(B1)T1(B1) = 0. Then, taking the limit as t→ 0, we get
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a(x0)∂x0Π1(x0) +
1

2
b(x0)∂

2
x0

Π1(x0) = 0

Π1(B0) = 0

Π1(B1) = 1

Π1(B0) + Π0(B1) = 1.

This has the solution

Π1(x0) =
F x0

B0

FB1
B0

. (2.76)

2.4 Solutions for the Constant-Drift Constant-

Diffusion Case

We now specialize the above general solutions to the SPRT-based DDM, which

has constant coefficients. This allows us to simplify the expressions found in Section

2.3.

Consider the system described by Equations (2.23) and (2.24): here, the bound-

aries at B0 and B1 are fixed at −z and +z, respectively, and bias is captured in the

initial condition x0.
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Non-Dimensionalizing the System

It is sometimes simpler to do computations with a non-dimensionalized system,

which we solve for here. This follows a simplification step shown in [13]. We can

scale Equation (2.23) by 1
m

to get

1

m
dx = dt+

D

m
dW. (2.77)

We now introduce new variables:

χ =
1

m
x⇒ dχ =

1

m
dx, (2.78)

ζ =
1

m
z > 0, (2.79)

ϑ =
(m
D

)2

> 0. (2.80)

Substituting Equations (2.78) - (2.80) into Equations (2.23) - (2.24), we now have

the non-dimensionalized system

dχ = dt+
1√
ϑ
dW, (2.81)

χ(0) =
1

m
x0 ≡ χ0, (2.82)

with boundaries at ±ζ .
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Some Useful Functions

For the non-dimensionalized, constant-drift, constant-diffusion problem defined

by Equations (2.81) - (2.82), we get relatively simple expressions for the mean ER

and mean DT, since a(x) = 1 and b(x) = 1
ϑ
. Substituting these into Equations

(2.50) - (2.53), we get

ψ(ξ) = e2ϑ(ξ+ζ), f(ξ) = (1 − e−2ϑ(ξ+ζ)), F χ0

−ζ =
1

2ϑ
(1 − e−2(ζ+χ0)ϑ), (2.83)

F ζ
χ0

=
e−2ζϑ

2ϑ
(e−2χ0ϑ − e−2ζϑ), F ζ

−ζ =
1

2ϑ
(1 − e−4ζϑ), (2.84)

Gχ0

−ζ = ζ + χ0 +
1

2ϑ
(e−2(ζ+χ0)ϑ − 1), (2.85)

Gζ
χ0

= ζ − χ0 +
1

2ϑ
e−2ζϑ(e−2ζϑ − e−2χ0ϑ). (2.86)

We can plug Equations (2.84) - (2.86) into the general formulas for the prob-

ability of exit through each boundary and mean DT to get the solutions for the

constant case.

2.4.1 Mean Decision Time

Substituting into Equation (2.54), the general expression for the mean DT, gives
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T (χ0) =
F χ0

−ζG
ζ
χ0

− F ζ
χ0
Gχ0

−ζ

F ζ
−ζ

,

=
χ0 − e4ϑζχ0 + (1 + e4ϑζ − 2e2ϑ(ζ−χ0))ζ

e4ϑζ − 1
. (2.87)

If χ0 = 0, the expression simplifies considerably:

T (χ0 = 0) =
ζ(1 + e4ϑζ − 2e2ϑζ)

e4ϑζ−1
,

= ζ
(e2ϑζ − 1)2

e4ϑζ − 1
,

= ζ
e2ϑζ − 1

e2ϑζ + 1
,

= ζ tanh(ϑζ).

This gives a convenient formula for the constant case:

T (χ0) = ζ tanh(ζϑ) +

(
2ζ(1− e−2χ0ϑ)

e2ζϑ − e−2ζϑ
− χ0

)
. (2.88)

For systems with unbiased initial data and χ0 = 0, the terms in the parentheses in

Equation (2.88) disappear.
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2.4.2 Probability of Exit

Probability of Exit Through B0

Substitution gives

Π0(χ0) =
F ζ

χ0

F ζ
−ζ

=
e−2ζϑ

2ϑ
(e−2χ0ϑ − e−2ζϑ)
1
2ϑ

(1 − e−4ζϑ)
,

=
e−2ζϑ(e−2χ0ϑ − e−2ζϑ)

1 − e−4ζϑ
. (2.89)

If χ0 = 0, the above expression simplifies slightly:

Π0(χ0)χ0=0 =
e−2ζϑ(1 − e−2ζϑ)

1 − e−4ζϑ
,

=
e2ϑζ − 1

e4ϑζ − 1
,

=
1

1 + e2ζϑ
.

Therefore,

Π0(χ0) =
1

1 + e2ζϑ
−
(

1 − e−2χ0ϑ

e2ζϑ − e−2ζϑ

)
, (2.90)

where the terms in the parentheses disappear when χ0 = 0. Note that it is pos-

sible to make Π0(χ0) arbitrarily small, by choosing ζ (location of the boundary)
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sufficiently large.

Probability of Exit Through B1

Since Π0(χ0) + Π1(χ0) = 1,

Π1(χ0) =
e2ϑζ

1 + e2ϑζ
+

(
e2ϑζ(1 − e−2χ0ϑ)

e4ϑζ − 1

)
, (2.91)

where the terms in the parentheses disappear when χ0 = 0.

2.5 Distribution of Decision Times

Let g(χ0, t) be the total probability that the decision variable starting at χ0 will

exit through a particular boundary after time t. We will initially drop the extra

subscripts for notational simplicity, and then later specialize g to g0 and g1, for

exit through B0 and B1, respectively. This means that the cumulative distribution

function (cdf) for choosing Hi, given the initial condition χ0, is given by

qi(t) = Πi(χ0) − gi(χ0, t). (2.92)

We denote the cdf as a function of time only, because we assume that the initial

condition χ0 is a constant.
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As shown in Equation (2.60), g(χ0, t) satisfies a bFPE,

∂tg(χ0, t) = ∂χ0g(χ0, t) +
1

2ϑ
∂2

χ0
g(χ0, t), (2.93)

for the non-dimensionalized constant system. Now suppose that g(χ0, t) can be

found using separation of variables, i.e., g(χ0, t) = φ(t)γ(χ0). Substituting this into

the bFPE and rearranging, we have

∂t[φ(t)]

φ(t)
=
∂χ0 [γ(χ0)] + 1

2ϑ
∂2

χ0
[γ(χ0)]

γ(χ0)
= −λ.

Since the left-hand side is only a function of t and the right-hand side is only

a function of χ0, the only way for the equation to hold true is if they are both

equal to −λ, where λ is a constant. This leads to two sets of equations: the space

equation

d2γ(χ0)

dχ0
2

+ 2ϑ
dγ(χ0)

dχ0

= −2ϑλγ(χ0), (2.94)

and the time equation

dφ(t)

dt
= −λφ(t). (2.95)

We solve these separately below.
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Space Equation

The space equation can be transformed into Sturm-Liouville form (see Section

B.6 in the Appendix) using the integrating factor e2ϑχ0 . This gives

− d

dχ0

[
e2ϑχ0γ′(χ0)

]
= 2ϑλe2ϑχ0γ(χ0). (2.96)

Thus, the weighting function, which we will denote as ̟(χ0), is

̟(χ0) = e2ϑχ0 . (2.97)

Assuming that the solution of Equation (2.94) is of the form γ(χ0) = erχ0, we

can substitute into the above and factor out erχ0 to get

r2 + 2ϑr + 2ϑλ = 0.

We can solve this equation for r via the quadratic formula:

r = −ϑ±
√
ϑ2 − 2ϑλ.

For notational simplicity, let

β =
√
ϑ2 − 2ϑλ. (2.98)

This indicates that γ(χ0) is of the form
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γ(χ0) = C1e
(−ϑ+β)χ0 + C2e

(−ϑ−β)χ0 . (2.99)

Now we apply the absorbing boundary conditions. We know that g(B0, t) =

g(B1, t) = 0: a decision variable starting at either boundary is considered to have

already exited the system. Since φ(0) 6= 1 and g(B0, 0) = g(B1, 0) = 0, this means

that

γ(B0) = γ(B1) = 0.

We can plug this into Equation (2.99):

γ(B0) = γ(−ζ) = C1e
(−ϑ+β)(−ζ) + C2e

(−ϑ−β)(−ζ) = 0,

γ(B1) = γ(ζ) = C1e
(−ϑ+β)ζ + C2e

(−ϑ−β)ζ = 0.

These equations can be solved to yield the relations

C1 = −C2e
−2βζ = −C2e

2βζ .

Thus, 2βζ = ikπ, and we can solve for an equivalent expression for β:

β =
ikπ

2ζ
, (2.100)

for k ∈ Z. Since we assume that the location of the boundary (ζ) is constant, β is
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a function of k only. Thus, we have that

C1 =





−C2 k even,

C2 k odd.

(2.101)

We can solve for λ by equating the two values found for β in Equations (2.98)

and (2.100):

λk =
1

2

(
ϑ+

π2k2

4ϑζ2

)
, (2.102)

where we write λ as λk to indicate its dependence on k.

For simplicity, let ν = C1 = ±C2. This gives

γk(χ0) = νe−ϑχ0

(
e

iπk
2ζ

χ0 + (−1)k+1e−
iπk
2ζ

χ0

)
. (2.103)

Note that this is equivalent to

γk(χ0) =





2ν cos(πk
2ζ
χ0)e

−ϑχ0 for k odd,

2iν sin(πk
2ζ
χ0)e

−ϑχ0 for k even.

(2.104)

This is a solution for any k ∈ Z.

Now we can solve for ν. We want 〈γk(χ0), γℓ(χ0)〉 = δkℓ, where δkℓ is the Dirac

delta function, since we would like these functions to form an orthonormal basis
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with the weighting function ̟(χ0). We choose ν such that this relationship holds.

We also require that γk(χ0) be real, since it represents a probability, and thus define

the inner product accordingly. In particular,

〈γk, γℓ〉 =

∫ ζ

−ζ

γk · γℓ ·̟(χ0)dχ0 = 0, k 6= ℓ. (2.105)

This results in

ν = ±i
−k+1

2
√
ζ
. (2.106)

Both the (+) and (-) solutions of ν lead to a γk(χ0) that is always real. We will

denote the (+) solution by ν+ and the (−) solution by ν−. One can verify that for

both values of ν, the eigenfunctions γk are orthonormal with the weighting function

̟(χ0) defined in Equation (2.97). We also find that this value of ν leads to a γ(χ0)

that is always real, and thus is a reasonable solution.

We now have an equation for γk(χ0):

γk(χ0) =





± 1√
ζ
cos(πk

2ζ
χ0)e

−ϑχ0 for k odd,

∓ 1√
ζ
sin(πk

2ζ
χ0)e

−ϑχ0 for k even,

(2.107)

where the sign of each solution for each case are given in Table 2.5.
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Solution ν+ ν−
k odd, k = 1 + 2m m even: - m even: +

m odd: + m odd: -
k even, k = 2m m even: + m even: -

m odd: - m odd: +

Table 2.1: The signs of the different cases of Equation (2.107) are shown here as a quick reference.
Calculating γk(χ0) for each possible value of k (using m ∈ R) verifies that γk(χ0) ∈ R.

By linearity of solutions, we now have a general form for γ(χ0):

γ(χ0) =
∑

k

ckγk(χ0), (2.108)

where ck are constant coefficients whose value depends only on k. To find exact

expressions for these coefficients, we solve for gi(χ0, t), the total probability that

the decision maker, who will (eventually) decide Hi, has not yet reached a decision

(i = 0, 1).

By definition, gi(χ0, 0) = Πi(χ0), so we can solve for the coefficients cik:

gi(χ0, 0) =
∑

k

cikγk(χ0) = Πi(χ0),

∑

k

cikγk(χ0)γℓ(χ0)̟(χ0) = Πi(χ0)γℓ(χ0)̟(χ0),

∫ ζ

−ζ

∑

k

cikγk(χ0)γℓ(χ0)̟(χ0)dχ0 =

∫ ζ

−ζ

Πi(χ0)γℓ(χ0)̟(χ0)dχ0,

∑

k

cik

∫ ζ

−ζ

γk(χ0)γℓ(χ0)̟(χ0)dχ0

︸ ︷︷ ︸
δkℓ

=

∫ ζ

−ζ

Πi(χ0)γℓ(χ0)̟(χ0)dχ0,
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which gives

cik =

∫ ζ

−ζ

Πi(χ0)γk(χ0)̟(χ0)dχ0. (2.109)

We can now calculate exact expressions for the cik for each boundary, i = 0, 1.

Time Equation

It is clear from the form of the time equation that the solution is an exponential,

so let

φ(t) = ce−λt,

where c is a constant. Since gi(χ0, 0) = Πi(χ0) = φ(0)γ(χ0), without loss of gen-

erality, we take φ(0) = 1 = c. Substituting the value we found for λk in Equation

(2.102), we have

φk(t) = e
− 1

2

“

ϑ+ π2k2

4ϑζ2

”

t
. (2.110)

2.5.1 Distribution of Decision Times for Passage Through

B0

Here we solve for g0(χ0, t), the total probability that the DM, who will eventually

decide H0, has not yet reached a decision.
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Using Equation (2.90) for Π0(χ0), we can solve for c0k:

c0k =
2(−1)k+1e−ϑζkπ

√
ζ

k2π2 + 4ϑ2ζ2
. (2.111)

General Solution for Passage Through B0

We now have

g0(χ0, t) =
∑

k

c0kγk(χ0)φk(t) (2.112)

=
∑

k

c0kν
[
e(−ϑ+ iπk

2ζ )χ0 + (−1)k+1e(−ϑ− iπk
2ζ )χ0

]
e
− 1

2

“

ϑ+ π2k2

4ϑζ2

”

t

=
∑

k

−ik+1e−ϑζkπ

k2π2 + 4ϑ2ζ2

[
e(−ϑ+ iπk

2ζ
)χ0 + (−1)k+1e(−ϑ− iπk

2ζ
)χ0

]
e
− 1

2
(ϑ+ π2k2

4ϑζ2 )t
.

The cdf of exit times through B0 is

q0(t) = Π0(χ0) − g0(χ0, t) (2.113)

and the pdf of exit times through B0 is given by
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p0(t) =
d

dt
[q0(t)] = − d

dt
g0(χ0, t),

=
∑

k

(−ik+1kπ

8ϑζ2
exp

[(
k2π2t

8ϑζ2
− ikπχ0

2ζ
− 1

2
ϑ [t+ 2(χ0 + ζ)]

)]

·
(

(−1)k − exp

[
ikπχ0

ζ

]))
. (2.114)

Mean Decision Time for Choosing H0

We defined the mean DT for choosing B0 in Equation (2.62). Now that we have

a formula for g0(χ0, t) which is separated into space and time, we can explicitly find

a formula for T0(χ0):

T0(χ0) =
1

Π0(χ0)

∫ ∞

0

∑

k

c0kγk(χ0)φk(t)dt,

=
1

Π0(χ0)

∑

k

c0kγk(χ0)

∫ ∞

0

φk(t)dt,

=
1

Π0(χ0)

∑

k

c0kγk(χ0)φk(t)

( −8ϑζ2

k2π2 + 4ϑ2ζ2

)
. (2.115)

2.5.2 Distribution of Decision Times for Passage Through

B1

We now solve for the coefficients c1k for the distribution of DTs for passage

through B1.
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c1k =

∫ ζ

−ζ

Π1(χ0)γk(χ0)̟(χ0)dχ0,

=
2eϑζkπ

√
ζ

k2π2 + 4ϑ2ζ2
. (2.116)

General Solution for Passage Through B1

We now have

g1(χ0, t) =
∑

k

c1kγk(χ0)φk(t),

=
∑

k

(
(i)−k+1 eϑζkπ

k2π2 + 4ϑ2ζ2

[
e(−ϑ+ iπk

2ζ
)χ0 + (−1)k+1e(−ϑ− iπk

2ζ
)χ0

]

·e−
1
2
(ϑ+ π2k2

4ϑζ2 )t

)
. (2.117)

The cdf, q1(t) is then given by

q1(t) = Π1(χ0) − g1(χ0, t), (2.118)

and the corresponding pdf is
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p1(t) =
∑

k

(
i−k+1kπ

8ϑζ2
exp

[
1

8

(
−4ϑ(t+ 2χ0 − 2ζ) − k2π2t

ϑζ2
− 4ikπχ0

ζ

)]

·
(

(−1)k − exp

[
iπkχ0

ζ

]))
. (2.119)

Mean Decision Time for Choosing H1

As before, we can now find the mean DT for choosing B1:

T1(χ0) =
1

Π1(χ0)

∫ ∞

1

∑

k

c1kγk(χ0)φk(t)dt,

=
1

Π1(χ0)

∑

k

c1kγk(χ0)

∫ ∞

0

φk(t)dt,

=
1

Π1(χ0)

∑

k

c1kγk(χ0)φk(t)

( −8ϑζ2

k2π2 + 4ϑ2ζ2

)
. (2.120)

2.6 Simulations

Since the SPRT operates in discrete time, we expected that the results from

simulating the SPRT in a 2AFC task would approach the values calculated above

as the step size decreased towards zero. Since we are interested in tasks that are

fairly difficult, it is reasonable to expect that the decision variable for the SPRT

will move with a small step size. In this section, we verify this intuition as well as

our analytical solutions via simulation.
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2.6.1 A Simple Test Case

Here, we present an example to make our earlier analysis concrete. We take

µ0 = 0.9,

µ1 = 1,

σ = 1,

x0 = 0,

α0 = α1 ≡ ε = 0.01.

(2.121)

We assume H1 is true, so ER = Π0(χ0).

Analytical Solution

From Equations (2.31), (2.34), (2.78) - (2.80) and the above values, we have

m = 0.005,

D2 = 0.01,

ζ = 919.02,

ϑ = 0.25,

χ0 = 0.

(2.122)

Plugging this into our solutions, we find that for the above values, Π0(χ0) = 0.01

and the mean DT is T (χ0) = 900.643 seconds.

Figures 2.2(a) and 2.2(b) show the constants cik for i = 0, 1 respectively, for the

values given above. As expected, the coefficients for the correct hypothesis (c1k) are
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significantly larger in magnitude than the coefficients for the incorrect hypothesis

(c0k).

We can now use these values to calculate the theoretical cdfs qi(t) and pdfs pi(t)

for i = 0, 1. We show q0(t) in Figure 2.3(a), p0(t) in Figure 2.3(b), q1(t) in Figure

2.3(c), and p1(t) in Figure 2.3(d). As expected, the cdfs asymptote to the set ER

q0(t) → 0.01 and PC q1(t) → 0.99.

Since our solution includes an infinite sum, we also investigated the effect of

truncating terms. We found that for our test case, the even-k terms in the series

were equal to zero. In Figures 2.4(a), 2.4(b), 2.4(c), and 2.4(d), we show q0(t), p0(t),

q1(t), and p1(t), respectively, plotted using an increasing number of odd k terms in

the sum. As k increases, the left tail of the plot more approaches zero more quickly,

and the areas under the pdfs approach the correct value (0.01 for p0, and 0.99 for

p1). The spike near zero is an artifact from truncating the sum, which is consistent

with our expectation that the probability that the decision variable exits at time

zero be zero. The distributions reach their limiting shapes very quickly: the cdfs

achieve the final shape essentially with only three terms, and the pdfs reach their

approximate final shape with only four terms. This indicates that we can simplify

the infinite sum considerably, and achieve similar results with a very low number

of terms.
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Figure 2.2: (a) Plot of c0k versus k, for the simple test case in Section 2.6.1. (b) Plot of c1k versus
k. The parameters used in the simulation are given in Equation (2.121). In the test case, H1 is
correct; thus, the coefficients in (b) are much larger than those in (a).
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Figure 2.3: Graphs of the cdfs and pdfs of DTs for passage through each boundary. Our graphs
show the first 20 odd-k terms of the sum. The cdf graphs’ first 10 seconds and the pdf graphs’
first 35 seconds were set to zero to remove the spurious tail. (a) Plot of the cdf of DTs for passage
through B0 for the simple test case in Section 2.6.1. The cdf levels off at 0.01, as expected. (b)
Plot of the pdf of DTs for passage through B0. The area under the curve approaches 0.01 as the
number of terms increases, as expected. (c) Plot of the cdf of DTs for passage through B1. The
cdf levels off at 0.99, as expected. (d) Plot of the pdf of DTs for passage through B1. The area
under the curve approaches 0.01 as the number of terms increases, as expected.
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Figure 2.4: Plots of the pdfs and cdfs for passage through each boundary for the simple test
case in Section 2.6.1, using increasing numbers of terms k in the sum. As discussed in the text,
only terms for which k is odd contribute, since the even-k terms are zero. In all of the graphs,
increasing the number of k terms pushes the spurious spike near zero further to the left. (a) q0(t),
the cdf of exit times through B0. (b) p0(t), the pdf of exit times through B0. (c) q1(t), the cdf of
exit times through B1. (d) p1(t), the pdf of exit times through B1.
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Simulation Results

The solutions found above for a DM’s pdf of DTs can now be verified using

simulation: in theory, running a simulation of a DM using the SPRT to perform a

2AFC task is equivalent to randomly selecting a DT from p(t) = p1(t) + p0(t), the

pdf of DTs (for either hypothesis), or flipping an appropriately biased coin to choose

between H0 and H1 and then randomly selecting a DT from the appropriate pdf.

Simulation of a single DM employing the SPRT in a 2AFC test with the parameter

values in Equations (2.121) yielded an actual ER = 0.009587 and DT = 913.1323,

averaged over 1 million trials. The simulation took 937.675 seconds to run. This

is very close to the predicted values: there is only a 2% difference in time and 4%

difference in ER from the analytical results. This is verified in Figure 2.5, where

the histogram of DTs over 10,000 trials for an individual using the SPRT have been

compared with the analytical result p(t) derived in this section.

2.6.2 Investigating the Small-Overshoot Assumption

Our test case in Section 2.6.1 verified our analytical results. Next, we explore

the effect of changing ∆µ = µ1 − µ0. We found that the results were relevant to

the small-overshoot assumption taken in Equations (2.6) and (2.7).

In our simulation, the location of the boundaries B0 and B1 depends only on

α0 and α1. The amount by which the decision variable moves after receiving each

observation depends only on the two distributions generating the data. Since we
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p(t)

t

Individual DM

Figure 2.5: Histogram of DTs for a DM using the SPRT over 10,000 trials, normalized by the
number of trials and bin width, and overlaid with the analytically calculated pdf of DTs, p(t) =
p1(t) + p0(t). This verifies that our DDM solutions accurately model an individual DM using the
SPRT. In this simulation, we set µ0 = 0.9, µ1 = 1, σ = 1, x0 = 0, and α0 = α1 = 0.01.

took the simplifying assumption above that the two distributions differ only in

mean, the distance the decision variable moves in each step depends only on the

difference of the means of the distributions (∆µ = µ1 − µ0 = d′ for our example).

Thus, the locations of the boundaries are independent of the difficulty of the task,

even though the decision variable’s step size (and therefore overshoot) increases

with increasing d′. (A larger value of d′ indicates a simpler task.) Therefore, we

were interested in seeing how a simpler or harder task compared with our test case.

We highlight the effect of overshoot from selecting a large value for d′ with an

example below.

A Too-Simple Test Case

We ran a simulation identical to the test case in Section 2.6.1 above, except

that we set µ0 = 0, which makes d′ = 1.
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Translating this into the variables used in our analysis, we have that m = 1
2
,

D2 = 1, ζ ≈ 9.19024, and ϑ = 1
4
. Plugging these values into our analytical solutions,

we find that Π0(χ0) = 0.01 and T = 9.00643.

Simulations of a 2AFC system with these parameters had a mean ER of 0.005696

and mean DT of 9.5024, averaged over 1 million trials. The simulation took 26.98

seconds to run. This is a 5% difference in DT and 43% difference in ER. Clearly

the analytical results found for the DDM are no longer accurate for the SPRT

simulation. The simulation is clearly being too conservative – the ER is too low,

which indicates that the task was much simpler than the DDM model predicted.

If we relaxed the allowed error rate ε to 0.019, then the simulation had an average

DT of 8.1237 and ER of 0.010628. This provides an average ER closer to what

we expected (0.01), but the simulation still finishes significantly more quickly than

expected. This indicates that the boundaries we calculated using Equations (2.6)

and (2.7) become too conservative when d′ increases. We first sought to characterize

the overshoot and its effect on the ER, then found a way one could compensate for

the overshoot to recover the expected ER.

Error and Overshoot

Since changing d′ affected the mean ER more than the mean DT in our first

simulation, we focused on the effect of d′ on the mean ER. We set ER = 0.01,

and found the average ER from simulation as a function of d′ for a range of d′
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Figure 2.6: Actual ER as a function of d′, for the expected ER set to 0.01, averaged over 1 million
trials. The noise in the data is due to the finite number of samples used in the simulation. The
plot indicates that there is an approximately linear relationship between d′ and the actual ER for
a set value of ER.

values. The results are shown in Figure 2.6. The plot indicates that there is an

approximately linear relationship between d′ and the actual ER from simulation.

We then found the average overshoot and step size as a function of d′, shown in

Figure 2.7(a). As we expect, the average step size is a function of d′, the difficulty of

the task. We also found that the average overshoot scaled with d′, at approximately

half the step size. The corresponding DTs for this simulation is found in Figure

2.7(b). As d′ increases, the DT exponentially decreases.

Adjusting for the Overshoot

Using the characterization of the error due to overshoot found in Figure 2.7, we

can introduce a simple fix to compensate for the effect of overshoot on ER in our

simulations.

The error rates being too low for large d′ indicates that the boundaries we used
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Figure 2.7: Overshoot, Step Size, and DT as a function of d′. (a) As we expect, the mean overshoot
and step size are a function of d′. The overshoot appears to consistently scale at approximately
half the step size. Using these results, we calculated a fix that corrected for the overshoot, to
provide the expected ER (though the simplicity of the task was then expressed through a lower
DT). (b) The corresponding mean DTs in the simulation. Our results show that the mean DT
decreases exponentially with increasing d′.

were too conservative, or too far away from the decision variable’s initial condition.

Therefore, we ran a simulation in which we moved the boundaries inwards by the

average amount of overshoot we found in our previous simulations, for each value

of d′. The results are shown in Figure 2.8. The general trend of the error in the ER

seems to be reversed for larger d′. This indicates that our adjustment may be too

large for those values of d′. However, when compared to the ER in Figure 2.6, we

see that the adjustment corrects for the overshoot well. It is possible that the trend

for larger d′ could be partly due to noise in the overshoot adjustment numbers,

which would be noise from the finite number of trials over which we averaged the

overshoot.
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Figure 2.8: Average ER with boundaries adjusted inwards by the average overshoot. Our adjust-
ment moves the boundaries slightly too far inwards, since the experiments with higher d′ have a
slightly higher error rate than desired; however, it is a very good adjustment, since the error rates
for all values of d′ are quite close to the desired ER of 0.01.

Actual and Set Error

Since we found that our analytical results could be too conservative for simula-

tions with too large a d′, we also investigated the relation between the actual and

set error rates. Since we had reasonably good results in our simple test case, we

chose d′ = 0.1 for this comparison.

The results are shown in Figure 2.9, which shows the relationship between the

set ER and the actual ER from simulation in blue, compared to a dashed line

of slope 1 in green. This again shows that for smaller set ERs, the simulation

will return what we expect. However, the difference is not large, which indicates

that the biggest factor influencing how close a simulation’s results will be to the

analytical results is the choice of d′. Our results also verify that d′ = 0.1 is a good

parameter value to use, since we can expect our simulation results to match our
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Figure 2.9: Actual versus set ERs for d′ = 0.1 (shown in blue). The dashed green line shows a 1:1
relationship between the actual and set ERs. Each point on the plot is averaged over 1 million
trials. Since the plot is approximately linear with slope close to one, the simulation confirms that
there are few effects from overshoot at this value of d′, even if the boundaries change.

analytical results well. We will be using these values in further examples in the

next chapter.

2.7 Conclusion

We derived an explicit solution to the SPRT-based DDM, and thereby character-

ized the ER and pdf of DTs of a DM using the SPRT while under the understanding

that the DM could possibly be a human observer or a detector (device).

Using these results as a building block for the performance of an individual, we

now show how the performance of a group of DMs can be characterized in the next

chapter.
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Chapter 3

Group Decision-Making Models

3.1 Introduction

Our society has a long tradition of valuing the wisdom of groups. Groups offer

the potential for redundancy and robustness, and are generally thought of as being

more cautious, more creative, more informed, and more accurate than individuals.

Many studies in social psychology have been dedicated to supporting or refuting

these beliefs from a relatively qualitative social standpoint [35, 90, 102, 103]; see

[26, 28] for reviews. Systems with human operators are qualitatively considered

in [89]. A more quantitative approach to how human groups make decisions in

a restricted task has been pursued in cognitive psychology [53, 58, 87, 88]. These

studies generally focus on group accuracy and the weight placed on each individual’s

opinion as the main measures of performance. The group performance is typically
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compared to that of an “Ideal Group”, which represents the best that the group

can do given the members in it, in order to find the group’s efficiency [86]. The

experiments cited above use fixed-sample procedures, are typically data-driven, and

are generally based on Signal Detection Theory [40]; also see [59]. We will explore

this general area and philosophy further in Chapter 4. A separate group of work in

economics and political science [6, 7, 11, 46, 47] focuses heavily on various aspects of

Condorcet’s (Jury) Theorem [21]. These works use more theoretical modeling than

the psychology literature, and take an approach to a group’s error rate similar to the

one we present later. These human-group-based studies inspire our current work

as well as future directions and considerations in designing a cybernetic (including

both humans and devices) group-based decision-making system.

A more mathematics- and engineering-based approach to group decision-making

is taken in the design of distributed decision-making systems that utilize multiple

sensors. This has been an intensive area of study, particularly in the past thirty

years. These works generally focus on a collection of devices minimizing a cost or

risk function in choosing between two hypotheses, and thereby assert the resulting

decision-making scheme as “optimal”. A very good introduction to and overview

of decentralized detection is presented in [94], and a mathematical approach to

sequential decision theory can be found in [8, 82]. Centralized systems, in which

measurements from peripheral sensors are sent to a fusion center for processing, are

largely considered a finished problem; thus, most literature focuses on decentralized
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systems. Despite the name, in most decentralized systems, a minimal amount of

processing is done at the peripheral sensors: a compressed “decision” based on

a single observation is sent to the fusion center for processing at each time step.

Decentralized decision-making systems, particularly ones which consider sequential

processes, are a very large area of research [12, 51, 64, 67, 91, 92, 96, 97, 105],

with many variations, including the following: general hypotheses [32, 95], multiple

hypotheses [31, 60], quickest detection problems [25], sequential test truncation

[52, 79], and different group communication topologies [65, 93]. Various applications

are also considered, including networks with constrained communication [19, 33, 50,

56], networks with power constraints [57], vehicle classifiers [49], and probabilistic

search [20]. Though our particular models are different from the ones cited here,

these studies illustrate a very different philosophy on how a collective can make a

decision, and show the methods and applications of interest in strictly device-based

engineering setups.

In the previous chapter, we derived an explicit solution to a SPRT-based DDM,

while focusing on the probability distribution function (pdf) of decision times (DTs)

and average error rate (ER) as the primary measures of performance. Here, we be-

gin by briefly discussing notation and some useful identities. In Part I, we derive

the group error rate (GER) and pdf of group decision times (GDTs) for N indepen-

dent decision-makers (DMs) using one of three simple group decision rules: Race,

Majority Total, and Majority First. We illustrate each general solution with an
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example using N independent and identically distributed (iid) DMs characterized

by our individual solutions, and verify our analytical results via simulation. We

also mention some similar group decision-making rules from the literature. In Part

II, we compare the iid performance of the different group decision rules under dif-

ferent constraints, and discuss the relative merits of each scheme. In Part III, we

show an example of a general (non-identical) group. We demonstrate the accu-

racy of our general solutions through simulation and discuss the effect of having

non-identical group members. Finally, in Part IV, we generalize the Majority Total

scheme to the η-Total rule, and the Majority First scheme to the η-First rule to

further demonstrate the power of our approach.

The methods used to calculate the group’s performance and general design

philosophy can be extended to other group decision rules and more complicated

hierarchical group topologies. We do not specify if the DMs are (human) observers,

or detectors (devices), since our group models can accommodate a group of either

type as well as a general group whose members’ individual characteristics differ,

as long as the individuals are independent. For simplicity, our simulations assume

that each individual DM has quantifiable abilities and adequate motivation, and

for now, we assume the DMs can be modeled using the analysis we presented in the

previous chapter. Our goal is to establish a way to objectively and quantitatively

compare different group decision rules and model group performance in an intuitive

manner that is accessible to a wide range of communities.
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3.1.1 Notation

We denote a pdf generically as p(t), but will occasionally distinguish between

the pdf of a general individual DM, an iid individual DM, and the group through

the subscript. In the general individual DM case, we assume that the ith DM,

denoted DMi, has a defined individual cdf qi(t) and pdf pi(t) of DTs, with the

single constraint that the DMs are independent of each other. In other words,

the individual DMs in the group can have very different cdfs and pdfs of DTs. In

the iid case, as the name suggests, we assume that the DMs are iid, so each DM

is described by the generic cdf qι(t) and pdf pι(t). In addition, we may also use

subscripts to indicate the decision made. To do this, we will use notation inspired by

Signal Detection Theory [40, 59]. Without loss of generality, let N (“[N]oise only”)

represent H0, and S (“[S]ignal present”) represent H1. Then, pN(t) = p(t|H0) and

pS(t) = p(t|H1). Similarly, piN(t) = pi(t|H0) and piS(t) = pi(t|H1). Note that N,

representing H0, differs from N , the total number of DMs. We will denote the pdf

of GDTs by pg(t). For the group pdf only, we will indicate the group decision rule,

type of individual DMs in the group, and the number of DMs in the group in a

superscript, which will be shown later for each scheme.

Let tg be the time at which the group makes a decision. Let the shorthand

notation “L” denote that the DM reached a decision at some time t ≤ tg, and “G”

denote that the DM decides at some time t ≥ tg.

We previously referred to the error rate of an individual with “ER”. Now that
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errors can also occur at the group level, we distinguish between the Group Error

Rate (GER) and the Local Error Rate (LER). The GER represents the error rate

of the fusion center’s decision, and The LER refers to the error rate of an individual

DM. If the DMs are general, we specify the LER of DMi by LERi when necessary.

3.1.2 Some Useful Identities

Here we explicitly state some identities which will be highly useful in this chap-

ter. By definition, the integral of a pdf p(t) over all time must sum to unity. We

can split this integral into two parts, defining the cutoff point as tg. Then,

∫ ∞

0

p(τ)dτ =

∫ tg

0

p(τ)dτ +

∫ ∞

tg

p(τ)dτ = 1. (3.1)

Equivalently, the probability that a DM makes a decision before time tg plus the

probability that it makes a decision after time tg is equal to unity, because our

setup requires that the DM make a decision in a finite amount of time.

Also by definition, the integral of the pdf from time 0 to time tg is the cumulative

probability distribution function (cdf) at time tg, q(tg):

∫ tg

0

p(τ)dτ ≡ q(tg). (3.2)
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The first two identities can be combined to yield

∫ ∞

tg

p(τ)dτ = 1 − q(tg), (3.3)

the cumulative probability that a decision is made after time tg.

By definition, the derivative of the cdf is the pdf. We can also use the Funda-

mental Theorem of Calculus to show that

d

dtg
[q(tg)] =

d

dtg

[∫ tg

0

p(τ)dτ

]
= p(tg). (3.4)

Equations (3.1) and (3.4) can be combined to yield

d

dtg
[1 − q(tg)] =

d

dtg

[∫ ∞

tg

p(τ)dτ

]
= −p(tg). (3.5)

Lastly, given that H1 and H0 are the only two possible hypotheses in the exper-

iment, we have that

q(t) = qS(t)P (S) + qN(t)P (N), (3.6)

p(t) = pS(t)P (S) + pN(t)P (N), (3.7)

where P (S) (resp., P (N)) is the prior probability that S (resp., N) is correct.
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3.2 Part I: Simple Group Decision Rules

We present the analytical and simulation-based results for a group of N inde-

pendent DMs using one of three simple group decision rules: Race, Majority Total,

and Majority First. In these schemes, the individual DMs can only communicate

with the fusion center, as shown in Figure 3.1. We will also briefly discuss related

group decision making models from the literature.

In our analytical results, we derive the solution for both N general DMs and N

iid DMs, then use the iid case as an example to show how group size affects the pdf

of GDTs.

In our simulations, each DM takes and processes one sample of data at each time

step. As soon as a DM chooses a hypothesis, it sends that decision to the fusion

center: if the DM chooses H1 (resp., H0), it submits +1 (resp., −1). In each time

step, the fusion center analyzes the decisions that have arrived in that time step,

and checks to see if the group decision rule has been satisfied. If the group decision

rule is not yet satisfied, the fusion center does nothing, and the process repeats

in the next time step. While the DMs and fusion center in our simulations are

synchronized for convenience, we stress that our analysis and solutions are directly

applicable to completely asynchronous systems.

We will generally assume that after a DM has sent a decision to the fusion

center, it shuts itself down to save power, and that the process ends once the fusion

center returns a decision. All of the group decision rules presented here work in
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Source

iid observations

DM1 DM2 DMN

individual
decisions

Fusion Center
decision

group

Figure 3.1: Illustration of how our group models are organized. Each DM takes and processes
iid observations of the source (which represents the correct hypothesis). The observations are iid
both within and across DMs. Once a DM makes a decision, it sends that decision to the fusion
center, which then applies the group decision rule and issues the group’s decision once the group
rule has been satisfied.

cases where the fusion center can send a message to the individual DMs so they

shut down after the fusion center’s process ends as well as cases where the fusion

center cannot send out messages.

In our analytical and simulated numerical examples below, we continue the

Simple Test case from Section 2.6.1, and take µ0 = 0.9, µ1 = 1, σ = 1, x0 = 0, and

α0 = α1 = 0.01.

3.2.1 Race Scheme

In the Race scheme, the fusion center simply accepts the decision of the fastest

DM. It is a race in the sense that only the first individual decision made counts

towards the group’s decision. We expect that the Race scheme will have the fastest

GDT of all of our schemes, including a single DM. Thus, we are primarily interested
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in this scheme as a benchmark for speed. An equivalent group decision scheme

was proposed in [1, 2]; however, that treatment only finds the cdf of GDTs and

qualitatively discusses the scheme, dismissing a full analysis of the pdf of GDTs as

too complex.

Below, we first discuss the GER under the Race scheme, then solve for the pdf

of GDTs for both the general and iid cases.

Race Scheme GER

For the Race scheme with general DMs, we expect the GER to be equal to

the LER of the fastest DM. On average, we expect the GER to be approximately

equal to the LER of the DM with the lowest mean DT. In the case where all of the

DMs use the SPRT-based DDM (but are not necessarily identically distributed),

the GER is given by maxi(LERi), i = 1, ...N , where LERi is the LER of the ith

DM, which we will denote DMi. If the DMs are iid, then GER = LER.

Race Scheme GDT for General DMs

Consider the case where there is a group of general DMs using the Race group

decision rule. We first solve the N = 2 case, then the N = 3 case, and finally

extend the results to the arbitrary N case for general independent DMs.

Race GDT for N = 2 General DMs Here we derive an expression for the cdf

and pdf of GDTs. For the group to make a decision by time tg, one of the following
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three mutually exclusive cases must occur: (i) DM1 makes a decision before tg and

DM2 makes a decision after tg; (ii) DM1 makes a decision after tg and DM2 makes

a decision before tg; or (iii) both DM1 and DM2 make a decision before time tg.

Using these cases, we can define the cdf of GDTs, qrg2
g (tg), where the superscript

specifies the decision rule, type of individual DMs, and number of DMs ([r]ace

scheme, [g]eneral individual DMs, N = [2] DMs):

qrg2
g (tg) = q1(tg) [1 − q2(tg)] + [1 − q1(tg)] q2(tg) + q1(tg)q2(tg). (3.8)

To find an expression for prg2
g (tg), we take d

dtg
of both sides to get:

prg2
g (tg) = p1(tg)[1 − q1(tg)] + p2(tg)[1 − q2(tg)], (3.9)

which is intuitive: for the group to reach a decision at time tg, either DM1 reaches

a decision at time tg and DM2 reaches a decision at some time after that, or vice

versa, and taking the sum over all possible combinations of i and j then gives the

probability that the group decides at time tg.

Race GDT for N = 3 General DMs There are multiple strategies one can

use to calculate prg3
g (t). Below, we show two equivalent ways of deriving the cdf of

GDTs.

The first way follows the strategy used for the N = 2 case; however, adding

another DM to the group increases the number of conditions under which the
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DM1 DM2 DM3

L L L
G L L
L G L
L L G
L G G
G L G
G G L

Table 3.1: All possible conditions under which a group of 3 DMs using the Race scheme reaches a
decision before time tg. “L” indicates that the DM reached a decision at some time t ≤ tg ([L]ess
than tg), and “G” indicates that the DM reaches a decision at some time t ≥ tg ([G]reater than
tg). Note that the combination “GGG” is not included, because if all 3 DMs take more than time
tg to reach a decision, the group will not reach a decision by time tg.

group can reach a decision. See Table 3.1 for all possible combinations of individual

decision times for this group which can lead to a group decision before or at time

tg. Accounting for these cases leads to the following cdf of GDTs:

qrg3
g (tg) = q1(tg)q2(tg)q3(tg) + [1 − q1(tg)]q2(tg)q3(tg) + q1(tg)[1 − q2(tg)]q3(tg)

+q1(tg)q2(tg)[1 − q3(tg)] + q1(tg)[1 − q2(tg)][1 − q3(tg)]

+[1 − q1(tg)]q2(tg)[[1 − q3(tg)] + [1 − q1(tg)][1 − q2(tg)]q3(tg).

(3.10)

The second way one can find the cdf of GDTs is to note that the first strategy

covers all possible combinations except “GGG”, the case where all three DMs decide

after time tg. Thus, subtracting the probability for the single case where no DM

reaches a decision by time tg from unity, we get:
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qrg3
g (tg) = 1 − [1 − q1(tg)][1 − q2(tg)][1 − q3(tg)]. (3.11)

We note that Equations (3.10) and (3.11) are equivalent, which can be shown by

using the identities outlined in Section 3.1.2.

Now that we have the cdf of GDTs, we can find the pdf by taking the derivative

with respect to tg and reducing the result by using the identities in Section 3.1.2 to

get:

prg3
g (tg) = p1(tg)[1 − q2(tg)][1 − q3(tg)] + [1 − q1(tg)]p2(tg)[1 − q3(tg)]

+[1 − q1(tg)][1 − q2(tg)]p3(tg).

(3.12)

Race GDT for N General DMs Following the second strategy outlined for the

N = 3 case, we subtract the probability for the single case where no DM reaches

a decision by time tg from unity to get an expression for the cdf of group DTs,

qrgN
g (tg) ([r]ace scheme, [g]eneral individual DMs, [N ] DMs):

qrgN
g (tg) = 1 −

N∏

i=1

[1 − qi(tg)] . (3.13)

The corresponding pdf of GDTs is
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prgN
g (tg) =

d

dtg

[
qrgN
g (tg)

]
=

N∑

i=1


pi(tg)

N∏

j=1,
j 6=i

[1 − qj(tg)]


 . (3.14)

Race Scheme pdf of GDTs for iid DMs

A simple example for a group decision-making problem is one in which the DMs

are iid. Below, we specialize the general results to the iid case (denoted by ι). We

note that one can equivalently derive these iid formulas from first principles by

accounting for the number of possible combinations for each case.

Race GDT for N = 2 iid DMs Following the naming convention used previ-

ously, the group’s cdf of GDTs is qri2
g (tg) ([r]ace scheme, [i]id individual DMs, N =

[2] DMs), given by

qri2
g (tg) = [qι(tg)]

2 + 2qι(tg)[1 − qι(tg)]. (3.15)

The corresponding pdf is

pri2
g (tg) = 2pι(tg)[1 − qι(tg)]. (3.16)

Race GDT for N = 3 iid DMs When we specialize the general solution for 3

DMs to the case where the individuals are all iid, we find that the cdf of GDTs is

qri3
g = 1 − [1 − qι(tg)]

3, (3.17)
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and the pdf of GDTs is

pri3
g (tg) = 3pι(tg) [1 − qι(tg)]

2 . (3.18)

Race Scheme GDT for N iid DMs As before, we can simplify qrgN
g (tg) to

qriN
g (tg), ([r]ace scheme, [i]id individual DMs, [N ] DMs):

qriN
g (tg) = 1 − [1 − qι(tg)]

N . (3.19)

The corresponding pdf of GDTs for N iid DM is

priN
g (tg) =

d

dtg

[
qriN
g (tg)

]
= Npι(tg) [1 − qι(tg)]

N−1 . (3.20)

Using the parameters given in Section 3.2, we can now plot the pdf of GDTs

for a group of N iid DMs using the Race scheme. This is shown for N = 1 to 41 in

Figure 3.2. As N increases, the group’s pdf moves to the left, and the distribution

becomes more peaked. This is consistent with what we would intuitively expect: as

N increases, the probability that one of the DMs in the group draws samples that

make it finish more quickly increases, so the minimum of the N individual DTs

decreases.
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Figure 3.2: Plots of priN
g (tg), the pdf of GDTs for a group of N iid DMs using the Race scheme,

where tg denotes the GDT. In this plot, N varies from 1 to 41. As the number of DMs increases,
the mean GDT decreases and the group pdf becomes more peaked. This is consistent with the
intuition that a larger group of DMs using the Race scheme has a lower average GDT, and provides
more information than a simple mean-only-based analysis.

Race Scheme Simulation Results

As noted in the beginning of Section 3.2, the fusion center and individual

DMs operated synchronously in our simulations for convenience only, and the Race

scheme does not require synchronous operation. In the unlikely event that an equal

number of DMs reached opposing decisions in the same time step, we set the fusion

center to cancel out the two decisions. We could have also chosen one at random or

always gone with the DMi with the lower index i; for our synchronous simulation it

did not have a large impact, since the situation arose very rarely. In a more general

asynchronous simulation, we expect that it would matter even less.

In Figure 3.3, we show a histogram of GDTs from simulating a group of N = 5

iid DMs, scaled by the number of trials and bin width and overlaid with the pdf
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Figure 3.3: Comparison of our analytically derived DDM-based pdf of GDTs with a histogram of
GDTs from a simulation of the same group of 5 iid DMs using the Race group decision rule over
10,000 trials. The histogram was scaled by the number of trials and bin width. The agreement
between the pdf of GDTs and the histogram validates our analytical results for the Race scheme.

of GDTs calculated for the same group. Despite the fact that we truncated the

analytical results (see Section 2.6.1), and used only 10,000 trials in the simulation,

our analytical results match the simulation results well. This verifies that our

analytical continuous-time solutions predict the actual discrete-time decisions made

by the group whose members use the SPRT.

3.2.2 Majority Total Scheme

Here we analyze the first of two different types of Majority rule schemes, the

Majority Total group decision rule. In this scheme, the fusion center waits until

all N DMs have submitted a decision before declaring the group decision, which is

chosen using a majority rule. To avoid ties in the fusion center decision, we consider
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only N odd, though it would be simple to include additional constraints such as

ignoring one DM at random or ignoring the slowest DM to account for N even. The

Majority Total scheme has been mentioned in [94] as a possible group decision rule;

however, to the best of our knowledge, this rule has not been analyzed in detail.

Below, we first discuss the GER of a group using either of our Majority schemes,

then solve for the pdf of GDTs for the Majority Total scheme.

Majority Scheme GER

We first derive an expression for the GER of N iid DMs, then derive the GER

for N general DMs. We indicate that the results below are relevant to either of our

majority-based group voting schemes by stating that the following is the GER for

a Majority scheme (rather than the Majority Total scheme, specifically).

Majority Scheme GER for iid DMs Let Θ = N−1
2

be the number of DMs

in the largest minority possible (“maximal minority”), and let Υ = N+1
2

be the

number of DMs in the smallest majority possible (“minimal majority”). Note that

by our problem definition, the probability that a DM makes an error is given by

LER, and the probability that it makes a correct decision is given by (1-LER).

Then, the GER for a group of N independent DMs using a Majority scheme is:
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P (group errs) = P (majority errs) ≡ GER

= P (N err) + C(N, 1) · P (1 correct, [N − 1] err)

+C(N, 2) · P (2 correct, [N − 2] err) + · · ·

+C(N,Θ) · P (Θ correct, Υ err),

(3.21)

where C(N, k) ∈ R are scalar constants representing the number of possible ways

N DMs can collectively make k correct decisions. This translates into the following

equation for the overall predicted GER:

GER =

Θ∑

k=0



N

k


LERN−k · (1 − LER)k. (3.22)

Majority Scheme GER for General DMs Following the general form of Equa-

tion (3.21) for the GER, we can now derive the GER for a group of N general DMs

using a Majority scheme, by accounting for each possible combination of DM re-

sponses instead of only the number of dissenting DMs. We can write this out for

each term:

• P (0 correct, N err) =
N∏

m=1

LERm

• P (1 correct, [N − 1] err) =
N∑

j=1


[1 − LERj ]

N∏

m=1,
m6=j

LERm




129



• P (2 correct, [N − 2] err) =

N−1∑

j1=1

N∑

j2=j1+1




2∏

θ=1

[1 − LERjθ
]

N∏

m=1,
m6={j1,j2}

LERm




Note that we now refer to each DM that answers correctly using a sub-index.

Also note that the limit on the first summation is N − 1 rather than N . This

prevents overcounting.

. . .

• P (Θ correct, Υ err) =

N−Θ+1∑

j1=1

N−Θ+2∑

j2=j1+1

. . .

N∑

jΘ=jΘ−1+1




Θ∏

θ=1

[1 − LERjθ
]

N∏

m=1,
m/∈J

LERm




where J = {j1, . . . jθ}, the subset of DMs who answered correctly in the combina-

tion being considered.

We then combine the above equations to find the general equation for the mean

GER of a group of N general DMs using a Majority scheme:

GER =

N∏

i=1

LERi +

Θ∑

θ=1




N−θ+1∑

j1=1

N−θ+2∑

j2=j1+1

· · ·
N∑

jθ=jθ−1+1




θ∏

k=1

[1 − LERjk
]

N∏

m=1,
m/∈J

LERm





 ,

(3.23)

It has been shown that when the LERi are not identical, the optimal procedure

is to assign a weight to each DM’s decision that is proportional to its accuracy

[63]. Here we consider only the simple case where each DM is given only one vote.

This is realistic for cases in which one cannot satisfactorily characterize or know

the average performance of each DM as a constant number, or is otherwise unable
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to assign non-uniform weights for other reasons. For example, in a committee of

professionals, the members generally do not have the same expertise on any single

matter that the committee must decide on, yet each member is typically given a

single vote, which results in equal weighting. The GER for DMs with unequal

weighting is discussed in the economics and political science literatures [6, 7, 47].

Majority Total Scheme pdf of GDTs for General DMs

Given the individuals’ cdfs and pdfs of DTs, we can now calculate the cdf and

pdf of GDTs. In the Majority Total scheme, the GDT is effectively equal to the DT

of the slowest group member: the probability that a group of N general DMs using

the Majority Total rule makes a decision by time tg is the same as the probability

that all N DMs make a decision by time tg. Thus, even though we consider only

N odd for the Majority schemes to avoid ties in the group decision rule, we can

solve for the GDT for any N , independent of the fusion center’s decision. We first

solve the N = 2 and N = 3 cases as simple examples of how to calculate the pdf of

GDTs, then extend the results to the case of N general DMs.

Majority Total GDT for N = 2 General DMs The probability that a group

of 2 general DMs using the Majority Total rule makes a decision by time tg is equal

to the probability that both DMs make a decision by time tg. We denote the cdf

of GDTs for a group of 2 general DMs using the Majority Total decision rule as

qmtg2
g (tg) ([m]ajority [t]otal scheme, [g]eneral individual DM, N = [2] DMs),
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qmtg2
g (tg) = q1(tg)q2(tg). (3.24)

We can take d
dtg

of both sides to solve for the pdf of GDTs:

pmtg2
g (tg) = p1(tg)q1(tg) + p2(tg)q1(tg). (3.25)

This intuitively makes sense - the probability that the group finishes at time tg

is equal to the sum of the probability that DM1 makes a decision at time tg and

DM2 made a decision some time before then, and the probability that DM2 makes

a decision at time tg and DM1 made a decision some time before then.

Majority Total GDT for N = 3 General DMs Again, the probability that a

group of 3 DMs makes a decision using the Majority Total rule by time tg is again

equivalent to the probability that all 3 DMs reach a decision by time tg. We use

this to write out the group cdf as a function of the cdfs of the individual DMs:

qmtg3
g = q1(tg)q2(tg)q3(tg). (3.26)

As before, we take d
dtg

of both sides to solve for the group pdf of GDTs,

pmtg3
g (tg) = p1(tg)q2(tg)q3(tg) + q1(tg)p2(tg)q3(tg) + q1(tg)q2(tg)p3(tg). (3.27)
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We see a pattern similar to the N = 2 case, where the pdf of GDTs is a sum of all

possible combinations in which one DM makes a decision at time tg and the others

in the group have already made a decision by time tg.

Majority Total GDT for N General DMs Extending the patterns found in

the results above, we can write out the cdf of GDTs, qmtgN
g (tg) ([m]ajority [t]otal

scheme, [g]eneral individual DMs, [N ] DMs), as

qmtgN
g (tg) =

N∏

i=1

qi(tg). (3.28)

The pdf of GDTs is then

pmtgN
g (tg) =

N∑

i=1


pi(tg)

N∏

j=1,
j 6=i

qj(tg)


 . (3.29)

Majority Total GDT for iid DMs

We can now solve for the pdf of GDTs for iid DMs. We first solve the N = 2

case, the N = 3 case, and then extend the results to the arbitrary N case. We also

show a plot of the analytical results for the iid case, for N = 1 to 41.

Majority Total GDT for N = 2 iid DMs For iid individual DMs, the cdf of

GDTs is given by

qmti2
g (tg) = [qι(tg)]

2. (3.30)
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The corresponding pdf of GDTs is given by

pmti2
g (tg) = 2pι(tg)qι(tg). (3.31)

In other words, the probability that the group finishes at a given time tg is deter-

mined by the probability that one DM makes a decision at time tg and the other

DM has already made a decision by that time.

Majority Total GDT for N = 3 iid DMs Similarly, for the N = 3 case, the

cdf of GDTs is given by

qmti3
g (tg) = [qι(tg)]

3, (3.32)

and the pdf of GDTs is given by

pmti3
g (tg) = 3pι(tg)[qι(tg)]

2. (3.33)

Majority Total GDT for N iid DMs Following the pattern laid out above,

the cdf of GDTs for N iid DMs is

qmtiN
g (tg) = [qι(tg)]

N , (3.34)

and the pdf of GDTs is
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Figure 3.4: Plot of pmtiN
g (tg), the pdf of GDTs for N iid DMs using the Majority Total decision

rule, with N varying from 1 to 41. As the number of DMs increases, the mean GDT also increases,
and the distribution spreads out. This is expected, since the fusion center declares the group’s
decision only after the slowest DM has responded, and as N increases, the slowest DM’s DT tends
to increase and tends to take on a wider range of values.

pmtiN
g (tg) = Npι(tg) [qι(tg)]

N−1 . (3.35)

These results are plotted for N = 1 to 41 in Figure 3.4. As N increases, the

group pdf spreads out and drifts to the right, as we would expect - a larger group

should take longer to decide, since the group must wait for the slowest DM and a

larger N increases the chances of having a DM whose individual DT is from farther

along the right tail of the individual’s DT distribution.

Majority Total Simulation Results

In Figure 3.5, we show a histogram of GDTs from simulation, overlaid with

the pdf calculated for the same group, and scaled by the number of trials and bin
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Figure 3.5: Comparison of the analytically-derived pdf of GDTs for a group of N = 5 iid DMs
using the Majority Total scheme with a histogram of GDTs from simulating the same group over
10,000 trials. The histogram was scaled by the number of trials and bin width. The agreement
between the pdf of GDTs and the histogram validates our results for the Majority Total scheme.

width. We took N = 5 and used the parameter values given in the introduction to

Section 3.2. The agreement between the two verifies our results.

3.2.3 Majority First Scheme

The Majority First scheme is a slight modification of the Majority Total scheme.

Given that our two major measures of performance are GDT and GER, it naturally

follows that one can speed up the Majority Total scheme by ignoring the DMs whose

decisions will not contribute to the fusion center’s decision. Thus, in the Majority

First scheme, the fusion center makes a decision as soon as the minimal majority

Υ of DMs reach the same decision. For example, for N = 3, if the two fastest DMs

both choose H1, a fusion center using the Majority First scheme will immediately
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choose H1, whereas a fusion center using the Majority Total scheme will wait until

the slowest DM responds before declaring the group’s decision. Since the GDT is

now inextricably linked to the individual DMs’ decisions, we consider only N odd

in calculating the cdf and pdf of GDTs for a group of DMs using the Majority First

scheme. We have conducted an extensive search of past literature, and to the best

of our knowledge, this particular group decision-making rule is novel.

Majority First Scheme GER

For a given group of DMs, the Majority First and Majority Total schemes

have identical mean GERs, because they use the same decision rule to choose a

hypothesis, and differ only in their stopping conditions. Thus, the GER for N iid

DMs using the Majority First scheme is also given by Equation (3.22) and the GER

for N general DMs by Equation (3.23).

Majority First Scheme pdf of GDTs for General DMs

The calculations used to find the pdf of GDTs of a group using the Majority First

scheme differ from the previous two schemes in that they must track the decision

made in addition to the decision time. We start with N = 3, since for N = 2,

the group effectively uses either a Race or Majority Total scheme, depending on

whether one considers 1 to be a minimal majority (Υ) or maximal minority (Θ).

For N = 3, the minimal majority is Υ = 2 and the maximal minority is Θ = 1. We

will then show the results for the N = 5 case before presenting the general N case,
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T D|S D|N
1 2 3 1 2 3 1 2 3

L L L S S S N N N
G L L N S S S N N
L G L S N S N S N
L L G S S N N N S

Table 3.2: Decision Times (T) and Decisions (D) for N = 3 DMs. The numbers at the top of
the columns identify the individual DMs in the group. The left-most column shows the possible
DTs which possibly lead to a group decision by time tg. The center and right-most columns show
the possible decisions which lead to a group decision by time tg, ending in choosing H1 and H0,
respectively. A list of all possible TD combinations that result in the group deciding by time tg
can be easily constructed from this table. The full list corresponding to this table is given in
Table 3.3.

for both general and iid DMs.

Majority First GDT for N = 3 General DMs For N = 3, the possible DM

decision times (T) and decisions (D) that can possibly lead to a group response by

time tg are shown in Table 3.2. However, not all combinations of the decision time

and decision columns lead to a group decision. The specific combinations which

lead to a group decision by time tg are shown in Table 3.3, where entries on the

left lead to the group choosing S (H1) and the entries on the right lead to the

group choosing N (H0). Because the number of combinations are relatively small

for N = 3, we specifically show both Table 3.2 and Table 3.3 as an example.

One can write a cdf showing all 20 entries from Table 3.2 as separate terms, but

we are interested in developing a compact general formula, so we now introduce

some simplifications. Note that the entries in Table 3.3 have been divided into

eight partitions, four rows and two columns. The first row partition represents a
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S N
1 2 3 1 2 3

LS LS LS LN LN LN
LN LS LS LS LN LN
GS LS LS GN LN LN
GN LS LS GS LN LN
LS LN LS LN LS LN
LS GS LS LN GN LN
LS GN LS LN GS LN
LS LS LN LN LN LS
LS LS GS LN LN GN
LS LS GN LN LN GS

Table 3.3: All possible combinations of decisions and decision times which a group of 3 DMs can
make and still have the fusion center make a decision by time tg under the Majority First group
decision rule. “S” indicates that the DM chooses H1 (“Signal Present”), and “N” indicates that
the DM chooses H0 (“Signal Absent”). “L” indicates that the DM decided at some time before
tg and “G” indicates that the DM decides after time tg. As a note, some useful identities with
this additional notation can be found in Equation (3.36).

unanimous decision by time tg. The second through fourth row partitions represent

decisions in which there is one dissenting DM, which either reaches a decision by

time tg but disagrees with the majority or reaches a decision after time tg. Under

this expanded notation, we have additional identities, including

qD(tg) = LD,

q(tg) = L = LS + LN,

1 − q(tg) = G = GS + GN,

P (D) = LD + GD,

1 = LS + LN + GS + GN,

1 − qD(t) = LD̂ + GS + GN,

(3.36)
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where D̂ is the opposite decision of D. For example, [1 − q1S(tg)] is the probability

that DM1 does not contribute towards a group decision for S (i.e., it either selects

N or answers after time tg). Now each partition can be collapsed into a single term,

which reduces the 20 terms to 8:

qmfg3
g (tg) = q1S(tg)q2S(tg)q3S(tg) + q1N(tg)q2N(tg)q3N(tg)

+[1 − q1S(tg)]q2S(tg)q3S(tg) + q1S(tg)[1 − q2S(tg)]q3S(tg)

+q1S(tg)q2S(tg)[1 − q3S(tg)] + [1 − q1N(tg)]q2N(tg)q3N(tg)

+q1N(tg)[1 − q2N(tg)]q3N(tg) + q1N(tg)q2N(tg)[1 − q3N(tg)].

(3.37)

This is expression can be simplified further:

qmfg3
g (tg) =

3∏

i=1

qiS(tg) +
3∏

i=1

qiN(tg) +
3∑

i=1


[1 − qiS(tg)]

3∏

j=1,
j 6=i

qjS(tg)




+

3∑

i=1


[1 − qiN(tg)]

3∏

j=1,
j 6=i

qjN(tg)


 . (3.38)

We can now differentiate Equation (3.38) to get the pdf of GDTs:
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pmfg3
g (tg) =

3∑

i=1


piS(tg)

3∏

j=1,
j 6=i

qjS(tg) + piN(tg)
3∏

j=1,
j 6=i

qjN(tg)




−
3∑

i=1


piS(tg)

3∏

j=1,
j 6=i

qjS(tg) + piN(tg)
3∏

j=1,
j 6=i

qjN(tg)




+

3∑

i=1

3∑

j=1,
j 6=i

3∑

k=1,
k 6=i,j

([1 − qiS(tg)]pjSqkS + [1 − qiN(tg)]pjNqkN) ,

(3.39)

which simplifies to

pmfg3
g (tg) =

3∑

i=1

3∑

j=1,
j 6=i

3∑

k=1,
k 6=i,j

([1 − qiS(tg)]pjS(tg)qkS(tg) + [1 − qiN(tg)]pjN(tg)qkN(tg)) .

(3.40)

This makes intuitive sense: the fusion center makes a decision when one DM makes

a decision at time tg and chooses the decision that Θ DMs have already chosen.

This gives the Υ agreeing DMs required for the group to make a decision. We now

consider the next simplest case, N = 5, below.

Majority First GDT for N = 5 General DMs For N = 5, the minimal

majority is Υ = 3 and the maximal minority is Θ = 2. Adding two DMs vastly

increases the number of possible combinations. In Table 3.4, we list out the T

and D and combinations which may lead to a group decision by time tg. Though
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we could again write out a list of the specific combinations of decision times and

decisions (with somewhat more effort), the list would be extremely long.

Note that θ is equivalently the number of G terms in the T column, the number

of N terms in the D|S column, and the number of S terms in the D|N column. In

other words, it represents the number of dissenting (minority) members. Using the

same combination patterns as was done for the N = 3 case, we can find the cdf

of GDTs for 5 general DMs using the Majority First scheme (dropping the explicit

(tg) notation on the right-hand side for brevity):

qmfg5
g (tg) =

5∏

i=1

qiS +
5∏

i=1

qiN +
5∑

i=1


[1 − qiS]

5∏

j=1,
j 6=i

qjS + [1 − qiN]
5∏

j=1,
j 6=i

qjN




+

4∑

i1=1

5∑

i2=i1+1


[1 − qi1S][1 − qi2S]

5∏

j=1,
j 6=i1,i2

qjS

+ [1 − qi1N][1 − qi2N]

5∏

j=1,
j 6=i1,i2

qjN


 .

(3.41)

Again, we differentiate and simplify to get the pdf of GDTs,
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T D|S D|N
DM: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

θ = 0 L L L L L S S S S S N N N N N
G L L L L N S S S S S N N N N
L G L L L S N S S S N S N N N

θ = 1 L L G L L S S N S S N N S N N
L L L G L S S S N S N N N S N
L L L L G S S S S N N N N N S
G G L L L N N S S S S S N N N
G L G L L N S N S S S N S N N
G L L G L N S S N S S N N S N
G L L L G N S S S N S N N N S

θ = 2 L G G L L S N N S S N S S N N
L G L G L S N S N S N S N S N
L G L L G S N S S N N S N N S
L L G G L S S N N S N N S S N
L L G L G S S N S N N N S N S
L L L G G S S S N N N N N S S

Table 3.4: Combinations of Decisions (D) and Decision Times (T) which produce a group decision
by time tg for N = 5 DMs. Within each column, the row of numbers at the top identifies the
individual DMs, numbered 1 through 5. The columns are partitioned into three parts, denoted
by double vertical lines. The first partition on the left shows the value of θ, which denotes the
number of dissenting DMs in each row and ranges from θ = 0 to θ = Θ. The Majority First for
a group of 5 DMs requires that at least 3 DMs must reach the same decision by time tg for the
fusion center to make a decision by time tg. The second column partition shows the combinations
of individual DTs (T) for which the group reaches a decision by time tg under the Majority First
scheme. This is decoupled from the actual decision each DM makes. As before, “L” indicates that
the DM made a decision before time tg (i.e., the DT is [L]ess than tg), and “G” indicates that
the DM makes a decision after time tg (i.e., the DT is [G]reater than tg). The right-most column
shows the combinations of individual decisions, decoupled from DT, required for the fusion center
to choose S or N. The D|S (resp., D|N) subcolumn shows the individual decision combinations
that lead to the fusion center selecting S (resp., N). In the first row partition, θ = 0, so there
are no dissenting DMs: the T column is LLLLL, the D|S column is SSSSS and the D|N column
is NNNNN. In the second row partition, θ = 1, so there is one dissenting DM per column, and
the rows in this partition show all unique combinations of one dissenting DM and four agreeing
DMs. Now that we have all combinations of individual DTs and individual decisions that could
give rise to a fusion center decision by time tg, we can easily construct the full explicit list of all
DT pairs that result in a fusion center decision by time tg; however, due to the large number of
combinations, we will not explicitly state every DT pair as we did for N = 3 in Table 3.3. We note
that not all combinations of the center and right column partitions result in the group making a
decision by time tg, so one should be careful in listing out all possibilities.
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pmfg5
g (tg) =

4∑

i=1

5∑

j=i+1


[1 − qiS(tg)][1 − qjS(tg)]

5∑

k=1,
k 6=i,j


pkS(tg)

5∏

m=1,
m6=i,j,k

qmS(tg)







+

4∑

i=1

5∑

j=i+1

([1 − qiN(tg)][1 − qjN(tg)]

5∑

k=1,
k 6=i,j


pkN(tg)

5∏

m=1,
m6=i,j,k

qmN(tg)





 .

(3.42)

Majority First GDT for N General DMs The cdf of GDTs for N general

DMs, where we drop the explicit (tg) notation on the right-hand side for brevity, is

given by

qmfgN
g (tg) =

N∏

i=1

qiS +
N∏

i=1

qiN +
Θ∑

θ=1


Γθg

J S

N∏

k=1,
k /∈J

qkS + Γθg
JN

N∏

k=1,
k /∈J

qkN


 . (3.43)

The first two terms express the situation where all N DMs agree on the group

decision and answer before time tg. The last term denotes all combinations [J ]

where up to [θ] [g]eneral DMs either answer by time tg but disagree with the (final)

group decision [D] or answer after time tg. The subfunction Γθg
JD

accounts for the

cases with dissenting DMs, and is defined as
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Γθg
JD

=

(N−θ+1)∑

j1=1

(N−θ+2)∑

j2=j1+1

· · ·
N∑

jθ=jθ−1+1

(
θ∏

m=1

[1 − qjmD]

)
, (3.44)

where D ∈ {S,N}, J = {j1, . . . , jθ} and qi(tg) = qiS(tg) + qiN(tg). The summation

indices indicate which DMs are in each unique combination (J ) of DMs, and the

product term uses the sub-index m to iterate through each DM in the combination.

Taking the derivative with respect to tg and simplifying, we get the pdf of GDTs

for N general DMs using the Majority First scheme:

pmfgN
g (tg) =

N−Θ+1∑

j1=1

N−Θ+2∑

j2=j1+1

· · ·
N∑

jΘ=jΘ−1+1




Θ∏

i=1

[1 − qjiS]
N∑

k=1,
k /∈J



pkS

N∏

m=1,
m/∈J ,
m6=k

qmS







+

N−Θ+1∑

j1=1

N−Θ+2∑

j2=j1+1

· · ·
N∑

jΘ=jΘ−1+1




Θ∏

i=1

[1 − qjiN]

N∑

k=1,
k /∈J



pkN

N∏

m=1,
m/∈J ,
m6=k

qmN






.

(3.45)

This follows the general form shown above for the N = 3 and N = 5 cases: there

are Θ terms of the form qD, which means that Θ DMs made the same decision

before time tg; one term of the form pD, which means that one DM made the same

decision at time tg; and Θ terms of the form [1 − qD], which means that Θ DMs

did not contribute to the final group decision at time tg: those DMs either chose

the other hypothesis or did not make a decision by time tg. See Section C in the

Appendix for a proof of this formula.
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Majority First Scheme GDT for iid DMs

We can simplify the above cdfs and pdfs for the case where the DMs are iid.

We present these below.

Majority First GDT for N = 3 iid DMs The cdf of GDTs for 3 iid DMs using

the Majority First decision rule is

qmfi3
g (tg) = [qιS(tg)]

3 + [qιN(tg)]
3 + 3[1 − qιS(tg)][qιS(tg)]

2 + 3[1 − qιN(tg)][qιN(tg)]
2,

(3.46)

and the pdf of GDTs is

pmfi3
g (tg) = 6[1 − qιS(tg)]pιS(tg)qιS(tg) + 6[1 − qιN(tg)]pιN(tg)qιN(tg). (3.47)

Majority First GDT for N = 5 iid DMs The cdf of GDTs for 5 iid DMs using

the Majority First decision rule is

qmfi5
g (tg) = [qιS(tg)]

5 + [qιN(tg)]
5 + 5 ([1 − qιS(tg)][qιS(tg)]

4

+[1 − qιN(tg)][qιN(tg)]
4
)

+ 10 ([1 − qιS(tg)]
2[qιS(tg)]

3

+[1 − qιN(tg)]
2[qιN(tg)]

3
)
,

(3.48)
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and the pdf of GDTs is

pmfi5
g (tg) = 30

(
[1 − qιS(tg)]

2pιS(tg)[qιS(tg)]
2 + [1 − qιN(tg)]

2pιN(tg)[qιN(tg)]
2
)
.

(3.49)

Majority First GDT for N iid DMs As before, this can be simplified for N

iid DMs. The cdf of GDTs is now

qmfiN

g (tg) = [qιS]
N + [qιN]N +

Θ∑

θ=1



N

θ



(
[1 − qιS]

θ[qιS]
N−θ + [1 − qιN]θ[qιN]N−θ

)
,

(3.50)

and the group pdf for N iid DMs is

pmfiN

g (tg) =



N

Θ


Υ

(
[1 − qιS(tg)]

ΘpιS(tg)[qιS(tg)]
Θ

+ [1 − qιN(tg)]
ΘpιN(tg)[qιN(tg)]

Θ
)
. (3.51)

We plot the pdf of group DTs for N iid DMs using the Majority First scheme

in Figure 3.6, for N odd, from N = 1 to N = 41. In the Majority First scheme,

the slowest member is between the Υth and Nth to respond, and as N increases,

the number of DMs that can potentially be ignored also increases. The increase
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Figure 3.6: Plot of pmfiN

g (tg), the pdf of GDTs N iid DMs using the Majority First decision
rule, with N varying from 1 to 41, for N odd. As N increases, the distribution appears to
move slightly to the right, while the pdf becomes more peaked; however, the mean GDT actually
decreases slightly.

in the number of ignorable DMs seems to balance out the increase in Υ, so the

distribution moves to the right and becomes more peaked. Due to the shape of

the curves, the mean GDT actually decreases slightly. It is very evident for the

Majority First scheme that a full pdf of GDTs provides more useful information

than a simple mean-GDT-based analysis.

Majority First Simulation Results

In Figure 3.7, we show a histogram of GDTs from simulating N = 5 iid DMs,

scaled by the number of trials and bin width and overlaid with the pdf calculated

for the same group. The agreement between the two verifies our results.
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Figure 3.7: Comparison of the analytically derived group pdf and a histogram of GDTs from a
simulation of the same group of 5 iid DMs using the Majority First group decision rule. The
histogram was scaled by the number of trials and bin width. This simulation was run over 10,000
trials. The agreement between the pdf and the histogram validates our results for the Majority
First scheme.

3.2.4 Decentralized SPRT (D-SPRT) Scheme

The Decentralized SPRT (D-SPRT) was proposed by A. Hussain in [45]. In

this scheme, iid DMs use the SPRT to reach a decision, and then transmit their

decisions to a fusion center. Here, unlike the schemes above, after an individual DM

has reached a decision and transmitted it to the fusion center, it resets its decision

variable and begins a new SPRT on new incoming data. The fusion center has its

own decision variable, and performs a fixed step-size SPRT on the decisions from

the local detectors, effectively aggregating the signals from the individual DMs.

Once the fusion center’s decision variable reaches a given threshold, determined by

the maximum allowable error rate, the fusion center declares the group decision.
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The fusion center in the D-SPRT approximates a single DM using the SPRT, but

includes redundancy and on average effectively processes approximately N times

as much data as a single DM in each time step. The D-SPRT is not completely

efficient because there will always be observations taken by all but one DM which

are not transmitted to the fusion center before the fusion center process finishes,

but the scheme’s potential for speed, ability to utilize lower accuracy local sensors

to achieve a higher level of accuracy in the group’s decision, and robustness to

individual sensor failure (in the sense that the sensor either stops taking data or can

no longer transmit decisions) make it a reasonable group decision-making scheme

to consider.

We note that the D-SPRT is reasonable to consider for device-based systems, but

is non-ideal for systems with human DMs, since humans will likely be too biased by

their previous decision to effectively reset their decision variable. Though we have

not found a study that tests this specifically, there is ample evidence that human

observers tend to discount others’ opinions and prefer their own. In [42, 104], it was

shown that people tended to discount others’ opinions, and place a majority weight

on their own, with weights of approximately (70% / 30%) on (self / other). If one

considers the “advisor’s opinion” to be additional data, the studies indicate that

once a human observer has made a decision, he is likely to set a very high prior to

repeat that decision thereafter. It has also been found that people tend to ignore

information that does not support their opinion and tend to pay more attention
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to information that does [90, 102]. This implies that a human observer may not

only assign a high prior to the previous opinion, but may also selectively process

additional information. Additionally, it was concluded in [53] that even though

human observers could adjust their criteria to change their DT and accuracy to

adapt to different situations, they rarely revised their decisions after making them.

Thus, group decision-making rules which require a decision-maker to submit more

than one decision to the fusion center are likely to be very inappropriate for systems

with human observers. The D-SPRT scheme is also vulnerable to attack: if one

DM is hijacked, it can repeatedly send a response to the fusion center, and thereby

control the group’s decision; in our majority-based schemes, a hijacker would have to

control a majority of the DMs to ensure a certain group response. These weaknesses

aside, we analyze the D-SPRT along with our group decision rules, since the D-

SPRT may be relevant to many 2AFC tasks.

D-SPRT Scheme LER, GER, and Boundaries

Hussain generally models the individual DMs as a bi-marked renewal process,

denoted wk(t) for individual k, where each individual outputs +1 or −1 with prob-

ability δ or (1-δ), respectively, at some time whose inter-decision intervals are de-

scribed by a probability distribution function. The fusion center process w(t) is then

modeled as a superposition of N of the above processes. An equivalent description

more consistent with our other schemes is as follows: the local DMs collect data and
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update their individual decision variables at each time step. Each individual has

decision boundaries at B0 and B1, and declares a decision when its decision variable

is absorbed into one of the boundaries. When the kth DM declares a decision at

time t, it sends output wk(t) to the fusion center, where

wk(t) =





+1 if detector k decides H1

−1 if detector k decides H0

.

That DM then resets its decision variable and begins a new SPRT on new incoming

data. At each time step, the fusion center uses the sum of these signals to update

its decision variable, moving its decision variable by B1 ·
∑

k wk(t) at each time step.

Like all of the schemes presented here, the individual detectors do not need to be

synchronized.

The expected GER is (theoretically) set by the experimenter, and is determined

by the fusion center’s error rate, ERfc. This value sets the fusion center’s decision

boundaries, B0 and B1, using Equations (2.16) and (2.17). The experimenter is

also free to choose η, the number of steps which the fusion center must take to

reach a decision. Under the no-overshoot assumption, the fusion center decision

boundaries and η then set the decision boundaries for the (local) individual DMs:

B0 = B0

η
and B1 = B1

η
, from which one can calculate the LER:

α0 =
1 − eB0

eB1 − eB0
(3.52)
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α1 =
eB0
(
eB1 − 1

)

eB1 − eB0
, (3.53)

since LER = α0 = α1. We explore the D-SPRT further through simulations to

build on the results of [45] below.

Investigating the Small-Overshoot Assumption in the D-SPRT

In our simulations of the D-SPRT, each DM in the group runs a SPRT until

it reaches a decision, at which point it sends a signal to the fusion center, then

resets its decision variable back to zero and begins a new SPRT. At each time step,

the fusion center checks to see if any of the local DMs have reached a decision. If

any have, the fusion center updates its decision variable and checks to see if it has

reached a decision. If the fusion center decision variable crosses a threshold, then

the group decision is made and the entire group shuts down. If not, the process

continues.

Our initial series of simulations investigates the best value for η, since this

was not specified in [45]. In theory, one would expect that a large η value would

be best, since a large η corresponds to individual DMs with higher LERs and

faster individual DTs. Thus, a larger value of η would cause the D-SPRT scheme

to become more similar to the simple centralized (in the engineering literature

sense of the word) case, where the fusion center processes N observations at each

time step, and the individual DMs are just sensors that send information to the

fusion center. However, as we saw in Chapter 2, at large LERs, overshoot becomes
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non-negligible, and the small-overshoot assumption used to calculate the decision

variable boundaries no longer holds. Therefore, we expect to find an optimal point,

at which there are enough DMs to gain an advantage in numbers, but not so many

that the LER increases past the point where overshoot affects our results.

We simulated a group of 3 DMs utilizing the D-SPRT, with ERfc = 0.01, since we

found this error rate to provide performance reasonably close to what we expected

from analytical calculation for an individual DM. This gives the boundaries of the

fusion center’s decision variable. We then used η to determine the boundaries of

the individual DM, and solved for the individual DMs’ LERs. The ideal LER, and

mean actual GDT and GER are shown for each value of η in Table 3.5, averaged

over 10,000 trials. This initial study allowed us to shorten the range of η values of

interest. We then focused on a promising range of values and ran an additional set

of simulations to more definitively find the optimal η. Our results, averaged over

100,000 trials, are shown in Table 3.6.

If the individual DM adequately fulfilled the small-overshoot assumption for all

values of LER, then we would expect that the D-SPRT’s mean GER would remain

steady, while its mean GDT would decline with increasing η before asymptoting

at approximately one-Nth the expected GDT of an individual using the SPRT

with the same d′ and an ER equal to the group’s ERfc. Thus, for N = 3, one

would expect the GDT to asymptote at a value bounded below by 300.214 for large

η, ERfc = 0.01, and d′ = 0.1. However, as shown in Figure 3.8, this does not
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occur in simulation. While the plots are not smooth due to the finite sample size

(10,000 trials), there is a clear trend showing that the GDT decreases from η = 1

to η = 4, then slowly increases with η. Meanwhile, the GER generally decreases

with increasing η. We believe both of these effects to be due to overshoot.

Though the values we chose were suitable for an individual DM, larger values

of η can cause the D-SPRT to amplify the overshoot on two levels. First, the larger

η results in the individual DM having a larger LER, which, as discussed above,

results in more error than a smaller LER would have. Second, this slightly larger

error is multiplied by at least η, since the error accumulates over at least η steps

before the fusion center reaches a decision. With larger η, the error increases to

the point where it is no longer considered small. This results in the boundaries

for the individual DM being too conservative, which results in the group using the

D-SPRT to have a longer GDT but lower GER, as is shown in Figure 3.8.

From our results, we selected η = 5, since this value had both a low GDT and

low GER across multiple simulations.

Now that we have reasonable parameters to use for the D-SPRT, we can compare

its performance to our main three group decision rules, which we will do in the next

section; however, first, we will detail a few other related group decision rules from

the literature for completeness.
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η LER Mean GER Mean GDT
1 0.0100 0.0100 510.8921
2 0.0913 0.0100 366.3545
3 0.1777 0.0060 341.6355
4 0.2407 0.0072 332.3445
5 0.2852 0.0056 335.5477
6 0.3174 0.0062 338.0423
7 0.3415 0.0080 338.8554
8 0.3602 0.0060 344.3209
9 0.3751 0.0052 342.0504
10 0.3871 0.0062 350.8608
11 0.3971 0.0046 351.7345
12 0.4054 0.0056 357.7687
13 0.4125 0.0030 385.8191
14 0.4187 0.0056 368.5452
15 0.4240 0.0052 388.6162
16 0.4287 0.0046 384.6044
17 0.4328 0.0036 380.1343
18 0.4365 0.0036 391.2518
19 0.4398 0.0020 398.3662
20 0.4428 0.0038 402.9937
21 0.4455 0.0036 400.3097
22 0.4480 0.0018 413.8168
23 0.4502 0.0032 418.0568
24 0.4523 0.0040 412.3200
25 0.4542 0.0020 436.9519

Table 3.5: Results of our first set of simulations to find a good value for η. We set ERfc = 0.01,
and for N = 3, varied the value of η. The second column shows what LER each DM was set to,
and the third and fourth columns show the actual mean GERs and GDTs from simulation. This
table corresponds to Figure 3.8. The values above are averaged over 10,000 trials.
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Figure 3.8: Plots corresponding to the data in Table 3.5. Our goal is to select a value of η at which
the D-SPRT functions well for a group of size N = 3 or larger, to compare to our other group
decision rules. Figure (a) shows the actual GER. Figure (b) shows the mean GDT. Theoretically,
we would have expected the GDT to continue decreasing with η, but we found that in simulation,
overshoot becomes non-negligible for large η. Thus, there is a tradeoff, and a minimal value for
the GDT appears. The error bars represent standard error. The values shown here are averaged
over 10,000 trials. Based on these simulation results, we selected η = 5 to provide a good balance
between low DT and low GER.
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η LER Mean GER Mean GDT
1 0.0100 0.0091 510.6508
2 0.0913 0.0086 366.3114
3 0.1777 0.0090 340.5606
4 0.2407 0.0073 334.4718
5 0.2852 0.0075 332.8404
6 0.3174 0.0091 338.6020
7 0.3415 0.0086 336.8180
8 0.3602 0.0090 341.6382
9 0.3751 0.0073 343.7072
10 0.3871 0.0075 350.8489

Table 3.6: Results of our second set of simulations to find a good value for η. We used the same
parameter values as we did for Table 3.5, but averaged over 100,000 trials this time to better
locate the best η value. Though it appears that η = 4 would also work well, we felt these results
verified that η = 5 is a good choice for the D-SPRT applied to a group described by our parameter
values.

3.2.5 Other Group Decision-Making Models

Here we present some brief notes on group decision-making models similar to

those above that we have found in the literature: the AND, OR, and Audley models.

AND and OR Models

We note that the logical AND and OR group decision schemes from the engi-

neering literature [1, 3] generate identical pdfs of GDTs to the Majority Total and

Race schemes, respectively, because they share the same stopping rule. However,

the schemes’ decision rules are very different – the AND scheme requires a consen-

sus to select H0, otherwise, it selects H1; in contrast, the Majority Total scheme

selects the hypothesis with more votes once every DM has voted. The OR scheme

requires at least one DM to choose H0, otherwise, it selects H1; in contrast, the
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Race scheme selects the hypothesis that the fastest DM chooses. In a 2AFC task

where there is little a priori knowledge about which hypothesis is correct, the AND

and OR models may favor one hypothesis too heavily.

However, there are tasks in which the AND and OR scheme are appropriate.

For example, in an item recognition task, an observer is first presented with a list

of items to memorize (words, sounds, images, etc) for a finite period of time. After

a delay, ranging from seconds to days, the observer is presented with a series of

items which may or may not have been on the list, and asked if the item is “old”

(i.e., was on the list), or “new”, (i.e., was not on the list). It is proposed in [68] that

during the task, the observer compares the item presented with all items evoked in

memory, and a number of processes decide if the item presented matches one of the

items on the list in memory. If there is a match, the process terminates when the

fastest of the processes returns a “yes”; otherwise, the process does not end until

the slowest process returns a “no”. This is equivalent to using an AND (or OR)

group rule to select the observer’s decision, where the observer is the fusion center

and the processes are the individual DMs. We note that one could then treat each

observer as a DM in a higher-level group using a Majority Total or Race (or OR or

AND) group decision rule to complete the task with even higher accuracy or speed,

which demonstrates the flexibility of the group structures we consider.

We do not consider the AND and OR schemes further, since they are not as

appropriate for the 2AFC tasks we consider.
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Audley Model

The Audley Model [4] is similar to the D-SPRT in that at least some group

members typically make more than one decision before the fusion center makes a

decision, and the members reset their decision variables and begin a new decision

process (SPRT) after sending a decision to the fusion center. However, in the

Audley model, the fusion center selects the hypothesis that receives M consecutive

decisions, where M is a parameter set by the experimenter. Though viable, we

consider this rule to be less practical than the D-SPRT, and thus only mention it

for completeness.

3.3 Part II: Group Decision Rule Comparison for

iid DMs

In Part II, we compare our main three group decision rules and the D-SPRT

under different constraints, while assuming that each group rule is applied to a

group with iid DMs. We first verify that our simulations provide the GERs we

expect, then compare the performance of the different group decision rules under

the equal-LER and equal-GER conditions.
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3.3.1 GER Verification

The following results verify that our simulations fulfill our expectations over a

reasonable range of values, and indicate the extent to which overshoot may affect

our group rules’ simulation results.

Fixed N = 3, Different LER

This simulation shows how the different schemes are affected by changes in the

DMs’ LER. For each scheme, we held N fixed at 3, and varied the LER from 0.002

to 0.05, in steps of size 0.002.

We expect that the single DM and Race schemes should have GER = LER, and

that the Majority Total and Majority First schemes should have the same GER

< LER. Since the D-SPRT requires 5 net votes to make a decision, whereas the

others require at most 2 total votes, we expect it to have a very low GER, but to

be very slow. Figure 3.9(a) verifies this intuition for a group of 3 DMs, averaged

over 10,000 trials. The fluctuation in the measurements is due to the finite number

of trials that each point in the graph is averaged over.

Figure 3.9(b) shows that the average GDT from simulation of our main three

group decision rules closely follows the mean GDT predicted by our analytical

results, which indicates that the system is not affected appreciably by overshoot.

For N = 3 and a given LER, as we expected, the D-SPRT is the slowest, the

Majority Total scheme is the second slowest, the Majority First scheme is slightly
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faster than a single DM, and the Race scheme is the fastest.

Fixed N = 3, Different GER

This simulation serves mainly to verify that the Group Error Rates are accurate

at the parameter values we selected, and will not be noticeably affected by over-

shoot. We held N = 3 fixed and varied the GER for the different schemes varying

the GER from 0.002 to 0.05, in steps of size 0.002, adjusting the LER as required

by each group decision rule to obtain the desired GER.

We expect the simulation’s GER to match the GER we programmed the simu-

lation to have. Figure 3.10(a) verifies that the simulation’s GER remains close to

what we set it to be. The simulated and calculated GERs match best at smaller

values, since lower GER values require lower LER values, which translates to less

overshoot for each DM.

In Figure 3.10(b), the single DM is the slowest, followed by the Majority Total

scheme. For lower set GER values, the Majority First scheme is the fastest of

our main three schemes, since it utilizes higher LER values than the Race scheme;

however, for higher GERs, the Race scheme becomes faster than the Majority First

scheme. The D-SPRT is the fastest overall, since it uses individual DMs with the

highest LERs.
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Figure 3.9: Error rate verification for N = 3 and a given LER. In (a), the GER graph shows
that overshoot is not significant for this simulation. The D-SPRT scheme has zero error because
η = 5, and is thus more strict than even a consensus rule. The variation in the graph is due to
the finite number of trials it is averaged over (10,000). In (b), the mean GDT is also as expected:
since the D-SPRT must wait for at least 5 individual decisions before the fusion center chooses, it
is by far the slowest. The Majority Total scheme is the next slowest, followed by the single DM,
the Majority First scheme, and the fastest is the Race scheme. This ordering corresponds to the
number of slowest DMs the group decision rules allow the fusion center to ignore: the D-SPRT
must get 2 decisions from most of the DMs, the Majority Total scheme cannot ignore any DMs,
the Majority First scheme can ignore up to Θ DMs, and the Race scheme can ignore (N − 1)
DMs.
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Figure 3.10: GER verification for N = 3 DMs. The GERs shown in (a) show that all of the
group decision rules, simulated over 10,000 trials, produce a mean GER close to what we set it to
be. This confirms that our simulations and analytical results for our main three schemes match
well. In (b), we show the corresponding mean GDTs. The most interesting point here is that the
Majority First scheme is the fastest of our main three schemes for low GERs, but around GER
= 0.022, the Race scheme becomes faster than the Majority First scheme. The D-SPRT is the
fastest overall because its DMs have the highest overall LER.
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3.3.2 Performance Comparison

The various fusion center decision rules each have different strengths and weak-

nesses, which we will discuss here in terms of performance. We use two different

cases to explore the relative advantages of the schemes: the equal LER case for

different N and the equal GER case for different N . The results shown in this

section are averaged over 10,000 trials and compared to the results for a single DM

for reference.

Equal LER, Different N

In many realistic applications, it is reasonable to assume that one is supplied

with N iid DMs, and then must choose a group decision rule that will provide the

best performance for one’s goals. This situation is equivalent to providing all of

the above schemes with N individual DMs with the same LER, and looking at the

relative performance of each scheme.

The GERs for the various schemes are shown in Figure 3.11 for LER fixed at

0.01. The GER for the two Majority schemes drop off rapidly with N , while the

GER for the Race scheme remains approximately steady and close to the LER. The

D-SPRT’s GER in this simulation was zero, since, under the parameters we used,

it is using a significantly stricter rule than the other group decision rules, and thus

had a GER closer to zero than 1
10,000

. The Race scheme’s fluctuations are due to

the finite number of trials that the values are averaged over.
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Figure 3.11: Simulation results for the mean GER of N iid DMs using the Race, Majority Total,
and Majority First schemes for LER fixed at 0.01. All results are averaged over 10,000 trials.
As predicted, the Majority First and Majority Total schemes have identical GERs that drop off
rapidly with N , while the Race scheme’s GER remains close to an individual’s ER, and the D-
SPRT’s GER is extremely low; for this particular simulation, the D-SPRT has a GER of zero,
due to the relatively low number of trials in the simulation. Similarly, the variation in the Race
scheme’s GER is due to the finite number of trials that the simulation is averaged over. We
averaged over only 10,000 trials because it is a large number of trials but still within a reasonable
order of magnitude for actual experiments to achieve.
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Figure 3.12: Simulation results for the mean GDT of N iid DMs using the Race, Majority Total,
and Majority First schemes, overlaid on our analytical solution for the same group. The group
schemes are also compared to an individual DM using the SPRT. In this case, the LER was fixed
at 0.01, and N was varied from 1 to 21. The interesting trend in the D-SPRT is due to the fact
that the number of agreeing cumulative decisions η remains fixed at η = 5, but the number of
DMs available to contribute to those decisions increases with N .

The corresponding GDTs are shown in Figure 3.12. The GDTs for the Majority

Total scheme rise with N , while it quickly levels off for the Majority First scheme.

The Race scheme provides the fastest performance. Thus, in this case, if one must

greatly prioritize decision time, the Race scheme is a reasonable option; otherwise,

the Majority First scheme provides a good balance of low GER and low GDT. The

D-SPRT shows an interesting behavior compared to the other group decision rules:

it drops off approximately exponentially. This is due to the fact that as the number

of group members increases, the number of net decisions that the D-SPRT requires

to reach a decision does not change. Thus, the overall GDT decreases quickly as N

increases.
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Figure 3.13: Simulation results for the mean GDT of N iid DMs using the Race, Majority Total,
and Majority First schemes overlaid on our analytical results for the same groups, and the simu-
lation results for the D-SPRT. The group schemes are compared to an individual DM using the
SPRT. The GER was fixed at 0.01, and N was varied from 1 to 21. All results are averaged over
10,000 trials. Over the range of N shown, the Majority Total scheme remained the slowest, while
the D-SPRT was the fastest by far, since it used DMs with a lower DT and required a decreasing
fraction of the DMs to answer for the fusion center to finish as N increased.

Equal GER, Different N

As another way to compare the different group decision rules, suppose one has

a desired GER in mind, and is interested in seeing which decision rule can achieve

it with some other desirable properties (speed, cost, etc). This assumes that one

can acquire individual DMs of any given LER to achieve the desired GER. As was

shown in Figure 3.10, all of the schemes’ simulations returned values close to what

the simulation was set to provide. The mean GDT results are shown in Figure 3.13

for GER = 0.01 and different values of N .

The results are interesting in that they are not immediately intuitive. As N
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increases, for a fixed GER, the LER for each scheme increases, which results in

faster individual decisions. The Majority Total scheme rapidly becomes faster than

an individual DM even though it must wait for its slowest member because that

slowest member has a higher LER than the individual DM. However, this is not

enough to make the Majority Total scheme faster than the Race scheme for the N

values shown, even though the Race scheme samples from DMs each with LER =

GER. We find that for GER fixed, the Majority First scheme is the fastest of our

main three schemes for a given level of N , since it combines the benefits of a higher

LER (like the Majority Total scheme) with being able to finish before every DM

in the group has made a decision (like the Race scheme). In addition to providing

faster results, the Majority First scheme may also be better than the Race scheme

because it is generally more difficult and/or more expensive to obtain individual

DMs with lower LERs. The fastest overall scheme in this situation was the D-

SPRT, which had the advantage of using individual DMs with higher LERs (and

therefore lower DTs) than the other group rules. The D-SPRT’s mean GDT differs

slightly from the other group rules at N = 1, probably due to overshoot. The best

group decision rule for a particular experiment may depend on the experimenter’s

specific budget and cost function, which formally set the best trade-off between DM

cost and GDT.
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3.3.3 Group Decision Rule Comparison Discussion

The Race scheme provided consistently fast GDTs in both scenarios, and is the

simplest to design, since the fusion center needs neither significant computational

power, memory, nor the ability of the DMs to reset its decision variable. Therefore,

for situations where one is given a set of iid DMs to work with, the Race scheme

provides a simple and fast solution. However, we point out that in the case where

one DM encounters a malfunction that causes it to very quickly return a decision

that is not related to its observations (i.e., it is either faulty or is hijacked), the

overall group decision is vulnerable: since the group scheme itself is very fast, it

would be very difficult to differentiate between a group decision drawn from the

left-hand tail of the pdf of GDTs and an erroneous or malicious response, especially

for large N . The group decision scheme also does not provide a GER that is better

than the individual DMs’ LER. On the other hand, this scheme is robust to multiple

individual DM failure, where the DM cannot communicate with the fusion center.

The Majority Total scheme was generally the slowest in the fixed-LER case, but

had a GDT close to the other group schemes in the fixed-GER case and can use less

accurate individual DMs to achieve a higher level of accuracy at the group level,

which is desirable because lower-accuracy DMs are typically cheaper and easier to

acquire. The scheme is also robust to a small number of DMs being hijacked or

faulty in a way that has them respond without processing data. In addition, the

Majority Total scheme has the advantage of allowing one to calculate a measure
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of confidence in the group’s decision, since one has responses from all N DMs: if

all N agree, then the group is very confident in its decision, whereas if Θ disagree

with the majority, then the probability that the group is incorrect is higher. On

the other hand, the Majority Total scheme is vulnerable to sensor failure, since it

must wait for the slowest DM – if even one sensor becomes unable to communicate

with the fusion center, the group never reaches a decision.

The D-SPRT scheme was generally the fastest scheme at larger group sizes,

largely because has access to more information than the other group rules. It is less

prone to DM failure than the other group decision rules because it can still reach

a group decision if up to N − 1 of the DMs cannot communicate with the fusion

center. However, the D-SPRT is still very sensitive to its DMs being hijacked,

since an attacker could easily repeatedly send out the desired decision and thereby

hijack the overall group’s decision. In addition, the D-SPRT is not a good choice

for systems with human observers, as was discussed earlier, and it may over-weight

information from certain sources if the rule is applied to a system whose information

includes a spatial component or multiple sources of information. However, for a

completely device-based system with only one source of information, it provides

good performance.

The Majority First scheme represents a good middle-ground alternative to the

other schemes: it provided relatively quick performance in the fixed-LER case and

the second-quickest performance in the fixed-GER case. It also shares the same
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LER-related advantages as the Majority Total scheme, and is the most robust to

sensors responding without processing data (due to being faulty or hijacked) of

all the group decision rules presented. At the same time, it is robust to a small

number of sensors failing (due to either faulty communication equipment or being

destroyed), since it only waits for the Υth slowest agreeing member. Thus, while the

Majority First scheme may not be a time-optimal solution for all possible situations,

its robustness and combination of being both accurate and relatively quick make

it an attractive choice, especially when there is uncertainty in the situations the

system may face.

3.4 Part III: An Example of A General Group

We stated earlier that our approach to setting up and analyzing our group

decision rules can be generalized to groups with non-identical members. As a

demonstration of this assertion, we present an example: we consider a general

group with N = 5, since it is a relatively simple but non-trivial system. This

example also serves to illustrate the effect of assuming that a group is iid when it

is not.

In our earlier examples, we showed that the pdf of GDTs predicted by our

analytical results matched well with a histogram of data from simulation for each

of our main three group decision rules. For the Race scheme, this is shown in Figure

3.3; for the Majority Total scheme, this is shown in Figure 3.5; and for the Majority
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First scheme this is shown in Figure 3.7. In each of these histograms, the DMs had

identical sensitivity, d′ ≡ µ1−µ0 = 0.1, and were assumed to be sufficiently trained

to be optimal. The DMs also were trained to have LER = 0.01. In other words,

their decision variables took identically-sized steps for equal incoming information

and they had identical boundaries, which lead to them having the same LER.

For our example, suppose that the DMs still utilize the SPRT, are still each

trained to have the same LER = 0.01, and that the group still has an average d′

equal to the previous examples, but that some of the individual DMs have slightly

different d′s (i.e., sensitivities or abilities). Specifically, we set our group to have

Θ DMs with d′ = 0.05, Θ DMs with d′ = 0.15, and one DM with d′ = 0.1. The

individual DMs’ cdfs and pdfs of DTs are shown in Figures 3.14(a) and 3.14(b),

respectively. These will be combined using our three main group decision rules

below. All simulations results were averaged over 10,000 trials.

3.4.1 General Group Example: Race Scheme

In Figure 3.15, we compare the output of a simulation of our general group

with the analytical result for the pdf of GDTs from Equation (3.14) in red, and the

analytical result for the pdf of GDTs for the iid case found in Equation (3.20) in

green.

As shown, even though the DMs in both analytical solutions have the same

average LER as a group, the individual differences were significant enough to alter
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Figure 3.14: The cdfs and pdfs of the DMs in the general group example in Section 3.4. Θ=2
DMs had d′ = 0.05, Θ DMs had d′ = 0.15, and one DM had d′ = 0.1. Assuming that each
member in the group utilized the SPRT and had been optimally trained to have a LER of 0.01,
(a) shows each member’s cdf of DTs (note that the top and bottom lines correspond to d′ = 0.15
and d′ = 0.05, respectively, and each of those lines represents two DMs, for a total of five), and (b)
shows each member’s corresponding pdf of DTs. We then combine these different distributions
to find the group pdf of GDTs under our three main group decision rules.
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Figure 3.15: Comparison of our analytical results for general and iid DMs with a histogram of
GDTs from a simulation of our example general group using the Race scheme. The analytical
result for the general DMs is shown in red, and the analytical result for iid DMs with the same
average d′ as the general group is shown in green. It is evident that making the individual DMs
non-identical has significantly shifted the group’s pdf of GDTs to the left: using the approximation
that the DMs are iid results in times that are too conservative. It is also evident from these results
that our analytical formula matches the simulation well in only 10,000 trials.
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the shape of the group pdf under the Race scheme. The group’s pdf of GDTs

shifted to the left because the DMs with higher d′ values tend to be faster than

the DMs with lower d′s. This leads to lower group decision times under the Race

decision rule. Thus, it is important to accurately represent the sensitivity of each

DM: taking an average over all the DMs and then declaring the group to be iid will

not provide sufficiently accurate results. We note that this demonstrates that the

Race scheme’s pdf of GDTs is sensitive to changes in the individuals’ d′s.

3.4.2 General Group Example: Majority Total Scheme

The comparison between simulation, our analytical results for the general group,

and our analytical results for the iid group with the same average LER is shown in

Figure 3.16 for the Majority Total group decision rule.

Like for the Race scheme, approximating that a group is iid and using the

group’s average LER does not accurately capture the performance of the general

group. In the Majority Total scheme’s case, the approximation leads to times that

are significantly shorter than what simulation and our general analytical results

return. This also demonstrates that the Majority Total scheme is quite sensitive to

inaccuracies in each DM’s value of d′.
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Figure 3.16: Comparison of our analytical results for general and iid DMs with a histogram of
GDTs from a simulation of our example general group using the Majority Total scheme. The
analytical results for the general DMs is shown in red, and the analytical result for iid DMs with
the same average d′ as the general group is shown in green. As one can see, the iid approximation
does not work well, as it predicts GDTs that are far too optimistically short. It is also evident
from these results that our analytical formula matches the simulation well in only 10,000 trials.
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Figure 3.17: Comparison of our analytical results for general and iid DMs with a histogram
of GDTs from simulation for the Majority First scheme. The pdf of GDTs predicted by our
general analytical formula is shown in red, and the pdf of GDTs for an iid group with the same
average LER is shown in green. For the Majority First rule, the general group’s average GDT
is approximately the same as the iid group’s GDT. However, the distribution’s overall shape did
change as a result of the difference in the individuals’ d′ values, and only the general solution
(red) remained close to the simulation results.

3.4.3 General Group Example: Majority First Scheme

In Figure 3.17, we compare the general analytical results found in Equation

(3.45) in red, with a histogram from simulation of the general group in dark blue

and our previously-found results for a group of iid DMs in green, for the Majority

First scheme.

Since Θ members of the group are faster than the iid group, one member is

the same speed, and Θ group members are slower than the iid group, we expect

that the mean GDT should not change much if at all. This intuition is verified.

However, the change in individual abilities does in fact change the shape of the pdf
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of GDTs, and only the general analytical solution accurately represents this. In

addition to verifying the accuracy of our general analytical solutions, this example

also shows that the performance of the Majority First scheme is less sensitive to

non-uniformities in the individual group members’ abilities than either the Race or

Majority Total schemes.

3.5 Part IV: General Group Rules

In the previous section we demonstrated that our approach could be used for

general groups of DMs for our three rules; here, we demonstrate that our approach

also can be used to generalize the group rules themselves. There are two obvious

extensions to our group rules: the η-Total and η-First group schemes. We also show

these rules in [48].

3.5.1 The η-Total Scheme

The general form of the Majority Total scheme is the η-Total rule [48], in which

the fusion center returns a decision once η DMs have returned an individual decision.

The fusion center then applies a majority rule to the individuals’ responses to reach

a group decision. For an actual decision rule, it is best to use odd values of η, since

this guarantees that there will not be any ties; however, from a calculation-based

standpoint, there is no reason why η must be odd, so we present formulas that also

hold for η even. For this rule, N can easily be either even or odd.
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The general formula for the cdf of GDTs for the η-Total rule is qTgN
gη (tg) (super-

script: η-[T]otal group rule, [g]eneral individual DM, N DMs; subscript: [g]roup

cdf, [η] individual DMs must finish for the fusion center to finish):

qTgN
gη (tg) =

N∑

θ=η




(N−θ−1)∑

i1=1

(N−θ+2)∑

i2=i1+1

· · ·
N∑

iθ=iθ−1+1

(
θ∏

m=1

qim

)
N∏

j=1,
j /∈I

[1 − qj ]


 , (3.54)

where I = {i1, i2, . . . iθ}, which designates the set of DMs who have reached a

decision by time tg. To get the pdf of GDTs, we take the derivative of the cdf.

After some simplification, we arrive at the following general formula:

pTgN
gη =

(N−η+1)∑

i1=1

(N−η+2)∑

i2=i1+1

· · ·
N∑

iθ=iθ−1+1




η∑

m=1

pim

η∏

k=1,
k 6=m

qik







N∏

j=1,
j /∈I

[1 − qj ]


 . (3.55)

For iid DMs, the formula for the pdf of GDTs simplifies considerably: pTiN
gη =

(
N
η

)
ηpιq

η−1
ι [1 − qι]

N−η. For N = 11, the effect of increasing η from 1 to N is shown

in Figure 3.18. For η = 1, the η-Total rule is identical to the Race scheme, and for

η = N , the η-Total rule is identical to the Majority Total scheme. This can also be

seen by comparing Equation (3.55) with the pdf of GDTs for the Majority Total

scheme, given by Equation (3.29).

For iid DMs, we can also find the GER in a straightforward manner. Let

Φ = η−1
2

be the smallest possible minority for η total DMs, and let us consider only

179



0 500 1000 1500 2000 2500 3000 3500
t0.000

0.001

0.002

0.003

0.004

0.005

Η-Total Scheme for Varying Η

�
�
�

�
�
�

η = 11

η = 1

t

p
TgN
gη

Figure 3.18: Analytical results for the η-Total group rule for different values of η, with N = 11.
For η = 1, this rule is identical to the Race scheme, and for η = N , this rule is identical to the
Majority Total scheme.

odd values of η to avoid ties. Then we have

GERι =
Φ∑

φ=0



η

φ


LERη−φ

ι (1 − LER)φ
ι , (3.56)

where φ represents the number of DMs in the minority.

3.5.2 The η-First Scheme

The general form of the Majority First scheme is the η-First rule, in which the

fusion center returns a decision once η DMs have returned the same individual

decision [48]. Realistically, any implementation of this scheme should require that

η ≤ Υ, the minimal majority: if η > Υ, there is no guarantee that the fusion

center’s rule will ever be satisfied. However, it is still possible to calculate the cdf
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and pdf of GDTs given that the group does reach a decision in finite time, and we

provide formulas for doing so below. When η = Υ, the η-First rule is identical to

the Majority First scheme, and when η = 1, the η-First rule is identical to the Race

scheme. This rule can easily accommodate both even and odd N and η.

If η DMs finish by time tg and agree, then up to (N−η) DMs do not contribute.

Using this, we can construct the cdf of GDTs, qFgN
gη (superscript: η-[F]irst scheme,

[g]eneral individual DM, N DMs; subscript: [g]roup pdf of GDTs, [η] DMs must

agree for the fusion center to finish). Because of the ordering that occurs under

this scheme, our formula is split into two cases: η ≤ Θ and η ≥ Υ. For simplicity,

we define the subfunctions

Γγg
I =

(η+γ+1)∑

i1=1

(η+γ+2)∑

i2=i1+1

· · ·
N∑

i(N−η−γ)=i(N−η−γ−1)+1

(
N−η−γ∏

m=1

[1 − qim ]

)
,

Λξg
JD

=

(N−ξ+1)∑

j1=1,
j1 /∈I

(N−ξ+2)∑

j2=j1+1,
j2 /∈I

· · ·
N∑

jξ=jξ−1+1,
jξ /∈I

(
ξ∏

k=1

qjkD

)
,

where Γγg
I specifies all unique sets of (N − η− γ) DMs who do not reach a decision

by time tg, Λξg
JD

specifies all unique sets of ξ DMs who choose decision D by time tg

when the fusion center chooses D̂ (the other hypothesis: D̂ ∈ {S,N}, D̂ 6= D), and
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Γ
(N−η)g
I = Λ0g

JD
= 1. Then, for η ≤ Θ, we have

qFgN
g(η≤Θ) =

η−1∑

γ=0


Γγg

I

γ∑

ξ=0


Λξg

J S

N∏

ℓ=1,
ℓ/∈I,J

qℓN + Λξg
JN

N∏

ℓ=1,
ℓ/∈I,J

qℓS





+

N−η∑

γ=η


Γγg

I

η+γ∑

ξ=0

Λξg
J S

N∏

ℓ=1,
ℓ/∈I,J

qℓN


 .

(3.57)

The formula for qFgN
g(η≥Υ) is essentially the same, except that it only includes the first

term of Equation (3.57) and the limit on the outermost summation in that term

is (N − η) instead of (η − 1). Here, γ denotes the maximum number of excess

members in the subgroup that sets the group’s decision (i.e., for the γ = 0 case,

exactly η DMs finish by time tg and agree), and ξ denotes the number of DMs that

finish by time tg but do not agree with the fusion center’s final decision. Since

pFg
gη (tg) = d

dtg

[
qFg
gη (tg)

]
for both cases of η, it is straightforward to calculate the

corresponding formulas for the pdf of GDTs.

Like before, the formula for the cdf of GDTs simplifies considerably for the iid

case. Let Γγi =




N

N − η − γ


 [1 − qι]

(N−η−γ) and Λξi
D

=



η + γ

ξ


 qξ

ιD. Then we

have

qFiN
g(η≤Θ) =

η−1∑

γ=0

Γγi

(
γ∑

ξ=0

[
Λξi

S q
η+γ−ξ
ιN + Λξi

Nq
η+γ−ξ
ιS

])
+

N−η∑

γ=η

Γγi

η+γ∑

ξ=0

Λξi
S q

η+γ−ξ
ιN , (3.58)

and again, the formula for qFiN
g(η≥Υ) contains only the first term, with the limit on
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Figure 3.19: Analytical results for the η-First group rule for different values of η, with N = 11.
For η = 1, this rule is identical to the Race scheme, and for η = Υ, this rule is identical to the
Majority First scheme. This rule is not guaranteed to finish for η > Υ; however, we can still
calculate the pdf of GDTs given that the group does finish for those values of η, which is shown
in this figure.

the first summation sign modified to (N − η). For N = 11, the effect of increasing

η from 1 to N is shown in Figure 3.19. For η = 1, the η-First scheme is equivalent

to the Race scheme, and for η = Υ, it is equivalent to the Majority First scheme.

We have verified these analytical results with simulation.

For the iid case, we can also calculate the GER for the η-First scheme. Like

before, the exact form of the equation depends on the relative values of η and N .

If η ≤ Υ, then

GERι,η≤Υ =

η−1∑

φ=0



η + φ− 1

φ


 (1 − LERι)

φ LERη
ι . (3.59)

The formula for GERι,η>Υ is the same except that the limit on the summation is
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(N − η) instead of (η − 1).

3.5.3 Discussion

For the particular examples shown, the pdf of GDTs for the correct answer

dominates the overall pdf of GDTs. Therefore, while the formulas are different

for the η-Total and η-First schemes, Figures 3.18 and 3.19 appear very similar.

However, we stress that the pdfs in each figure for each value of η are not identical,

except for the case of η = 1, where both schemes are equivalent to the Race scheme.

The difference between the curves of the η-Total and η-First schemes with iid DMs

will be more pronounced for DMs whose pdf of GDTs is different for the correct

hypothesis than for the incorrect hypothesis, or who have a higher LER.

3.6 General Discussion

The approach we take to designing our group decision-making model is intu-

itive, and is supported by previous work in various experiment-based literatures.

Our model for the individual sensor is based on Wald’s SPRT, which has been

shown to be optimal for the task we have described. We base our claim that one

can reasonably characterize a human observer performance with a pure DDM on

experimental data [14], which found that when sufficient factors are taken into ac-

count in the more realistic “extended” DDM, the factors tend to minimize each

others’ effect, and one can again approximate the result with a “pure” DDM. The
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approach we take to establishing a group rule is similar to that described in cogni-

tive psychology, economics and political science. We mention the social psychology

and information pooling literature because it explains several issues that will need

to be accounted for when implementing the group decision schemes with human

observers, especially if the observers are allowed to interact.

Our work also shares a number of similarities with research in decentralized

detection, distributed detection, and decision aggregation, but should be more ac-

cessible to a wider range of communities, since our results and analysis for the

group are expressed in terms of pdfs, cdfs, ERs, and DTs, all of which are very

intuitive and used in a wide range of disciplines. We also show exact solutions to

our individual model and group models, and exhibit a novel approach to modeling

the performance of a general (i.e., non-identical) group, all without the explicit use

of specialized subjects such as measure theory or dynamic programming.

We do not specifically mention a cost function in our work; nor do we claim

that our group solutions are optimal. It is likely that one can post-facto construct

a specific cost function for each scheme we have presented for which that scheme

is optimal; therefore, we feel that only valuing group decision rules which can be

claimed as optimal in some narrow setting is limiting. Also, systems that are

optimized for a particular situation may contain fragilities when confronted with

situations outside of the one it was optimized for. Thus, when designing a system

that may face a wide range of situations, the best solution may not necessarily be
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Figure 3.20: An example of a very general hierarchical group whose performance can be solved
for by our models and methods. In this case, some of the individual “DMs” are actually fusion
centers of subgroups of DMs, as denoted. In this figure, the font and line colors indicate the
subgroups and their fusion centers, as well as the group decision rule used in each subgroup.
The Race schemes shown here have an even number of DMs, since the Race scheme can easily
accommodate any number of DMs with minimal modification – a tie in the Race schemes can be
settled with a coin flip.

one that is “optimal”, as we have noted in our discussion of the three group rules.

Our setup takes the performance of N independent members and finds how the

group performs under each of three simple group decision rules and two generalized

families of rules, the η-Total and η-First rules. However, we note that each “mem-

ber” need not be an individual, as long as its performance can be characterized by

an ER and a pdf of DTs. Therefore, it is straightforward to extend our models to

more complicated hierarchical groups, like the one shown in Figure 3.20, where a

“member” in some sub-groups is itself another group, characterized by one of the

group models presented here or elsewhere in the literature.
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3.7 Conclusion

In this chapter, we thoroughly investigated group decision rules for a 2AFC

task.

In Part I, we derived the pdf of GDTs for N general DMs using a fusion center

to apply the Race, Majority Total, or Majority First group decision rule in a 2AFC

task, while under the understanding that each DM could be either a human observer

or a detector (device). We also showed how the group decision rules’ pdfs changed

with increasing group size, for iid DMs. To verify these analytical results, we

demonstrated that each solution matched the discrete-time results from simulating

the group using the SPRT. We also analyzed the D-SPRT scheme via simulations

to find a good value of η, and introduced other related group decision rules.

In Part II, we verified that simulation of our group decision rules returned the

expected GER, and then compared the Race, Majority First, Majority Total, and

D-SPRT schemes under fixed LER and GER conditions. In our simulations, the

D-SPRT was shown to generally be the fastest, but the Majority First scheme

promised to also be a good alternative. We also discussed the relative merits of

each scheme with respect to robustness.

In Part III, we presented an example in which we used our general analytical

results to predict the performance of a group of N = 5 independent, non-identical,

SPRT-based DMs using the Race, Majority First, and Majority Total group deci-

sion rules. We found that our general formulas accurately predicted the group’s
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performance and that comparing a non-identical group to an iid group with the

same average LER provided insight on the robustness of each group decision rule

to variation in individual observer performance.

Finally, in Part IV, we generalized the Majority Total rule to the η-Total rule,

and the Majority First rule to the η-First rule, further demonstrating the flexibility

of our approach, and completely solving for the performance of a general group

under one of these families of group decision rules.

The models presented here are relevant to many situations in which a group of

DMs must reach a collective decision in a sequential task. Since our models only

use each members’ performance to find the group’s performance, they can easily

be used for cybernetic groups (including both human observers and detectors), and

naturally extend to hierarchical and more complicated group topologies in which

some “members” are groups. Our models are interesting because they present a

novel and general way in which one can intuitively yet mathematically calculate a

group’s performance based on its members’ statistics, establish a reasonable base

model which can be extended to build up more complicated models for realistic

groups, and provide a means by which one can compare different group decision

rules.

Next, we change gears and show an analysis of data from a psychophysics exper-

iment where a group of human observers collaboratively performed a simple Signal

Detection task.
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Chapter 4

Signal Detection-Based Group

Decision-Making

4.1 Introduction

The question of how and how well groups of humans reach a decision has been

under consideration for a long time. Early work by Condorcet [21] in 1785 estab-

lished the idea that a group of observers will out-perform an individual decision-

maker as long as each observer has a probability greater than 50% of being correct.

This philosophy is prevalent in Western society - important decisions are generally

made by boards, committees, or the general populace, rather than by a single indi-

vidual, because it is widely believed that a group is more accurate and wiser than

any individual.
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However, there is a large body of experimental evidence showing that groups

of human observers often do not out-perform the group’s most capable member,

and even when the group does, it generally does not perform as well as statistical

analysis suggests it should. A comprehensive review by Davis [26] of works study-

ing group decision making between 1950 and 1990 illustrates various studies that

challenge commonly-held beliefs about groups. Research suggests that groups do

not perform as well as statistical analysis predicts because of process losses like

social loafing, the state in which some (possibly all) members of the group reduce

their individual efforts because they believe that the other group members will

make up the difference or that the overall group’s ability will not be affected by

their reduced contribution. Other sources of process losses include groupthink and

intra-group competition [43]. Related areas of research in group decision-making

include information pooling [28, 90, 102], optimal committee size [35], and the role

of advice [42, 103, 104].

Work in this area by Sorkin et al. [86, 87, 88, 89] uses Signal Detection Theory

(SDT) to analyze the performance of a group, and focuses mainly on majority-based

rules, Condorcet-like schemes, and comparing a human group’s performance to the

performance of the “Ideal Group,” which by definition represents the best long-

term performance possible for a given group of individuals. In their experiments,

each observer was given independent, non-identically-distributed samples of data,

consisting of a series of measurements on vertical bars from a distribution centered

190



at one of two values, called “Noise” and “Signal” [87, 88]. The distributions that

generated the observers’ data samples had the same mean, but the experimenters

manipulated the distributions’ variances with the intention of setting the sensitivity

of each observer. After viewing the data, the observers in the group were asked to

confer and reach a binary Yes (Signal) or No (Noise) decision on which distribu-

tion everyone’s samples were drawn from. The groups were given feedback on the

accuracy of the group decision. In their first experiment [87], the observers did not

provide a response in the individual task, so the experimenters could not accurately

judge each observer’s actual abilities during the experiment. The group’s respon-

der was selected at random, and an analysis of the data showed that the responder

tended to downweight his groupmates’ opinions and overweight his own. This result

was based on correlations between the data shown to each observer and the group’s

responses in those trials. Also, the groups utilized a Condorcet-like voting strategy,

rather than discussing their opinions (as the experimenters had hoped), because

there was a slight premium on finishing the task quickly and the group’s responder

was tasked only with giving a binary response. It was argued that an observer’s

confidence was communicated with her binary response through verbal cues such as

“I think ... ” versus “It’s definitely ...”, but without a formal scale, it is not certain

to what extent the other members of the group used or could interpret those cues.

Many of these problems were addressed in the second round of experiments in [87]:

the premium on time was eliminated, so the group was awarded only for accuracy,
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and the individuals were required to input a rating that expressed a preference for

one hypothesis as well as the level of confidence in that decision during the indi-

vidual phase of the task. The individual ratings were then sorted by response and

displayed for the group phase, which made it simpler for the group to see which

alternative was generally favored. This also made it easier for the group to pre-

vent the responder from overweighting his dissenting opinion by providing negative

feedback when the responder’s decision did not match the “obvious” choice, based

on the individual ratings; thus, instances of a single observer hijacking the group’s

decision were supposedly minimized (but not eliminated). However, this setup did

not identify which rating came from which observer, making it virtually impossi-

ble for the group members to accurately assess each other’s ability: the observers

typically self-identified only when their answer was a dissenting outlier.

Our study shares some similarities with the second experiment; however, in our

experiment, the stimulus consisted of a Gaussian signal (if present) embedded in a

white noise field, and in each trial, each observer was shown the same stimulus, so

any individual noise in our model is internal. Our setup is more realistic for visual

tasks: in applications involving a visual task such as cancer detection in mammo-

grams, or threat detection in baggage screening, the same stimulus is available to

all observers. Thus, our setup allows each observer to more accurately assess the

abilities of the other observers: in the Sorkin et al. setup, a capable observer could

be given a set of data with a larger amount of noise than a less capable observer.
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This would make the two observers appear to have the same ability, or worse, make

the less capable observer appear to be more capable, making it significantly more

difficult for the observers to accurately estimate each others’ abilities.

Our interests are based around five main subjects. First, we sought to determine

the performance of three observers in a simple Signal Detection task and compare

that with the performance of a group made up of those three observers. Is the group

better than its members? How efficient are the observers and groups at the task?

Our second aim was to explore different ways of visualizing the data, by analyzing

it in different windows of time, to see what further information (if any) can be

gleaned from the additional views. Current practice simply looks at the average

over all trials, and often combines data across observers or groups, assuming that

a “Law of Large Numbers”-type view of the data provides enough information: at

most, a per-session view of the data is sometimes considered. Third, we wanted

to determine how the observers arrived at a group decision. Did the observers use

optimal weights? Did the weights change in time, and were they a function of

observer ability? What strategies or rules were used to arrive at a group decision?

What group rules are close to optimal and realistically implementable in a system?

Fourth, we analyzed the results of a continuation study to determine if a group’s

performance and strategy evolved over a longer set of trials. Last, we explored the

possibility that an observer’s sensitivity may not be fixed.

We begin with a description of the experiment in Section 4.2, then discuss the
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observers’ performance. In Section 4.3, we discuss performance, including individ-

ual and group Percent Correct (PC) and sensitivity (d′), and the weights assigned

to each member. We also analyze all of the above in different windows of time. In

Section 4.4, we apply eleven different group rules in a manner similar to Chapter 3,

to see if we can identify what strategy each group actually used to reach its group

rating. We show the results of our continuation study in Section 4.5, demonstrating

the extent to which the trends we found in the original study remained over a larger

number of trials. We then present the results of simulating the groups under three

different conditions in Section 4.6, to see the effect of different assumptions on the

observers’ d′ values. We conclude with a discussion of our results in Section 4.7.

4.2 Experiment

4.2.1 Method

We thank Dr. Binh Pham, a former Vision & Image Understanding post-

doctoral fellow and now a Los Alamos National Laboratory Senior Engineer, for

sharing the raw data from this experiment with us.

Participants

Nine undergraduate UCSB students participated in the study. The nine students

were divided into 3 groups of three members each for the experiment. All subjects
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had normal or corrected vision. To provide relative anonymity, each observer will

be referred to by his or her initials, as is customarily done in human studies. Group

1 was comprised of observers AC, KM, and KT; Group 2 consisted of observers

JW, KV, and TS; and Group 3 had observers CG, MR, and SF.

All of the groups trained on 100 trials before participating in the experiment,

then completed 100 trials (1 session) per day for 6 days, for a total of 600 trials.

Group 3 returned for a continuation study to assess the long-term performance of

a group of human observers, and completed an additional 54 sessions, for a total of

6,000 trials. All subjects were compensated for their time with course credit.

Apparatus and Stimuli

The stimulus was generated in Image Display Language (IDL) and presented

on M17LMAX monochrome monitors (Image Systems, Minnetonka, MN) with a

maximum resolution of 1664 × 1280 pixels. The luminance versus gray level rela-

tionship was set on the linear response function. The monitors were calibrated with

the “black” luminance set to 0.00 cd/m2, and the “white” luminance set to 40.00

cd/m2. The observers maintained a constant distance of 50 cm from the display,

which resulted in a subtended angle of 0.0376 degrees per pixel.

The signal (if present) was a positive (white) Gaussian, whose luminance at

location (x, y) is given by
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E(x, y) = E0e
− (x−x0)2+(y−y0)2

2σ2 , (4.1)

where E0 is the maximum luminance in the center of the Gaussian signal, σ = 4

pixels (0.1504 degrees) is the spatial standard deviation of the Gaussian signal’s

luminance distribution, and (x0, y0) is the location of the center of the Gaussian

signal. In this experiment, E0 = 14.10 gray levels; equivalently, 5.53% of the max-

imum luminance. A reference image of the signal without noise, labeled “Target”,

was displayed at the top of the screen throughout the experiment. The standard de-

viation of the white noise was equal to 25 gray levels, resulting in a Signal-to-Noise

Ratio (equivalently, d′) of 4.00001.

Procedure

The members of a group each sat in front of their own computer, separated

by partitions, in a quiet dark room. Each observer first performed the individual

signal detection task, then conferred with the other observers to arrive at a group

response. All members within a group were shown the same image in each trial,

and the same progression of images were used for all groups. Below, we describe

the individual and group tasks in detail.

In the individual task, the observer was presented with a noisy stimulus for 1.5

seconds, and his task was to decide whether or not a target was present in the

stimulus, and to rate the level of certainty with which he made that decision. The
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stimulus consisted of a 180x180 pixel (6.768 degrees) white noise field with a 68x68

pixel (2.5568 degree) black box located in the center of the white noise field, to

cue the observer to the location where the target would appear (if present). There

was a 50% prior probability of the target being present in any given trial. After

1.5 seconds, the stimulus was removed, and the observer was prompted to select

one response from a range of choices, by clicking on the appropriate box with a

standard mouse. In addition to selecting either Yes (target present) or No (target

absent) as a binary response, each individual chose one of four ratings to express

his level of confidence: “Ex[tremely] cert[ain] NO”, “Very cert[ain] NO”, “Certain

NO”, “Some[what] cert[ain] NO”, “Some[what] cert[ain] YES”, “Certain YES”,

“Very cert[ain] YES”, and “Ex[tremely] Cert[ain] YES”. These options remained

on the screen throughout the experiment. An example of the stimulus and response

options is shown in Figure 4.1(a). To give a sense of the difficulty of the task, we

note that Figure 4.1(a) shows a signal present trial.

Once the observer finished the individual task, the instructions “Discuss rating

and record group answer” were placed on the screen between the cue and the

response boxes, as shown in Figure 4.1(b), and he was required to wait for the

rest of the observers in the group to finish the individual task before moving on to

the group task. The group task was for the observers to confer and decide on a

collective rating. The response options were the same for the individual and group

tasks. The group members were not given explicit instructions on how to reach
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(a) Stimulus for the Individual Task (b) Response Screen for the Group Task

Figure 4.1: Screenshots from the experiment: (a) a sample stimulus, which was displayed to each
observer for 1.5 seconds during the individual task. After that time, the stimulus disappeared,
and the observer was given an unlimited amount of time to decide on a response and confidence
rating, which he submitted by clicking on the appropriate box on the bottom of the screen. Each
observer had to wait for his groupmates to finish the task before moving on to the group task. (b)
Once everyone in the group had responded, the message “Discuss rating and record group answer”
was placed on the screen, prompting the group to confer and decide on a rating that expressed
their collective decision. The response boxes at the bottom of the screen and the labeled reference
image of the target at the top of the screen were available throughout the experiment.

a group rating. Once the group agreed on a rating for the trial, every member

submitted the group’s decision, again by clicking on the appropriate box. After

all group members finished submitting the group response, each member’s screen

displayed feedback on the accuracy of the group response. The observers were given

an unlimited amount of time to make their individual and group decisions.
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4.2.2 Data Preprocessing

For our analysis, we converted the individual ratings to a numerical scale of

0-7, with 0 corresponding to “Extremely certain NO”, and 7 corresponding to

“Extremely certain YES”. We will continue to use the convention introduced in

previous chapters and generically refer to the “No” response as “Noise” (i.e., target

absent), and the “Yes” response as “Signal” (i.e., target present).

Before analyzing our data, we screened the observers’ group responses for in-

consistencies. In trials where one group member’s “group” response did not match

the other two members’ group responses and the other two members agreed, we

ignored the dissenting group member and assumed that that group member had

simply mis-clicked the group response. If all three group member’s “group” scores

disagreed, the trial was thrown out; however, while a number of trials had inconsis-

tencies, none of the trials needed to be rejected. Thus, in our experiment setup, it

was not possible for a single group member to alter the group’s response post-facto,

whether accidentally or intentionally. This is a key improvement on previous stud-

ies [87], in which one member was assigned at random to input the group’s response

and the experimenters relied on negative feedback from the other group members to

discourage each trial’s appointed responder from substituting his individual opinion

for the agreed-upon group response.
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4.3 Human Observer-Based Results

We begin with the observers’ and groups’ average statistics over all trials, then

show the performance per session and in a moving window of 100 trials. We then

used linear regression to estimate the weights that each group applied to its mem-

bers, again considering different windows of time to visualize the data, and finish

with some comments on the relative advantages of the different windows of time

and some insights gained from that analysis.

4.3.1 Average Individual Statistics Over All Trials

Since our individual-based statistics are calculated using only the observers’

ratings, we will treat the group as a fourth “individual” in this section. We begin by

characterizing each observer’s and group’s observation spaces through the response

statistics, response criteria, and Receiver Operator Characteristic (ROC) curves.

We then show each observer’s and group’s average performance over all trials.

Response Statistics

The response statistics are relevant because they provide information about each

observer’s observation space and sensitivity. Intuitively, a higher area of overlap

between the Signal and Noise curves corresponds to a lower observer d′ because

the area of the region of overlap determines the probability of an error (see Section

1.4.3 in Chapter 1); equivalently, the area of overlap defines the probability that
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the less-likely response is correct.

Since it is customary to assume that the internal response distributions of the

observer are Gaussians, we first verified that a Gaussian distribution could be used

to reasonably fit the response statistics of the individuals and groups. For each

group and individual, we fitted a Gaussian curve to the response data, normalized

by the number of trials and the histogram’s bin width. These are shown in Figures

4.2, 4.3, and 4.4 for Groups 1, 2, and 3, respectively. The red histogram is the

distribution of ratings that the individual used when Noise was the correct response,

and the green histogram is the distribution of ratings that the individual used when

Signal was the correct response.

A t-test on the response statistics failed to reject the hypothesis that the re-

sponses were not from a Gaussian distribution at a 5% level of significance for all

observers and groups except TS’s Signal, JW’s Signal and Noise, and Group 3’s

Signal response distributions.

Response Criteria

We calculated the response criteria used by each individual and group, and

overlaid these criteria on the Gaussian response curves found above. Our results

for Group 1 (resp., 2 and 3) are shown in Figure 4.5 (resp., 4.6 and 4.7). See

[59] for a tutorial on calculating criteria for a Yes-No task with confidence ratings.

The vertical red lines are rating criteria that result in a Noise response and the
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(b) Histogram of KM Responses
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(c) Histogram of KT Responses

−1 0 1 2 3 4 5 6 7 8
0

50

100

150

200
N

u
m

b
er

o
f
R

es
p
o
n
se

s

Rating

 

 
Noise
Signal

(d) Histogram of Group 1 Responses

Figure 4.2: Group 1’s individual and group response histograms, overlaid with Gaussians fitted
to the data. The red histogram shows the number of times each rating was used in trials where
Noise was correct, and the green histogram shows the number of times each rating was used in
trials where Signal was correct. In addition to being fitted to the data, the Gaussian curves are
normalized to account for the unequal number of Noise and Signal trials. These diagrams provide
a visual check on how reasonable it is to approximate the statistics as Gaussian as well as an
approximation of each observer’s observation space.
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(b) Histogram of KV Responses
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(c) Histogram of TS Responses

−1 0 1 2 3 4 5 6 7 8
0

50

100

150

200

N
u
m

b
er

o
f
R

es
p
o
n
se

s

Rating

 

 
Noise
Signal

(d) Histogram of Group 2 Responses

Figure 4.3: Group 2’s individual and group response histograms, overlaid with fitted Gaussians.
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(b) Histogram of MR Responses
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(c) Histogram of SF Responses
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(d) Histogram of Group 3 Responses

Figure 4.4: Group 3’s individual and group response histograms, overlaid with fitted Gaussians.
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vertical green lines are rating criteria that result in a Signal response. By rating

criteria, we mean the vertical lines that separate the regions that correspond to the

observer responding with a particular rating. (Though the observers’ ratings were

integers, averaging over the different responses leads to continuous criteria.) The

dark blue line is the response criterion used to decide between Signal and Noise

responses, and will be generically referred to as “the criterion”. The dashed cyan

line shows the location of 3.5, the mean rating on our scale, and serves mainly to

highlight any shifts in the system. The numbers on the plot denote what rating

corresponds to which region of the observation space. For example, for the observer

to respond “0”, the observer’s observation must have been drawn from the region

of the observation space to the left of the first red criterion. Therefore, that region

of the observation space is labeled “0”. The region directly to the right of this is

the region corresponding to the observer responding “1”; hence, the left-most red

criterion is the 0-1 criterion. This pattern continues to the maximum rating of 7.

In Group 1, observer AC was unbiased and used an optimal criterion, but had

poor performance due to a low d′, as evident by the large area of overlap of AC’s

Signal and Noise distributions. The Group 1 plot does not have a 0-1 criterion,

because the group never responded 0 or 1; thus, those two ratings are indistin-

guishable. It is interesting to note that the observers in Group 1 generally were

not able to efficiently assign the numerical confidence ratings in 600 trials, which

resulted in rating criteria that are not evenly distributed.
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Group 2 used a wider range of ratings than Group 1, and in general were bet-

ter at distributing the criteria for each rating evenly; however, they tended to be

conservative (i.e., biased against selecting “Signal”). This is also clear in Table 4.1:

the members of Group 2 tend to have a lower Hit Rate (HR) and lower False Alarm

rate (FA) than other observers of similar ability. In general, however, Group 2 had

the most evenly spaced rating criteria.

In Group 3, observer CG was the least biased, and used an optimal criterion.

Observer SF was the most biased and used a very non-optimal criterion. SF’s dis-

tributions also overlapped by a significantly larger amount than any other observer

in Group 3, which is consistent with the fact that SF had the worst performance in

the group. Observer MR’s distributions are shifted slightly to the right, but MR’s

criterion is closer to optimal than the mean rating (3.5), indicating that he likely

was quite capable at the task. Group 3’s rating criteria are clustered towards the

center of the observation space, and are slightly biased towards being conservative.

ROC Curves

ROC curves plot the FA versus the HR, and are used to characterize the abilities

of each observer - a larger area under the ROC curve indicates a higher d′. The

zROC curve is the z-transform of the ROC curve, which converts HR and FA to

a z-score, or units of standard deviation. As defined in [59], this is equivalent to

the inverse normal function. The shape of the zROC and ROC curves also indicate
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(c) KT Criteria
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(d) Group 1 Criteria

Figure 4.5: Group 1 individual and group criteria overlaid on the fitted Gaussian response statistics
from Figure 4.2. The dark blue line is the criterion used to decide between responding Signal or
Noise, and the cyan dashed line marks the mean rating 3.5, which indicates if the distributions
are symmetric around the mean rating. The vertical red lines indicate the regions of the response
curves that correspond to a particular rating with a Noise response, and the vertical green lines
indicate the regions of the response curves that correspond to a particular rating with a Signal
response. The Group 1 plot (d) does not have a 0-1 criterion because the Group used neither the
0 nor 1 rating in the experiment; thus, the ratings 0 and 1 are indistinguishable. Group 1 was the
least effective at evenly distributing its criteria over the observation space.
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(b) KV Criteria
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(d) Group 2 Criteria

Figure 4.6: Group 2 individual and group criteria overlaid on the fitted Gaussian response statistics
from Figure 4.3. All of the members of Group 2 tended to be conservative. This is reflected in the
group’s and individuals’ performances, since they tended to have lower HRs and FAs than other
observers of similar ability, as shown in Table 4.1.
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(d) Group 3 Criteria

Figure 4.7: Group 3 individual and group criteria overlaid on the fitted Gaussian response statistics
from Figure 4.4. The individuals in Group 3 generally used the ratings efficiently, as evidenced
by their reasonably evenly-distributed criteria. It is interesting that the group’s responses, in
contrast, did not use the ratings very efficiently.
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the likelihood that the underlying distribution is Gaussian. A very good tutorial

on calculating ROC and zROC curves can be found in [59]; also see [40].

The fitted ROC curves for the individuals and groups are shown in Figure 4.9.

The parameters for the empirical ROC curves were found using the zROC fits,

given in Figure 4.8. The distributions of points and the non-unit slope of most of

the fitted lines in the zROC plots indicate that there are nonlinearities in the data.

Sensitivity, Revisited

As stated in the introduction, one important measure of performance is d′, or

sensitivity. The simple formula for d′ shown in Equation (1.12) is appropriate for

theoretical calculations; however, for data from an actual experiment, the assump-

tions implicit in the formula shown are not always appropriate. Specifically, we

found in analyzing our data that much of it departs from the Gaussian assump-

tion; therefore, before we discuss observer performance, we first define the Wilcoxon

method, which provides a more fundamental method for calculating d′.

Wilcoxon Method The Wilcoxon method is a non-parametric method for cal-

culating the area under the ROC curves that is robust to distribution violations. In

other words, it does not require that the behavioral data be Gaussian. We describe

it in further detail below.

Suppose an observer’s ratings are given in the vectorX. LetXS be the observer’s

ratings in trials where Signal was correct, and let XN be the observer’s ratings in
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(c) Group 3 zROC Curves

Figure 4.8: Individual and group zROC curves, with linear fits. Φ−1(·) is the inverse normal
function. The data is nonlinear, which is evident in the non-unit slope of the fitted lines and the
general curved shape of the data points. The non-unit slope of the fitted lines indicates that the
variances of the response distributions are unequal, and the curved shape of the data indicates
that it departs from the Gaussian assumption. The parameters found by fitting a line to these
data points were used to calculate the fitted lines in Figure 4.9. The legend shows each observer
and group’s slope.
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Figure 4.9: Empirical ROC curves, fitted using least-squared error. The area under the ROC
curve, AZ , is directly related to an observer’s d′, so ROC curves are often used to characterize an
observer’s sensitivity.
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trials where Noise was correct. For the Wilcoxon method, we first sort XS (resp.,

XN) into ascending order. We then initialize a counter, k, to zero. For each rating

in XS that is greater than a rating in XN , we increment k by one. For each rating in

XS that is equal to a rating in XN , we increment k by one-half. We then normalize

k by the length of XS multiplied by the length of XN , to get a fraction less than or

equal to one. This fraction is the area under the ROC curve AZ , which can then

be transformed to d′ using the formula

d′ =
√

2Φ−1(AZ). (4.2)

Performance

The d′, PC, HR, and FA for each observer and group are shown in Table 4.1.

In all three groups, the group performed better than its most capable individual

member in PC, and two of the three groups had a higher d′ than its most capable

member.

The efficiency of each observer and group [87] is given by

ηd′ =

(
d′obs

d′IO

)2

, (4.3)

where d′obs is the d′ of the observer, and d′IO is the d′ of the Ideal Observer. The Ideal

Observer uses template matching to perform the same task as the observers, and

represents the highest level of performance possible given the information available
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Observer d′ PC (%) HR (%) FA (%) ηd′ (%)
AC 0.885 69.0 68.7 30.5 14.07
KM 1.15 76.2 70.8 18.2 23.67
KT 0.850 69.3 62.5 23.4 12.98

Group 1 1.12 76.3 69.5 16.5 22.72

JW 1.63 80.7 76.1 14.5 48.02
KV 1.69 82.7 76.0 9.90 51.48
TS 1.90 84.5 78.0 8.56 64.82

Group 2 2.10 86.7 81.2 7.65 79.43

CG 1.73 83.8 83.4 15.7 53.71
MR 1.78 84.3 80.1 11.3 56.85
SF 1.10 73.8 63.5 15.4 21.61

Group 3 2.04 86.0 79.5 7.17 74.65

Table 4.1: Average performance of each individual and group over all trials: sensitivity (d′),
Percent Correct (PC), Hit Rate (HR), False Alarm rate (FA), and efficiency with respect to the
Ideal Observer (ηd′). The d′ values were found non-parametrically, using the Wilcoxon method to
calculate AZ , the area under the ROC curve, which was then transformed to d′ using Equation
(4.2).

in the visual task [66]. The average d′ of the Ideal Observer in the task was 2.36. A

graph of the average efficiency of each observer and group is shown in Figure 4.10.

The error bars are standard error, calculated using the per-session d′ values.

Now that we have characterized the observers’ statistics over all trials, we con-

sider their performance averaged over different windows of time, to check for trends

in the data.

4.3.2 Performance in Different Windows of Time

Though the convention is to consider only the average performance over all

trials, we present two additional views to provide a more complete characterization

of the data.
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Figure 4.10: Individual and Group efficiencies with respect to the Ideal Observer, ηd′ , defined by
Equation (4.3).

Performance Per Session

The three groups’ performance in each session is shown in Figure 4.11. The

error bars were calculated using jackknifing [80]. As we expected from the mean

performance, the group usually did better than the best of the observers, and in

sessions where the best individual observer out-performed the group, the differ-

ence usually was not significant. Across all three groups, there is only one session

in which an individual significantly out-performed the group: session 4 in Figure

4.11(b). The per-session view is informative because it shows that the amount by

which the group out-performs the best observer is usually small but consistent. It

also shows that the group’s performance tends to be more robust than any individ-

ual observer’s: in sessions where the group did not have the highest performance,

it was not significantly different than the best performance (with the single ex-

ception mentioned above) and generally had the second highest performance (with
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the single exception of Figure 4.11(e), Session 2, where the group is third best

by a non-significant amount). In contrast, the best individual performer in each

group has the third best performance at least once, and generally has more volatile

performance than the overall group.

There are some interesting trends in the per-session graphs: Group 1’s perfor-

mance increases in the first three sessions, then levels off, Group 2’s performance

remains relatively flat, and Group 3’s performance generally increases across all six

trials. This indicates that Groups 1 and 3 exhibited learning during the course of

this experiment.

Moving Window of 100 Trials

We used a window of 100 trials (1 session) because we wanted to have enough

data within the window to perform the calculations in a meaningful manner, while

keeping the window small enough to provide a large number of data points. Cal-

culating the performance in a moving window of 100 trials is significantly more

computationally expensive than finding the average overall performance or the per-

formance per session, but it provides a continuous view of the dynamics of the data.

The value at each point represents the performance calculated over that point, the

preceding 50 trials, and the ensuing 49 trials. In other words, we plotted the value

found in a 100-trial window at the midpoint (51st trial) of the window.

The individual and group PC scores for Groups 1, 2, and 3 are shown in Figures
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Figure 4.11: Group and Individual PC and d′ scores, calculated per session, for all three groups.
The group had either the best performance or performance not significantly different from the
best performance in all sessions except for session 4 in (b).
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4.12(a), 4.13(a) and 4.14(a), respectively. In all of the graphs, the horizontal orange

line is the performance averaged across all sessions, and the wide horizontal yellow

line is the corresponding standard error. The step-like blue line is the average

performance per session, and the red line is the average performance over a moving

window of 100 trials. In general, Group 2 and its members had the steadiest

performance, staying close to the overall average value, while the other groups and

groups’ members’ PC values varied and differed significantly from the mean value

in at least one session.

The corresponding d′ values for Groups 1, 2, and 3 are shown in Figures 4.12(b),

4.13(b), and 4.14(b), respectively. In this case, the average d′ over all trials encom-

passes the per-session values, but only because it has large error bars; thus, even

though the results of the more detailed views are encompassed within the overall

average, the average value is not very specific.

Generally, the per-session analysis provides a good balance of detail and sim-

plicity: the overall average does not capture trends, and the moving window of 100

trials requires more computation. However, the overall average is simpler to com-

pute, and in cases where there is little fluctuation from trial to trial, it provides a

sufficient approximation: for example, except for KV’s Session 5 in Figure 4.13(a),

none of the PC values from Group 2 varied significantly from the mean. The aver-

age in a moving window of 100 trials provided the most detail on how performance

changed in a continuous manner from trial to trial. Though it is the most compu-
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tationally intensive analysis shown, it did not require significant computation time

for our data.

Based on our results, we found that it is most worthwhile to view performance

data in a per-session basis first. For some of the observers, the overall average

provided approximately the same information as the moving window, while for

others, the moving window analysis showed that the local performance changed

noticeably even from the average per session. Since it is not always clear beforehand

which view of the data will provide the most information, we conclude that it is

worthwhile to use multiple windows of time to visualize the data.

4.3.3 Human Group Weights

Now that we have characterized the abilities of each observer and group in the

signal detection task, we can establish how efficient each group was at assigning

weights to its members. This indicates how well the group members were able to

accurately assess each other’s sensitivity. We begin with some detail on how we

regressed the group weights.

Regressing the Actual Group Weights

We approximated the observers’ weights with linear least-squares regression. In

our analysis, the only constraint we imposed was that the weights must add to

unity. In other words, we allowed negative weights and weights greater than 1.0,
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Figure 4.12: Individual and group (a) PC scores and (b) d′ values, calculated over all trials
(orange), per session (blue), and in a moving window of 100 trials (red), for Group 1. The yellow
region represents the error bars on the average over all trials (orange). This comparison visually
shows how the different windows of time characterize Group 1’s performance.
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Figure 4.13: Individual and group (a) PC scores and (b) d′ values, calculated over all trials
(orange, with error bars in yellow), per session (blue), and in a moving window of 100 trials (red),
for Group 2.
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Figure 4.14: Individual and group (a) PC scores and (b) d′ values, calculated over all trials
(orange, with error bars in yellow), per session (blue), and in a moving window of 100 trials (red),
for Group 3.
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should the analysis produce them. Though initially non-intuitive, we allowed this

because it provides further information on how the members arrived at their group

rating: an observer who is highly correlated with another observer would be down-

weighted, while an observer who performed at chance (e.g., flipped a coin each

round to determine his response) would receive a weight of approximately zero. An

observer would not receive a negative weight unless he was frequently overruled. A

negative weight with the constraint that the weights sum to unity could possibly

induce a weight greater than unity for another observer in the group.

We used the following method to calculate the group weights over T trials: Let

X be the T × 3 matrix of the individual observers’ ratings. Let w be the 3 × 1

vector of weights for each observer, and let y be the T × 1 vector of group ratings.

We then assumed that the observers had applied a linear weighting scheme,

y = Xw. (4.4)

Then, given X and w, we can solve for the expected ratings, y. Conversely, given

X and y, we can solve for the weights [41]:

w =
(XTX)−1XTy

‖(XTX)−1XTy‖1
, (4.5)

where XT denotes the matrix transpose of X, (XTX)−1 is the inverse of (XTX),

and ‖ · ‖1 denotes the 1-norm. We verified that the inverse (XTX)−1 existed and
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Group 1 AC KM KT
0.2965 0.3164 0.3871

Group 2 JW KV TS
0.3475 0.3579 0.2946

Group 3 CG MR SF
0.2750 0.4119 0.3131

Table 4.2: Average weights used by the observers in the group signal detection task. The above
weights were calculated using all of the trials in the least squares linear regression in Equation
(4.5).

returned the expected result.

4.3.4 Group Weights in Different Windows of Time

Like performance, the group’s weights are conventionally only considered over

all trials. We also calculated the weights in different windows of time to better

characterize the data and see how well common assumptions performed. Below, we

provide greater detail on the windows considered for calculating the group weights,

then finish with a discussion of the benefits of this analysis.

Average Group Weights Over All Trials

Using Equation (4.5), we solved for the observers’ weights, averaged over all

trials (i.e., T = 600). Our results are shown in Table 4.2.

A comparison of the weights with the observers’ performance (Table 4.1) shows

that the weights are not optimal: in theory, the optimal weighting strategy is to

assign each member a weight proportional to the member’s d′ [63]; however, in
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Group 1, KT received the highest weight, despite having the lowest performance

in the individual task. In Group 2, TS had the best performance but received the

lowest weight. In Group 3, SF was given a higher weight than CG, despite that

CG had much better performance than SF. Given these inefficiencies, it is quite

impressive that in all three groups, the group generally out-performed its most

capable individual observer.

Average Group Weights Per Session

As we stated earlier, assuming that the average weights calculated over all trials

accurately represents the actual weights that the observers used is equivalent to

assuming that there are no time dependencies in the data. Here, we investigate the

possibility that the weights may change significantly in time on a per-session basis.

For this analysis, we used Equation (4.5) on each session (i.e., T = 100). The

results are shown in Figure 4.15. This view shows that some of the weights varied

significantly from session to session. For example, in Group 1, KT’s per-session

weight is very large in Sessions 4 and 5, which results in KT getting the largest

overall weight; however, those two are the only sessions in which KT receives the

highest weight - KT was even given the lowest weight in one session. In Group 2,

KV was given the highest overall weight, but in half of the sessions, did not actually

have the highest per-session weight.

As a note, during the experiment with Group 3, the proctor felt that observer
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(c) Group 3 Weights per Session

Figure 4.15: Group weights per session, found using ordinary least squares linear regression.
Some of the observers’ weights varied significantly from session to session, indicating that an
overall average may not be the most informative view.
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CG was being to forceful in expressing his opinion during the group discussions, and

therefore asked CG to be “less emphatic”, partway through Session 5. It appears

that the group took this suggestion to mean that CG should be ignored, since CG’s

weight went from being the highest in Sessions 1 through 4, down to a negative

value in Session 6. This one session’s weight was so low that CG’s overall weight

was affected: from the average over all trials, CG appears to have been given the

smallest weight when in fact, CG was given the highest weight for most of the

experiment. This underscores the importance of analyzing the dynamics of the

data.

Group Weights in a Moving Window of 100 Trials

For each 100-trial window, we calculated the group weights, then plotted the

results at the 51st trial in the window. Because this analysis assumes that there

may be a time dependence in the data, we could not calculate weights for the first

and last 50 trials.

Group Weights Averaged Over the Entire Past

These weights were calculated using all past trials. For example, the weights for

trial 51 were calculated using trials 1 through 51. For simplicity, the rule sets the

weights equal to a uniform 33.33% for the first 25 trials before using the past trials

to calculate the weights to assure that there is enough data available to perform

the calculation. This view shows how the weights would evolve if the observers
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remembered the outcomes of all past trials and used that information to optimally

select the group’s weights for the present trial.

Comparison

The weights in the different windows of time for each observer in Group 1 (resp.,

Groups 2 and 3) are shown in Figure 4.16 (resp., Figures 4.17 and 4.18). In general,

the weights from the moving window of 100 trials agree well with the per-session

weights, but neither agree well with the weights calculated over the entire past.

In an ideal situation, we would expect that the observers remember the outcomes

of all of the past trials and use that information to select a weight for each observer

for the present trial. If this were the case, then the per-session weights and the

weights from the moving window should converge to the mean weights calculated

over all trials in a manner similar to the way that the weights calculated over the

entire past converge to the overall mean. However, it is clear from the graphs that

this is not true. This indicates that it is likely that a more local strategy was used.

In other words, the observers did not use many (if any) past trials to calculate

the weights to use for the present trial. This is reasonable because local strategies

require a lower cognitive load and less (or no) memory to calculate the weights.

This motivates the types of group rules we consider below.
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(c) KT Weights

Figure 4.16: Group weights calculated over different windows of time, found using ordinary least
squares linear regression, for Group 1. For the entire past calculation, the observers were given a
uniform weight for the first 25 sessions to allow for a reasonable number of trials before beginning
the regression. All of the observers’ weights varied significantly from the mean in at least one
session, indicating that the overall mean does not fully characterize the data.
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(b) KV Weights
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(c) TS Weights

Figure 4.17: Group weights calculated over different windows of time, found using ordinary least
squares linear regression, for Group 2. The average over all sessions provides a good approximation
of the actual weights over time: the per-session weights have relatively little fluctuation and small
error bars, and they quickly settle to and remain near the overall mean.
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(b) MR Weights
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(c) SF Weights

Figure 4.18: Group weights calculated over different windows of time, found using ordinary least
squares linear regression, for Group 3. The mean weight over all trials does not do a very good
job of describing the weights in the experiment as a function of time, since it does not capture
CG’s sharp downwards trend near Trial 500 or MR’s general upward trend.
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4.4 Group Rule Performance

Here we blend psychophysics with the style of models we used in Chapter 3.

Suppose that, instead of conferring, the observers submitted their individual ratings

to a central fusion center that applies a group rule to the ratings to calculate a group

rating. We first explain our eleven different group rules, then compare the group

rules’ performance, calculated observer weights, choice prediction (ability to predict

which binary response the human group selected), and group rating correlation (the

correlation between the fusion center’s rating and the human group’s rating) to

determine which rule(s) provide the best performance and which best predict the

actual group’s ratings.

While we primarily evaluate each group rule based on its performance and ability

to predict the observers’ actual choices and ratings, we will also comment on realism

(i.e., whether or not this group rule can be implemented in an experiment), with

the intent of finding rules that could be added to a decision-making system with

human observers.

4.4.1 The Group Rules

In this section, we introduce eleven group rules that a fusion center could use to

reach a group decision in our simple 2AFC task. We use the term “fusion center”

relatively loosely here, and apply it both to something that calculates the ideal

weights and to something that applies a simple rule to the individuals’ ratings.
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The general setup is central, like the group shown in Figure 3.1. The first four

rules are variants of the Ideal Group [87], which essentially is the group-based

equivalent of the Ideal Observer: given a group of individuals, the Ideal Group (by

definition) calculates and applies the optimal weights. We next consider two local

rules, which train on the 100 trials adjacent to the test trial, using the nearest or

past trials, respectively. We then consider five rules that do not require memory

of the past. The first three are simple equality-based rules: the Mean rule, the

Majority rule, and the Mean-Majority rule, which is a hybrid of the first two. We

call them equality-based rules because they do not favor any observer in particular.

We finish with two confidence-based group rules, the Exponential-Majority rule,

which heavily favors more confident ratings, and the Max rule, which simply takes

the most confident individual rating and uses it as the group rating. Since we are

comparing so many rules, some of which have long names, we will use a shorthand

name for each rule in our plots. The shorthand name for each rule is specified in

parentheses in the rule’s heading below.

Calculating the Ideal Weights For our group rules, we separated the in-

dividual observers’ responses into training and testing trials. The ideal weights

are based on a Frequentist approach to statistics; thus, it allows the data to be

re-ordered, because it assumes no dependence in time. For each test trial, the Ideal

Group calculates the ideal weights using the training data (typically all of the trials

except the test trial), then applies those weights to the test trial’s data to get the
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group’s rating for that trial. The Ideal Group then repeats this procedure for every

trial in the data set; thus, it can get a group rating for every trial in the data

set without ever using the test trial to generate the group weights, and all of the

weights are calculated with the same number of trials.

According to Sorkin et al. [86], the ideal weights for a group of N observers is

given by

wideal = Σ−1µ, (4.6)

where Σ is the 3 × 3 covariance matrix calculated from the training data Xtr,

and µ the 3 × 1 vector of the distances between each observer’s Signal and Noise

distributions, defined as follows: we divided our training data into two vectors,

according to the correct response for each trial. Ratings from trials where Signal

(resp., Noise) was the correct response were added to Xtr|S (resp., Xtr|N). Then, we

defined

µS = E[Xtr|S],

µN = E[Xtr|N],

and

µ = µS − µN. (4.7)

For our ideal group rules, we used Equation (4.6) on the training data to find the

optimal weights, then applied those weights to the test trial Xtest (a 1 × 3 vector)
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to arrive at the fusion center’s response for the test trial

yIG = Xtestwideal. (4.8)

The fusion center’s responses yIG were then evaluated for performance.

Calculating the Optimal Criterion ZC The ideal and local group rules

used an optimal criterion. The optimal criterion ZC is mentioned in [87], but

no real information is provided on how to calculate it. We took the optimal ZC

to be “the criterion that maximizes PC in the training data”. We found this by

calculating PC for all possible criteria between 1.5 and 5.5, in steps of 0.01, and then

selected the criteria corresponding to the highest PC as possible values of ZC . This

strategy usually produced multiple possible values for ZC. After experimenting

with taking the min, max, and median values, we settled on always selecting the

median candidate value as the optimal criterion ZC .

Ideal Group, Train on All Trials (IGAll)

This rule uses all of the data to calculate the weights that are used on each

trial. This is not a reasonable approach for data analysis, since this strategy uses

the testing data as training data, which results in accuracy that is biased upwards

due to overfitting. We call it an Ideal Group because the results of analyzing the

data in this manner should produce a theoretical upper bound on the performance
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of the human group and “realistic” Ideal Group, given that the assumptions com-

monly made about observers in the literature are correct (i.e., that each observer’s

sensitivity is fixed over all trials).

Ideal Group, Train on All Trials Per Session (IGAllps)

This Ideal Group is similar to the IGAll rule, but it operates on only one session

at a time. In other words, the IGAllps rule selects a session, then selects one trial

from that session as the testing trial. It trains on the entire session and then tests

on the test trial. It then repeats this procedure for all possible test trials in the

session before moving on to the next session. Like the IGAll rule, the IGAllps rule

cheats because it trains on the test trial. We investigated this rule partly to serve

as a limit of performance, like the IGAll rule, but also to compare with the IGAll

rule, in order to explore the effect of time dependence.

Ideal Group, One Testing Trial (IGm1)

A more reasonable Ideal Group has access to all of the trials except the test trial.

We emphasize that this approach, though considered acceptable, is also unrealistic

for a fusion center that can calculate the weights on the fly in an actual experiment,

since this Ideal Group has access to more information than the observers in the

experiment: it can access future as well as past trials. Even if the data’s time

dependence is discounted, as it would be in a Frequentist analysis, this Ideal Group

still uses more training data than is available to the observers in every trial but
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one.

Ideal Group Per Session (IGps)

This Ideal Group rule considers the data one session at a time, and does not

train on the testing trial. In other words, the IGps rule selects a session, then

designates one trial from that session as the test trial and trains on the other 99

trials. It then applies the weights found from the training data to the test trial

and then repeats this procedure for every possible test trial in the session before

moving on to the next session. The performance of this Ideal Group is based on

the responses it generates on the testing trials. In theory, this Ideal Group should

perform worse than the above Ideal Group rules, since it formulates its weights from

a lower number of training trials – if the observers’ abilities were truly constant, then

the lower the number of training trials, the less accurate our approximation of the

weights proportional to those abilities, and the lower the Ideal Group’s performance.

Like the IGm1 rule, the IGps rule cannot realistically be implemented.

Train on Nearest 100 Trials (Near100)

In this rule, the fusion center trains on only 100 trials, but it uses the 50 trials

before and 50 trials after the test trial. If the observers’ abilities vary smoothly and

continuously in time, we expect this rule to perform best, since it would capture

a change in ability in a way similar to how a central differencing method approx-

imates a smooth solution well. The fusion center uses the same procedure as the
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Ideal Groups to calculate the group weights and optimal criterion Zc. Since this

rule assumes that there is a time dependence in the data, it processes the data

sequentially. Thus, for our task, this fusion center rule tests on trials 51 through

550 only, since it cannot calculate weights based on 100 trials for the first and last

50 trials. The performance and average weights for this rule are calculated on these

500 trials only.

Though this rule is more realistic than the Ideal Group rules in the sense that

the fusion center has access to a limited amount of information to calculate the

group weights and it does not train on the test trial, it still cannot be realistically

implemented in an experiment because it requires knowledge of the future.

Train on Past 100 Trials (Past100)

In this group rule, we assume that the fusion center has access to the most

recent past 100 trials only, which it uses to calculate the ideal weights and optimal

criterion for the (present) test trial. Since the fusion center requires 100 trials to

have already passed before it can calculate weights, it begins testing on the 101st

trial. Like the Near100 rule, the performance of the Past100 rule is calculated over

only 500 trials.

If the observers’ sensitivities vary in a smooth and continuous manner in time,

we expect this rule to produce weights that reflect that, but with a lag. We expect

that this rule will not perform as well as any of the preceding rules; however, this
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group rule has the advantage of being implementable in a real-time experiment

because it does not rely on future trials, unlike all of the preceding rules.

Mean Rule (Mean)

As its name suggests, in the Mean rule, the fusion center averages the observers’

ratings to arrive at a group rating. We expect this rule to perform worse than the

preceding group rules because it gives each observer an equal weight, which is not

optimal; however, this rule has the advantage of being implementable and extremely

simple because it does not require any memory and needs very little computation.

In this rule, the fusion center uses the mean rating (3.5) as the criterion.

Majority Rule (Majority)

In the Majority rule, the fusion center simply looks at the group members’

binary decisions, then selects the response that the majority selected. The main

part of this rule normally would not return weights using Equation (4.5), so we

added a modification that allows us to regress weights: the fusion center averages

the responses of the observers in the majority and uses that value as the group

rating. This is equivalent to the members in the majority ignoring any observer in

the minority. This rule also uses a criterion of 3.5.

We expect this rule to have performance somewhat similar to the Mean rule.

The Majority rule is affected less by observers who are overconfident than the Mean

rule, but it is affected more by observers who are unsure of their answer. Like the
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Mean rule, the Majority rule is easily implemented, because it does not require

memory of the past or significant computation power.

Mean-Majority Rule (MeanMaj)

As the name suggests, the Mean-Majority rule is a composite of the Mean and

Majority rules. In this rule, the group uses a majority rule to decide on the binary

group answer, but calculates the group’s rating by finding the mean response. If the

group’s rating selects a different hypothesis than the binary group answer, then the

fusion center uses the smallest rating possible that is consistent with the majority

rule’s decision (3.33 for Noise, 3.66 for Signal). These minimally-adjusted weights

were selected to correspond to two observers responding 3 and one responding 4

for the Noise rating, and one observer responding 3 and two responding 4 for the

Signal rating. We regressed the weights used under this rule with Equation (4.5).

This rule uses a criterion of 3.5.

We predict that this rule will best match the observers’ actual group ratings:

it uses a Majority to reach a decision, which previous studies have suggested is

frequently used as a default strategy in Yes-No tasks (see [43] for a review of relevant

literature), and uses a Mean rule to decide on a rating, which would likely appease

the dissenting member and maintain a good working relationship among the group’s

members.
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A Note on the Equality-Based Rules: Mean vs. Majority vs. Mean-

Majority We illustrate the differences among our three equality-based rules with

an example: Suppose one observer responded 0 (Extremely certain NO) and the

other two observers responded 4 (Somewhat certain YES). Under the Mean rule,

the group rating would be 11
3
, and the group would respond Noise. Under the

Majority rule, the group rating would be 4, and the group would respond Signal.

Under the Mean-Majority rule, the group return 32
3

and respond Signal. Thus, even

though these three rules are similar, they do not always return the same ratings

and responses, and are thus distinct. Because we used the Wilcoxon method to

calculate d′, these differences in ratings will result in different d′ values even when

the binary response is the same.

Exponential Mean Rule (ExpMean)

It was suggested in [87] that observers are able to accurately assess the prob-

ability that their decision was correct, and that an observer’s level of confidence

should be directly related to that probability as long as the observer is “honest”.

In our experiment, the observers were given an incentive to maximize the group’s

accuracy and had no incentive to lie; therefore, we would expect that if an ob-

server’s confidence accurately conveyed the probability that she was correct, then

more confident responses should tend to be more accurate. We test this idea with

the ExpMean rule.
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In this rule, the fusion center gives a higher weight to more confident responses.

A plot of the weights given to each rating are shown in Figure 4.19. These weights

are symmetric around the 3-4 ratings, which represent a barely-certain response.

The weights were calculated by first assigning a certainty value to each rating: for

ratings [0 1 2 3 4 5 6 7], the corresponding certainty ratings were c = [3 2 1 0 0 1

2 3]. The certainty values c were then plugged into the formula

w = exp(c/3) (4.9)

to define the weights (w) that were applied to the individual ratings. The factor

of 1
3

was selected so that the more-certain responses did not completely dominate

the less-certain responses: a response of 0 or 7 received a weight of 2.7183, while a

3 or 4 response received only a weight of 1.0. The weights in each trial were then

normalized to sum to unity before applying them to the observers’ responses, to

generate the ExpMean group rule’s ratings. This rule used a criterion of 3.5.

Like the equality based rules, this rule is very simple and easy to implement

in an actual experiment. If more confident observers have a greater probability of

being correct, then this group rule should perform better than the equality-based

rules; however, if the more confident observers are not any more likely to be correct,

then this rule should perform poorly.

242



−1 0 1 2 3 4 5 6 7 8

1

1.5

2

2.5

3

Rating
W

ei
g
h
t

Exponential-Mean Rule Weights

Figure 4.19: Relative exponential weights applied to ratings in the Exponential Mean rule. In
each trial, each observer’s rating was assigned a weight according to this function. The weights
were then normalized to sum to unity and applied to the individual ratings to get the group’s
response. This rule emphasizes the opinions of the more confident observers.

Max Rule (Max)

The Max rule is a further exaggeration of the ExpMean rule: in the Max rule, the

fusion center selects the most confident individual rating as the group rating. If two

observers were equally confident in their answer but selected different hypotheses,

the fusion center then selects the decision of the third observer. The Max rule

is an extreme version of the ExpMean rule, so we expect to see it perform much

better than the ExpMean rule if the observers are more confident when they have

a greater probability of being correct, and significantly worse than any other group

rule if an observer’s confidence level is not related to the probability he is correct.

Weights used under this rule were regressed using Equation (4.5), and the rule uses

the mean rating (3.5) as the criterion.
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4.4.2 Group Rule Comparison

We explored a wide variety of group decision rules with three aims in mind:

first, we want to find the group rule with the best performance to verify that the

Ideal Group rules are in fact ideal for our experiment. Second, we want to see

which (if any) group rules perform nearly as well as the Ideal Group but can be

realistically implemented. Lastly, we seek the actual group rule that the observers

used in the experiment.

Below, we discuss the group rules’ performance (PC and d′), weights, and rela-

tionship to the human groups’ responses.

Overall Performance

The mean PC for each rule, applied to each group, is shown in Figure 4.20.

The human group’s mean PC is the thick horizontal black line behind the bar

graph, and the dotted lines above and below that are the corresponding error bars.

Even though some group rules used significantly more information than others,

most of the group rules’ PC scores were not significantly better than the human

group’s scores. The IGAllps rule had the highest PC of all rules, likely because it

trained on the test trial, which represented a larger fraction of the training trials

than it did in the IGAll rule. Though there may be a time dependence in the

data, it is evident that the IGAllps rule’s main advantage comes from the test trial

making up 1/100th of the training data: if a per-session time dependence were the
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main factor contributing to IGAllps’s PC, then we would expect that the IGps rule

would perform better than the IGm1 rule. The fact that the IGm1 rule always

performed better than the IGps rule means that it is unlikely that the IGAllps’s

main advantage was its ability to track time dependence in the data.

It is interesting that the PC of the local rules (Near100 and Past100) varies

widely from group to group. For Groups 1 and 3, the Past100 rule not only performs

better than the Near100 rule but also competes with some of the less-optimal Ideal

Group strategies; however, for Group 2, the Near100 rule has a higher PC than the

Past 100 rule, which has the lowest PC among the rules. This is likely due to the

individual characteristics of each group’s members.

Among the realistically implementable strategies, it is clear that the best-

performing rule varies from group to group. Though the difference is not sig-

nificant, for Group 1, the best realistic rules were the Mean, ExpMean and Max

Rules, which indicates that the observers who were more confident tended to have

a higher probability of being correct. This is consistent with Group 1’s observation

spaces (Figure 4.5), where it was very rare for one of the observers to respond with

an extreme rating and there were few if any extreme ratings that were incorrect.

For Group 2, the Ideal Group strategies all performed significantly better than any

other strategy, which is consistent with the idea that the Ideal Group strategies

are ideal when the observers’ d′ values are approximately constant in time. It is

clear from Group 2’s performance in different windows of time (Figure 4.13) that
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the observers in Group 2 had approximately constant performance, since the ob-

servers’ local performance was generally very close to the mean. In Group 3, the

best-performing rule was the Past100 rule, which out-performed even the IGAll

rule, likely due to the fact that the group experienced volatility in member ability

(i.e., MR was still learning the task) as well as group strategy for determining the

weights (i.e., CG went from having the highest weight in the first four sessions to

having a negative weight in the last session). The Majority and MeanMaj rules

have the lowest PC, which indicates that the observers in Group 3 generally had a

greater tendency to be correct when they were more confident.

The corresponding graphs for the d′ values of the fusion center under each group

rule are shown in Figure 4.21. Interestingly, the group rules with the highest PC did

not necessarily have the highest d′. This is due to the way in which we calculated d′:

since we used the Wilcoxon method, group rules that provided less-certain responses

on trials where the group was wrong and more-certain responses on trials where

the group was correct have a higher d′ than rules whose ratings were closer to being

binary. In other words, PC is calculated using only one point on the ROC curve,

whereas d′ uses the entire ROC curve, so d′ provides a more accurate measure of

ability, and does not necessarily directly correlate with PC. For this reason, the

Max rule has a low d′ for all of the groups, as does the Majority scheme, which

averages the ratings of the members in the majority. The Past100 rule has the

highest d′ for Groups 1 and 3, and the IGAllps rule has the highest d′ for Group 2,
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(a) Group 1 PC
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(b) Group 2 PC
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(c) Group 3 PC

Figure 4.20: Fusion center PC over all trials, under each of our eleven group rules. The heavy
black horizontal line shows the human group’s average performance, and the dotted lines show
the error bars on that value.

likely for similar reasons as those given above for PC.

Observer Weights Per Session

The observer weights per session under each group rule for Groups 1, 2, and

3 are shown in Figures 4.22, 4.23, and 4.24, respectively. In this view, it is easier

to see which group rules assigned weights similar to those that the human group

actually used in each session, as well as the extent to which the different group
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(b) Group 2 d′
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(c) Group 3 d′

Figure 4.21: Fusion center d′ over all trials, for each group rule. The heavy black horizontal line
shows the human group’s average performance, with error bars given by the dotted lines above
and below it.
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(a) AC Weights
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(b) KM Weights
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(c) KT Weights

Figure 4.22: Average per-session weights assigned to each observer in Group 1 under each of the
eleven group rules, compared to the weights used by the human observers.

rules’ weights differed from the human group’s weights.

Choice Prediction

Choice prediction is the percent of trials in which the group rule selected the

same binary response as the human group, and a good measure for determining

what strategy the group members likely used to arrive at a binary group response.

The results are shown numerically in Table 4.3 and graphically in Figure 4.25.
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(c) TS Weights

Figure 4.23: Average per-session weights assigned to each observer in Group 2 under each of the
eleven group rules, compared to the weights used by the human observers.
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(b) MR Weights
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(c) SF Weights

Figure 4.24: Average per-session weights assigned to each observer in Group 3 under each of the
eleven group rules, compared to the weights used by the human observers.
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For Groups 1 and 3, the Ideal Group rules had very low choice prediction scores,

whereas the local rules (Near100 and Past100) had somewhat intermediate scores.

This trend is reversed for Group 2. We attribute this to the fact that Groups 1 and

3 exhibited learning during the experiment.

It is clear that the human groups used a Majority-like rule to reach their binary

decisions, since the Majority and MeanMaj rules have the highest choice prediction

scores for all three groups. Those two rules have the same choice prediction score

because they always select the same binary rule. In Figure 4.25(b), Group 2’s

Majority and MeanMaj rules do not have error bars because those rules had a

choice prediction of 100% over the 600 trials. Though the data strongly suggests

that Groups 1 and 3 primarily used a Majority-based rule, it is likely that they

sometimes used other strategies that take an observer’s confidence into account,

since the Mean, ExpMean, and Max rules have the next highest choice prediction

scores, which in Group 3’s case, were not significantly lower than the Majority-based

rules.

Group Rating Correlation

The correlation between the human group’s ratings and the group rules’ ratings

are shown numerically in Table 4.4 and graphically in Figure 4.26. A higher level

of correlation indicates that the group rule’s ratings fluctuated from trial to trial

in a manner similar to the human group’s ratings.
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(a) Group 1 Choice Prediction
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(b) Group 2 Choice Prediction
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(c) Group 3 Choice Prediction

Figure 4.25: Choice Prediction of each group decision rule, for each group. The Majority rules
clearly have the highest performance across all groups. In (b), there are no error bars for the
Majority and Mean-Majority rules because both methods accurately predicted the group’s choice
in all trials.
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Group Rule Group 1 Group 2 Group 3
IGAll 90.67 ± 1.41 92.83 ± 0.87 88.00 ± 1.34

IGAllps 89.83 ± 2.94 93.17 ± 1.30 90.00 ± 2.53
IGm1 90.83 ± 1.45 92.50 ± 0.85 88.17 ± 1.58
IGps 89.17 ± 2.95 92.50 ± 0.89 89.17 ± 2.12

Near100 92.00 ± 1.77 89.50 ± 1.59 93.00 ± 1.61
Past100 92.20 ± 3.46 89.20 ± 1.50 93.00 ± 1.14
Mean 96.00 ± 1.06 95.33 ± 0.49 95.50 ± 0.43

Majority 99.83 ± 0.17 100.0 ± 0 97.00 ± 1.15
MeanMaj 99.83 ± 0.17 100.0 ± 0 97.00 ± 1.15
ExpMaj 96.00 ± 1.06 95.00 ± 0.52 95.50 ± 0.43

Max 96.00 ± 1.06 95.00 ± 0.52 95.50 ± 0.43

Table 4.3: Choice Prediction scores for our eleven different group rules, with standard error values.
Choice Prediction is the percent of trials in which the group rule selected the same binary response
as the human group. This information is graphically provided in Figure 4.25. The data strongly
suggests that all of the groups used a Majority rule to select a binary response.

The group rule with the highest rating correlation varies from group to group:

for Group 1, the Majority rule (which averages the ratings of the observers in the

majority) had the highest score; for Groups 2 and 3, the MeanMaj rule had the

highest score.

In general, the rules with the highest rating correlation are the equality-based

rules. As we suggested earlier, this may be because the observers felt the need

to make the group member in the minority feel that his opinion counted. A rule

such as the Max rule, which gives one observer a weight of 1 and the other two

observers a weight of 0 in each trial, would likely alienate members of the group and

encourage social loafing or other negative behavior. Given this, it is not surprising

that the Max rule had the lowest rating correlation for all three groups.
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(a) Group 1 Rating Correlation
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(b) Group 2 Rating Correlation
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(c) Group 3 Rating Correlation

Figure 4.26: Rating Correlation of the fusion center under each group rule.
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Group Rule Group 1 Group 2 Group 3
IGAll 89.97 ± 0.89 96.33 ± 0.35 91.96 ± 0.60

IGAllps 89.44 ± 0.96 95.78 ± 0.37 92.00 ± 0.62
IGm1 89.96 ± 0.90 96.32 ± 0.35 91.96 ± 0.60
IGps 89.28 ± 0.99 95.70 ± 0.38 91.99 ± 0.64

Near100 89.24 ± 1.14 95.84 ± 0.40 90.94 ± 0.79
Past100 88.01 ± 1.19 95.60 ± 0.42 92.69 ± 0.60
Mean 90.55 ± 0.81 96.87 ± 0.33 94.56 ± 0.41

Majority 94.17 ± 0.48 95.22 ± 0.42 89.42 ± 0.80
MeanMaj 91.86 ± 0.68 97.49 ± 0.28 94.78 ± 0.39
ExpMaj 87.67 ± 1.15 95.06 ± 0.57 92.76 ± 0.62

Max 80.27 ± 0.67 87.83 ± 1.34 85.02 ± 1.14

Table 4.4: Rating correlation scores for the eleven group rules, with standard error values. Rating
correlation is a measure of how similarly each rule’s ratings fluctuated from trial to trial relative
to the human group’s ratings. While not all of the groups were most strongly correlated with
the same group rule, all of the group rules with the highest rating correlation in each column are
equality-based rules.

4.5 Continuation Study with Group 3

The observers of Group 3 were able to return for an additional 54 sessions,

yielding a total of 6,000 trials (including the original study). We perform the same

analysis as we did in Section 4.3 on this extended data set to be consistent with

our previous results. Our primary interest is to see if the trends we saw in the first

6 sessions hold over the entire 60 sessions.

4.5.1 Individual Statistics

Below, we show the response statistics, response criteria, ROC curves, and

performance of Group 3 in the continuation study.
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Response Statistics

Group 3’s response statistics are shown in Figure 4.27. The overall character-

istics are similar to those of the first 600 trials, but here, the histograms are more

evenly distributed, and the variance of each observer’s Noise and Signal distribu-

tions are more similar than they were in the original study, likely an effect of the

larger number of trials. The distributions also cross closer to the mean rating (3.5)

in the continuation study than they did in the original study, indicating that the

observers learned to eliminate shifts in their observation spaces. A t-test failed to

reject the hypothesis that any of the distributions were not from a Gaussian at a

5% level of significance. Despite these improvements, some of the general trends

from the original study are still present: the group’s distributions are the broadest,

yet have the smallest amount of overlap, and MR’s distributions have the lowest

amount of overlap while SF’s distributions have the highest, which corresponds

with the performance shown in Table 4.5.

Response Criteria

The observers’ and group’s response criteria are shown in Figure 4.28. While we

still see the interesting trend that the group’s response criteria are more clustered

towards the center than any of the individual observers’ criteria, it is also clear

that the criteria are more uniformly spaced than they were in the original study.

In addition, every criterion is now optimal. CG, SF, and the group also corrected
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(a) CG Response Statistics
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(b) MR Response Statistics
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(c) SF Response Statistics
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(d) Group 3 Response Statistics

Figure 4.27: Response statistics for Group 3 in the continuation study. Though the distributions
retain some of the characteristics found in the original study, overall, they are more regular, as
one might expect from the larger number of trials.
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(d) Group 3’s Criteria

Figure 4.28: Rating criteria for Group 3 in the continuation study. The spacing between the
criteria is significantly more regular than it was in the original study, which indicates that the
observers learned to effectively use the ratings available and that the observers all learned the
optimal criterion. MR’s criterion is not at 3.5, but it is nonetheless optimal for his observation
space.

the shifts in their distributions, but the shift in MR’s distributions found in the

original study has remained.

ROC Curves

The zROC and ROC curves for Group 3 in the continuation study are shown

in Figures 4.29(a) and 4.29(b), respectively. Though the zROC plots still show

nonlinearities, the extent of the nonlinearities has decreased, which results in a
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(b) ROC Curves

Figure 4.29: zROC and ROC curves for Group 3 in the continuation study.

better fit in the ROC plots. In addition, the area under the ROC curve has increased

from the original study, because the observers improved at the task for reasons

evident in their criteria and response statistics. Based on these results, we expect

to see higher average performance.

Performance

Group 3’s average performance over all trials is shown in Table 4.5, and the

group’s efficiency over all trials with respect to the Ideal Observer is shown in

Figure 4.30. While all of the observers and the group improved, it is interesting

to note that the overall group became significantly more efficient than the group’s

best individual observer (MR) over the course of the additional trials.

Due to the large number of trials, we present only the performance per session

for a local view of the data (rather than using a moving window of 100 trials).

Group 3’s PC per session is shown in Figure 4.31(a), and the corresponding d′ per
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Figure 4.30: Group efficiency in the continuation study with Group 3.

session is shown in Figure 4.31(b). As we expected from the response statistics,

criteria, and ROC curves, all of the observers and the group clearly improved from

the original study. SF shows the most dramatic improvement in performance,

but still remains the least capable member of the group. Since Group 3 favored

equality-based group rules, it is likely that the main source of the group’s higher

performance in the continuation study is SF’s improvement. It is very clear that

a great deal of learning takes place during the first 9 sessions, but some additional

learning takes place up to Session 18. This indicates the amount of training that

observers may require to reach approximately steady-state performance.

4.5.2 Human Group Weights

Group 3’s average weights in the continuation study are shown in Table 4.6.

Compared to Table 4.5, it is clear that the weights still are not optimal, since CG

is given a lower weight than SF despite the fact that CG has a higher d′, PC, and
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(b) d′ per Session in the Continuation Study

Figure 4.31: Group 3’s performance per session in the continuation study. It is clear that all of
the observers and the group have improved at the task over the course of the additional 5,400
trials.

Observer d′ PC (%) HR (%) FA (%) ηd′ (%)
CG 1.93 86.8 87.7 14.2 53.2
MR 2.14 88.9 89.6 11.9 65.8
SF 1.79 84.5 84.1 15.0 46.2

Group 3 2.41 90.5 90.7 9.6 83.2

Table 4.5: Average performance of each individual and group over all trials in the continuation
study: sensitivity (d′), Percent Correct (PC), Hit Rate (HR), False Alarm rate (FA), and efficiency
with respect to the Ideal Observer (ηd′). The d′ value was found non-parametrically, using the
Wilcoxon method to calculate AZ , the area under the ROC curve, which was then transformed
to d′ using Equation (4.2). The Ideal Observer’s mean d′ over all 60 sessions was 2.64.
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CG MR SF
Weight 0.2358 0.4014 0.3628

Table 4.6: Average Weights for Group 3 in the continuation study.
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Figure 4.32: Weights assigned to each observer in Group 3 in the continuation study.

HR, and lower FA than SF.

The weights per session are shown in Figure 4.32. As was discussed in Section

4.3.4, CG’s weights nose-dived in Session 6 after the proctor asked CG to be less

emphatic during the group’s discussions. While CG’s weight did somewhat improve

over the rest of the continuation study, it never recovered to the same level it was at

during the first four sessions: aside from the first four sessions, there are only two

sessions in which CG received the highest weight in the entire continuation study.

4.5.3 Group Rule Performance

Following our previous analysis, we applied the eleven group rules to the in-

dividual observers’ ratings and found the performance of the fusion center under

each group rule. We plotted the performance in 6-session increments in our detailed
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view: the average PC per group rule is shown in Figure 4.33(a), and the PC per

6 sessions is shown in Figure 4.33(b). It is clear that the IGAllps group rule con-

sistently has the highest PC of all of the group rules over the entire continuation

study, while the rest of the group rules’ PC values stay near the human group’s PC

values.

The corresponding d′ over all trials and per 6-session window are shown in

Figures 4.34(a) and 4.34(b), respectively. As we saw previously, the d′ values do

not necessarily show the same trends as the PC scores, and the Majority and Max

rules have the lowest d′; however, the d′ values for the other group rules appear to

have all approached a similar value.

Choice Prediction

We show the choice prediction results over all trials in Figure 4.35(a), and per 6

sessions in Figure 4.35(b). As we expect from the original study, Group 3 primarily

used a Majority-based rule to arrive at a binary decision in most of the trials in

the continuation study. The IGAll and IGm1 rules’ choice prediction scores have

improved relative to the other group rules, likely because the observers’ sensitivities

eventually asymptote, and the IGAll and IGm1 rules perform best when there is no

learning. However, other than that, the group rules have a similar level of choice

prediction, indicating that Group 3 consistently used the same strategy to arrive

at a binary decision throughout the experiment.
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(b) PC per 6 Sessions in the Continuation Study

Figure 4.33: (a) Average PC over all trials for each group rule in the continuation study with
Group 3. The horizontal black line behind the bar graph shows the PC of the human group, and
the dotted lines show the error bars on that value. (b) PC per 6 sessions for each group rule.
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(b) d′ per 6 Sessions in the Continuation Study

Figure 4.34: (a) Average d′ over all trials for each group rule in the continuation study with
Group 3. The horizontal black line behind the bar graph shows the d′ of the human group, and
the dotted lines show the error bars on that value. (b) d′ averaged over 6-session intervals for
each group rule.
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(b) Choice Prediction per 6 Sessions in the Continuation Study

Figure 4.35: Choice prediction of each group rule applied to Group 3 in the continuation study.
(a) Average choice prediction over all trials. It is clear that the Majority and MeanMaj rules have
the highest choice prediction. (b) Choice prediction per 6 sessions. From this view, we can see
that the Majority and MeanMaj rules have the highest choice prediction scores in each 6-session
period over the entire experiment. In the graph, the Majority line matches the MeanMaj line
exactly because they use the same rule to arrive at a binary decision, so the MeanMaj data points
obscure the Majority data points.
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Rating Correlation

The rating correlation of each group rule, averaged over all trials, is shown in

Figure 4.36(a), and the rating correlation per 6-session window is shown in Figure

4.36(b). The average rating correlation per group rule appears to be approximately

unchanged from the original study in a relative sense, which further supports the

idea that the strategy that Group 3 used did not change throughout the contin-

uation study. Like in the original study, the Mean and MeanMaj rules have the

highest rating correlation, indicating that even though the group used a Majority

rule to reach a binary decision, the members in the majority factored in the opinion

of the minority in selecting the group rating.

Between the choice prediction and rating correlation, it is clear that Group 3

continued to utilize a group rule very similar to the MeanMaj rule.

4.6 Simulation: Varying the Observation Space

in Time

It is a common assumption that an observer’s sensitivity does not change in

time. If observer sensitivity is fixed, then we would expect that the “Ideal Group”

we defined earlier would indeed be ideal; however, if there is some variation in an

observer’s sensitivity from day to day or within a session, then the other group

rules may be able to compete with the Ideal Group. We test this assumption via
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80

85

90

95

100

R
a
ti

n
g

C
o
rr

el
a
ti

o
n

(%
)

1-
6

7-
12

13
-1
8

19
-2
4

25
-3
0

31
-3
6

37
-4
2

43
-4
8

49
-5
4

55
-6
0

Session Numbers

 

 

IGAll
IGAllps
IGm1
IGps
Near100
Past100
Mean
Majority
MeanMaj
ExpMean
Max

(b) Rating Correlation per 6 Sessions in the Continuation Study

Figure 4.36: (a) Average rating correlation of each group rule applied to Group 3 in the contin-
uation study. It is clear that the group used a rule similar to the Mean or MajMean rule. (b)
Rating correlation per 6 sessions. From this graph, we can see that the Mean and MajMean rules
were heavily favored throughout the 6,000 trials.
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simulation.

Our simulations follow the setup of our experiment, and we strongly tied our

simulation’s parameter values to the data, as we explain below. For each trial in

the simulation, we used the same correct response (Signal or Noise) per trial as

the actual experiment, which had a 50% prior probability of being Signal. For

our stimulus type, even though each observer saw the same image, we expect each

observer’s internal, perceived observation to have only a 50% correlation with the

perceived observations of the other members of the group. In other words, we expect

half of the noise to be common to of the members of the group and the other half

to be specific to each observer, due to internal noise, based on the results of [18].

Therefore, for each trial, we generated four normally-distributed random numbers:

one served as the noise common to all members of the group, and the other three

were designated as internal noise for each individual observer. Each observer’s

observation per trial was generated by averaging the common and individual noise

values, then transforming that value to the correct distribution in the observer’s

observation space. We then applied each group member’s rating criteria to arrive

at a numerical rating.

Mirroring the analysis done in Section 4.3, we first show the results of a perfor-

mance analysis of the simulated individuals and groups, then show the results of

applying the eleven group rules to the simulated individuals.
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4.6.1 Individual Performance

We simulated three different conditions, each representing a different assumption

on the observers’ d′ values: (1) the observers had a fixed d′ over all trials; (2) the

observers’ d′ values differed from session to session, but were fixed within any given

session; and (3) observers’ d′ values varied from trial to trial, and were drawn from

a normal distribution. Below, we provide further detail on each condition.

Constant d′ Over All Sessions If an observer’s Signal and Noise distributions

are normally distributed, then the distance between the means of the distributions

is equal to d′. We took this assumption to build the observation spaces of our

simulated observers, and used each observer’s mean d′ over all trials to define the

distance between his Signal and Noise distributions. The traditional formulation

of this problem centers the Noise distribution at zero; however, we wanted the

simulation’s distributions to be similar to those calculated in Section 4.3.1, so we

translated the distributions so that they were symmetric around the mean rating

(3.5).

The PC scores of the simulated Groups 1, 2, and 3 are shown in Figures 4.37(a),

4.38(a) and 4.39(a), respectively, and the corresponding plots of d′ are shown in

Figures 4.37(b), 4.38(b) and 4.39(b), respectively.

Constant d′ Per Session For this case, we used the observers’ actual per-session

d′ values to define their observation spaces for each session. We used the observers’
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(f) Gaussian Group 1 d′

Figure 4.37: Simulated Group 1’s performance for the three conditions - (a) & (b): constant d′

over all trials, (c) & (d): constant d′ per session, and (e) & (f): normal d′ per trial.
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(e) Gaussian Group 2 PC
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(f) Gaussian Group 2 d′

Figure 4.38: Simulated Group 2’s performance for the three conditions - - (a) & (b): constant d′

over all trials, (c) & (d): constant d′ per session, and (e) & (f): normal d′ per trial.
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(d) Per Session Group 3 d′

0 100 200 300 400 500 600
50

60

70

80

90

100

Trial Number

P
C

(%
)

 

 

 CG
 MR
 SF
Group

(e) Gaussian Group 3 PC
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(f) Gaussian Group 3 d′

Figure 4.39: Simulated Group 3’s performance for the three conditions - - (a) & (b): constant d′

over all trials, (c) & (d): constant d′ per session, and (e) & (f): normal d′ per trial.
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rating criteria over all trials to select the ratings per trial, to ensure that all of the

rating criteria would be defined.

The PC scores of the simulated Groups 1, 2, and 3 are shown in Figures 4.37(c),

4.38(c) and 4.39(c), respectively, and the corresponding plots of d′ are shown in

Figures 4.37(d), 4.38(d) and 4.39(d), respectively.

Normal d′ Per Trial In this last variation, for each trial, we randomly pulled a

d′ value from a normal distribution centered at the observer’s mean d′, then used

that value to define the observer’s observation space for the trial. We again applied

the criteria calculated over all trials to the observation to find the rating.

The PC scores of the simulated Groups 1, 2, and 3 are shown in Figures 4.37(e),

4.38(e) and 4.39(e), respectively, and the corresponding plots of d′ are shown in

Figures 4.37(f), 4.38(f) and 4.39(f), respectively.

4.6.2 Applying the Group Rules

After generating the observers’ ratings, we applied our eleven group rules and

calculated the performance of each rule. Our results are shown in Figure 4.40: (a),

(c) and (e) show the PC for simulated Groups 1, 2 and 3, respectively, and (b),

(d) and (f) show the corresponding d′ values. In each plot, the blue circles show

the performance of the constant d′ data, the red x’s show the performance of the

constant d′ per session data, and the green triangles show the performance of the

normal d′ per trial data. For comparison, we have also included information from
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the human group. The horizontal orange line is the human group’s actual average

performance, and its error bars are shown in yellow. The gray-outlined white bars

in the background are the performance of each group rule when applied to the

human data, as shown in Figures 4.20 and 4.21.

For simplicity in the discussion, the human group’s actual performance (shown

in orange) will be referred to as the “human performance”, the performance of the

human group when its observers’ ratings are given to a fusion center (shown in

gray) will be referred to as the “human rule performance”, the constant d′ over

all trials simulation condition (shown in blue) will be referred to as the “constant

simulation”, the constant d′ per session simulation condition (shown in red) will be

referred to as the “per-session simulation”, and the normal d′ per trial simulation

condition will be referred to as the “normal simulation”. We will continue to refer

to the eleven group rules (labeled on the x-axis) collectively as the “group rules”.

For Group 1, the per-session simulation consistently had the worst performance,

but was most similar to the human and human rule performance. The constant d′

over all trials condition consistently had the best performance, which generally was

significantly better than the human and human rule performance, and frequently

significantly better than the per-session performance. Overall, the simulation per-

formance remained close to the human and human rule performance. This trend

did not continue for Group 2. As shown in Figures 4.40(c) and 4.40(d), the normal

simulation generally had the best performance for Group 2, but the simulations
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did not have significantly different performance from each other. The simulations’

performance was also very significantly greater than the human rules’ performance

in d′, and in PC for the non-ideal group rules. For Group 3, the normal simulation

had the highest PC for the ideal and local group rules, and the constant simula-

tion had the best performance for the equality- and confidence-based rules. In d′,

however, the normal simulation consistently had the best performance, though the

difference was not significant.

Overall, our results are fairly counterintuitive. We had expected the constant

simulation to perform the best among all group rules and simulations for the Ideal

Group rule, and for that performance to drop off for the other group rules, because

our Ideal Group rules were named “ideal” with the assumption that the observers’

d′ values were fixed. We had also expected the normal simulation to perform best

for the rules that did not use any memory, and the per-session simulation to per-

form best in the IGps rule. Additionally, we had expected the performance of the

simulated groups to be similar to the performance of the human rules. The sim-

ulated groups’ d′ values appear to be correlated with the human rules’ d′ values,

which is reasonable because we used the values of d′ found in the data in the simu-

lation; however, the simulations applied to the group rules performed significantly

better than the human rules. The simulated groups’ PC values generally are neither

correlated with nor close to the human rules’ PC values in only 600 trials.

This indicates that the human observers’ observation spaces were not completely
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described by any of our three conditions.

4.7 Discussion

We had three groups of 3 observers each perform a simple Signal Detection task

individually and in a group. In addition to improving upon similar previous studies

[87], we also explored five general areas: individual versus group performance, time-

dependent data visualization, group decision strategies, persistence of our findings

over a longer period of time, and the assumption that an observer’s sensitivity is

fixed.

From visualizing the data in different windows of time, we arrived at the con-

clusion that it was likely that the observers used a group rule that did not involve

much memory; therefore, we considered five group rules that did not require mem-

ory to implement. We found that the group generally performed slightly better

than its best individual observer despite the fact that the groups were not optimal

at assigning weights. Since our experiment setup only gave the observers an incen-

tive to maximize group accuracy and the group included only three members, it is

unlikely that factors such as social loafing or intra-group competition affected our

results.

From our group rule analysis, we found that it was most likely that Groups 2

and 3 used a Mean-Majority rule and Group 1 used our modified Majority rule,

which explains the groups’ inefficiencies in assigning weights: theory states that
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Figure 4.40: The overall performance of each simulated group under the eleven group rules. The
blue circles are the performance under the constant d′ condition, the red x’s show the performance
under the constant d′ per session condition, and the green triangles show the performance under
the normal d′ per trial condition. For comparison, we have also included the performance of the
human group (shown in Figures 4.20 and 4.21): the horizontal orange line is the human group’s
average performance, with its error bars shown in yellow. The gray bars in the background show
the performance of each group rule when applied to the human data.
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the optimal strategy is to assign weights proportional to the observers’ sensitivities

[63]. This is not surprising: it is reasonable to default to a Majority rule to reach a

binary response when no explicit instructions are given [43], and utilizing a Mean

rule or some variant of it to reach a rating provides the majority with a way to

appease the minority. Based on the results of our continuation study, we also found

that observers generally do not change their weighting strategies in repeated tasks:

the results related to Group 3’s weighting strategy averaged over 6,000 trials in the

continuation study showed the same general trends as the results from just the first

600 trials.

Though the IGAllps rule had the best performance, it is not a viable strategy,

because it trains on test trials. It was surprising to find that many of the group rules

that did not require memory had performance that was not significantly different

than the Ideal Group rules, since these rules used significantly less information than

the ideal or local rules. These rules also have the advantage of being realistically

implementable and extremely simple to compute. It is likely that the Ideal Group

rules would have been more ideal if we had applied them to a larger number of trials,

due to the way they are defined; however, we felt it would not be a fair comparison

if we used multiple realizations of the data to compute the performance of the Ideal

Groups when the actual experiment used only 600 trials (in the original study,

and 6,000 trials in the continuation study). Under this more realistic scenario, we

found that the acceptable versions of the Ideal Group (IGm1 and IGps) generally
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were not significantly better than the rules that used only local information, since

those two rules only had significantly higher performance for Group 2’s PC scores.

Therefore, we conclude that the best rule for a particular group is related to the

characteristics of the individuals in the group: for example, if even one group

member’s more confident ratings were not correlated with a higher probability of

being correct, then the Max, ExpMax, and Mean rules would suffer noticeably.

Finally, we tested three hypotheses about the observers’ internal d′ values (or

equivalently, observation spaces) by simulating the three cases: constant d′ over

all trials, constant d′ per session, and normal d′ per trial. Though we extracted

our simulation parameters from the data, our simulation results frequently differed

significantly from the human-based results. The simulation of Group 2 in Figure

4.40 (d) is the most extreme example of this. We believe that the difference is largely

due to inefficiencies in the human observers that were not adequately captured in

the simple model we used for the simulation. Our simulation assumed that the

observers’ observation spaces consisted of two normal distributions; however, our

analysis of the observers’ response statistics found that JW’s distributions and

TS’s signal distributions were likely not Gaussian. Since both of those observers

are from Group 2, this may explain the large difference between that group’s actual

and simulated performance. The (smaller) difference between the simulated and

actual performance of Groups 1 and 3 may be due to differences in the variances

of the individuals’ Gaussian distributions in their observation spaces. Since the
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shapes of the distributions differ, the area of overlap (that defines the error rates)

differs, and thus, the performance differs. The group rules, when applied to the

simulated data, performed in a manner similar to how they did for the human data,

which suggests that the relative performance of the group rules depends more on the

characteristics of the group it is applied to, rather than there being a fundamental

hierarchy on which group rule is “better”. Our Ideal Group rules were based on the

“ideal weights” defined in [87]. We found that the performance of the Ideal Group

rules when applied to the simulated data also did not out-perform our simpler group

rules, which is consistent with what we found for the human data.

4.8 Conclusion

In our experiment, three observers in a group performed a simple signal detec-

tion task on the same image individually, then conferred to reach a group rating.

Our results are relevant to visual Yes-No tasks in which observers in a team are

given the same stimulus, such as determining whether or not a spot in a mammo-

gram is likely cancerous and requires a biopsy, or deciding whether or not a piece

of luggage at an airport security checkpoint contains something dangerous and is

sufficiently suspicious to warrant a manual inspection. We found that a number

of supposedly sub-optimal strategies; namely, the Past100, Mean, Majority, Mean-

Maj, and ExpMean group rules; performed as well or occasionally better than the

Ideal Group, as defined in [87], and that the human group generally performed as
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well as or better than its best member. Through our analysis, we have provided fur-

ther insight on how groups of humans reach decisions and how one might optimally

organize a decision-making scheme for a particular group.
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Chapter 5

Conclusion

The purpose of this dissertation is to explore the performance of groups in

a two-alternative forced-choice (2AFC) task, with the intent of working towards

developing a cybernetic group-based decision-making system.

We began with an applied mathematics-based approach to modeling the per-

formance of a group of decision-makers (DMs) that is intuitive and supported by

previous work in various experiment-based literatures. In Chapter 2, we derived

explicit solutions for the performance of an individual DM in a 2AFC task using

the Sequential Probability Ratio Test (SPRT), which has been shown to be the op-

timal test for the type of tasks we consider. We then demonstrated a novel way to

combine the performance of N independent DMs to find the group’s performance

under each of three simple group decision rules in Chapter 3, and discussed the

relative merits of each group rule. One of the main advantages of our models is
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that they are flexible: each “member” in the group need not be an individual as

long as its performance can be characterized, so it is straightforward to extend our

models to more complicated hierarchical setups, where a “member” is itself another

group, possibly using a different group rule. We also generalized our models to ac-

commodate non-identical DMs, as long as they are independent, and generalized

our group rules. We illustrated the accuracy of our DDM-based continuous-time

results through a comparison of our solutions with the results of simulating of an

identical system using the SPRT in discrete time.

In addition to developing general models, we also investigated various issues

related to simulating the system. We found and characterized where and how

Wald’s approximation for the decision variable’s boundary breaks down, and how

that affected the individual and group models.

Our work shares a number of similarities with research in decentralized or dis-

tributed detection and decision aggregation, but is significantly more general, since

our model can accommodate DMs that are humans as well as devices. Also, our

models should be more accessible to a wider range of communities, since our results

and analyses are expressed in terms of pdfs, cdfs, error rates, and decision times, all

of which are very intuitive and used in a wide range of disciplines. We derived exact

solutions to our individual and group models without the explicit use of specialized

subjects such as measure theory or dynamic programming. Our models are inter-

esting because they present a novel and general way in which one can intuitively
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yet mathematically model a group’s performance based on its members’ statistics,

establish a reasonable base model which can be extended to build up more compli-

cated models for realistic groups, and provide a means by which one can compare

different group decision rules without the need for a specific cost function.

Once we established a base model for cybernetic group decision-making in a po-

tentially hierarchical scheme, we turned to investigating some of the issues specific

to decision-making in a group of humans. Human observers are significantly more

complicated than the simple devices often used in distributed decision-making be-

cause there are many factors outside of the task that can have a significant influence

on the observer’s performance: for example, devices never get bored with their task,

or indulge in social loafing. To better learn and further the current understanding of

group decision-making in humans, we analyzed the data from a simple experiment

in which three groups of 3 observers each performed a visual signal detection task

on the same image individually, then conferred to reach a group rating. In addition

to improving upon similar previous studies [87], we also explored five general areas:

individual versus group performance, data visualization, group decision strategies,

persistence of findings in the first three areas over a longer period of time, and the

assumption that an observer’s sensitivity is fixed.

We found that the observers seemed to favor strategies that required little or

no memory, and that the overall group generally performed better than the group’s

best individual, despite the fact that the groups did not use optimal weights. Our
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data is fairly conclusive that the groups used a strategy similar to the Majority

rule to reach a binary decision, which is consistent with previous studies [43]. We

also found that the observers generally favored equality-based rules to decide the

group’s rating. We believe that the equality-based rules were attractive because

they provide the majority (who determines the group’s binary response) with a way

to appease the minority, and thus maintain a good working relationship. Based on

the results of our continuation study, we also found that observers generally do not

change their weighting strategies in repeated tasks: the results related to Group

3’s weighting strategy averaged over 6,000 trials in the continuation study showed

the same general trends as the results from just the first 600 trials.

In addition to investigating which rule the groups actually used, we also searched

for the best group rule among eleven different group rules. We found that the group

rule with the best performance for a particular group of observers was largely de-

pendent on the group members’ characteristics, rather than some rules being intrin-

sically better than others. Notably, in a fair comparison, reasonable formulations

of the Ideal Group [87] were not particularly ideal. Our results are directly rele-

vant to visual Yes-No tasks where the stimulus is fixed, such as cancer detection

in mammograms, and suggest that performing the task in a group may provide a

sufficient increase in performance and robustness to warrant the added expense of

the additional group members.

Further experimental data is required to confirm the results of our continuation
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study, and to see to what extent our findings are applicable to sequential 2AFC

tasks. Ultimately, we seek to experimentally confirm that our mathematical models

can be applied to human observers and to find what experimental manipulations

(if any) are required to do so.
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Appendix A

Appendix for Chapter 1

A.1 Significance

In statistics, the term “significant” refers to the finding that a particular finding

is likely to be true; in particular, it is unlikely to be a result of chance. It can also be

defined as the probability that the test will not result in a false alarm (Type I error).

The phrase “test of significance” was coined by R.A Fisher in 1925. Significance is

quantified by the value (1 − α0).

A.2 Power

In statistics, the “power” of a test is given by (1−α1), which is the probability

that the test will not result in a miss (Type II error). In addition, there exists the

notion a Uniformly Most Powerful (UMP) test. A UMP hypothesis test has the
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greatest power (1−α1) among all possible tests with a given α0 (i.e., all equivalently

significant tests).
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Appendix B

Appendix for Chapter 2

B.1 Wiener Process

A Wiener Process W (t) on [0, T ] is a random variable depending continuously

on t ∈ [0, T ] that satisfies

W (0) = 0, (B.1)

For 0 ≤ s < t ≤ T, W (t) −W (s) ∼
√
t− sN(0, 1), (B.2)

For 0 ≤ s < t < u < v ≤ T, W (t) −W (s) is independent of W (v) −W (u),(B.3)

where N(0, 1) is a Normal (or Gaussian) distribution with zero mean and unit

variance [36].
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B.2 Ito Stochastic Differential Equation (SDE)

A stochastic quantity x(t) obeys an Ito SDE

dx(t) = a[x(t), t]dt+ b[x(t), t]dW (t) (B.4)

if for all t and t0,

x(t) = x(t0) +

∫ t

t0

a[x(s), s]ds +

∫ t

t0

b[x(s), s]dW (s). (B.5)

Note that one can use the Cauchy-Euler procedure for constructing an approximate

solution of the SDE. The solution is constructed by letting the mesh size approach

zero.

There are two conditions required for the existence and uniqueness of solutions

in the time interval [t0, T ]: the Lipschitz condition, which is a smoothness condition;

and the growth condition, which ensures that the solution does not blow up too

quickly [36]:

Lipschitz Condition: a K exists such that

|a(x, t) − a(ξ, t)| + |b(x, t) − b(ξ, t)| ≤ K|x− ξ|

Growth Condition: a K exists such that for all t ∈ t0, T ,

|a(x, t)|2 + |b(x, t)|2 ≤ K2(1 + |x|2).

(B.6)
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B.3 Markov Property of the Solution to an Ito

SDE

A Markov process is one in which knowledge of only the present determines

the future. The Markov assumption is generally formulated in terms of conditional

probabilities. For

t1 ≥ t2 ≥ · · · ≥ τ1 ≥ τ2 ≥ · · · , (B.7)

a Markov process’s conditional probability is determined entirely by knowledge of

the most recent condition, i.e., using the convention set in Equation (B.7),

p(ξ1, t1; ξ2, t2 . . . |y1, τ1; y2, τ2; . . .) = p(ξ1, t1; ξ2, t2; . . . |y1, τ1). (B.8)

This is powerful and can simplify expressions. For example, by the definition of

the conditional probability density,

p(ξ1, t1; ξ2, t2|y1, τ1) = p(ξ1, t1|ξ2, t2; y1, τ1)p(ξ2, t2|y1, τ1).

For a Markov process, we can simplify this to

p(ξ1, t1; ξ2, t2|y1, τ1) = p(ξ1, t1|ξ2, t2)p(ξ2, t2|y1, τ1).

This generalizes to an ordered sequence of n times [36].
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We now show that the continuous-time decision variable x(t) is a Markov pro-

cess. For a given initial condition x(t0), x(t) is uniquely (stochastically) determined

only by the particular sample path of W (t) (for t > t0) and the value of x(t0). Since

x(t) is a non-anticipating function of t, future values of W (t) (for t > t0) are in-

dependent of past values of x(τ), (τ < t0). Thus, x(t) for t > t0 is independent of

x(τ) for τ < t0 provided that x(t0) is known, and so x(t) is a Markov process.

B.4 Ito’s Formula

Ito’s formula is useful because it provides a means to find the SDE for an

arbitrary function of x(t), f [x(t)]. To calculate this, we first expand df [x(t)] to

second order in dW (t):

df [x(t)] = f [x(t) + dx(t)] − f [x(t)], (B.9)

= f [x(t)] + f ′[x(t)]dx(t) +
1

2
f ′′[x(t)](dx(t))2 + · · · − f [x(t)],

= f ′[x(t)]dx(t) +
1

2
f ′′[x(t)](dx(t))2 + · · · .

Substituting in from Equation (B.4) and condensing notation,

= f ′[x(t)] {adt+ bdW} +
1

2
f ′′[x(t)]

{
a2(dt)2 + 2ab(dt)(dW ) + b2(dW )2

}
. (B.10)
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Since (dt)2 << (dt)(dW ) << (dW )2 = dt, the equation above simplifies to Ito’s

Formula [36]:

df [x(t)] =

{
a[x(t), t]f ′[x(t)] +

1

2
(b[x(t), t])2 f ′′[x(t)]

}
dt+ b[x(t), t]f ′[x(t)]dW.

(B.11)

This demonstrates that for Ito SDEs, the change-of-variables formula is not given

by ordinary calculus unless f [x(t)] is linear in x(t).

B.5 General Boundary Conditions

Suppose that at time t = 0, all of the probability of the location of the decision

variable is concentrated at x0, since we know that the decision variable is located

there with probability 1. This is captured by the Dirac delta function initial condi-

tion. As time progresses, the location of the decision variable becomes increasingly

uncertain due to noise. This corresponds to the probability distribution of its lo-

cation spreading out in time, which is due to the diffusion term. Even though

noise causes the probability distribution to spread out, the mean of the distribu-

tion should move towards the boundary corresponding to the correct decision. This

corresponds to the drift term in the SDE. We assume that the decision is made in

finite time, which means that all of the probability will eventually exit the system.

Thus, from these assumptions, we choose absorbing boundary conditions for our
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Ω

S
n

Figure B.1: The integral of the flux out of the system gives the change in probability in the
system.

system.

Consider the general fFPE, where x is a vector and the coefficients a and b are

generalized to the matrices A(x, t) and B(x, t):

∂tp(x, t) = −
∑

i

∂

∂xi

Ai(x, t)p(x, t) +
1

2

∑

i,j

∂2

∂xi∂xj

Bij(x, t)p(x, t). (B.12)

We define the probability current as

Ji(x, t) = Ai(x, t)p(x, t) −
1

2

∑

j

∂

∂xj
Bij(x, t)p(x, t). (B.13)

Thus, we can write Equation (B.12) as

∂p(x, t)

∂t
+
∑

i

∂

∂xi
Ji(x, t) = 0. (B.14)

This has the form of a local conservation equation [36]. The integral form of

this equation can be used to express change in probability, as explained below.
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B.5.1 Change in Probability

Consider a region Ω with boundary S. We define the total probability in Ω, as

shown in Figure B.1, to be

P (Ω, t) =

∫

Ω

p(x, t)dx. (B.15)

Then we can substitute this into Equation (B.14) to get

∂P (Ω, t)

∂t
= −

∫

S

n · J(x, t)dS, (B.16)

where n is the outward pointing normal to S. Thus, the rate at which probability

leaves Ω is given by the surface integral of J over the boundary S [36].

B.5.2 Flow of Probability Across a Surface

We also find that the current J has the stronger property that a surface integral

over any surface S gives the net flow of probability across that surface.

Consider two adjacent regions Ω1 and Ω2, separated by surface S12, as shown

in Figure B.2. Region Ω1 is enclosed by the surfaces S1 and S12, and region Ω2 is

enclosed by S2 and S12. We wish to know the net flow of probability from Ω2 to

Ω1.

Since we are dealing with a process with continuous sample paths, the proba-

bility of crossing from Ω2 to Ω1 through S12 (in a sufficiently short period of time,
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∆t) is given by the joint probability of being in Ω2 at time t and in Ω1 at time

t+ ∆t,

∫

Ω1

∫

Ω2

p(ξ, t+ ∆t;x, t)dξdx. (B.17)

The net flow of probability from Ω2 to Ω1 is then given by subtracting the flow

in the opposite direction, dividing by ∆t, and looking at the limit as ∆t→ 0:

∆P = lim
∆t→0

1

∆t

∫

Ω1

∫

Ω2

(p(x, t+ ∆t; ξ, t) − p(ξ, t+ ∆t;x, t)) dξdx. (B.18)

We can Taylor expand this expression to get

∆P = lim∆t→0
1

∆t

∫
Ω1

∫
Ω2

([p(x, τ ; ξ, t) + ∂τp(x, τ ; ξ, t)∆t+ · · · ] −

[p(ξ, τ ;x, t) + ∂τp(ξ, τ ;x, t)∆t]) |τ=tdξdx.

(B.19)

Since it is not possible to be in both Ω1 and Ω2 simultaneously,

S1

S12

S2

Ω1

Ω2n

Figure B.2: This example system can be used to show that the integral of the flux over any surface
gives the net flow of probability across that surface.
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∫

Ω1

∫

Ω2

p(x, t; ξ, t)dξdx = 0,

∫

Ω1

∫

Ω2

p(ξ, t;x, t)dξdx = 0.

Then we have

∆P =

∫

Ω1

∫

Ω2

[∂τp(x, τ ; ξ, t) − ∂τp(ξ, τ ;x, t)]τ=t dξdx. (B.20)

We also note that

p(x, t; Ω2, t) =

∫

Ω2

p(x, t; ξ, t)dξ (B.21)

can be used to define a quantity Ji(x, t; Ω2, t), as it was done in Equation (B.13):

Ji(x, t; Ω2, t) = Ai(x, t)p(x, t; Ω2, t) −
1

2

∑

j

∂

∂xj
[Bij(x, t)p(x, t; Ω2, t)] . (B.22)

A similar equation can be used to define Ji(ξ, t; Ω1, t).

Now we substitute in the Fokker-Planck equation in the form in Equation (B.14),

∂tp(x, t; Ω2, t) = −
∑

i

∂xi
Ji(x, t; Ω2, t),

to get
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∆P = −
∫

Ω1

∑

i

∂

∂xi
Ji(x, t; Ω2, t)dx +

∫

Ω2

∑

i

∂

∂ξi
Ji(ξ, t; Ω1, t)dξ, (B.23)

and then convert the integrals to surface integrals:

∆P = −
∫

S1

n · J(x, t; Ω1, t)dx +

∫

S12

n · J(x, t; Ω1, t)dx−
∫

S2

n · J(ξ, t; Ω2, t)dξ +

∫

S12

n · J(ξ, t; Ω2, t)dξ. (B.24)

The integrals over S1 and S2 vanish: the integral over S1 involves p(x, t; Ω2) with

x /∈ Ω2 or on its boundary except for a measure-zero set, and similarly for S2.

Thus, we are left with the net flow from Ω2 to Ω1 as

∆P =

∫

S12

n · [J(x, t; Ω1, t) + J(x, t; Ω2, t)] dS, (B.25)

and we can conclude that because x ∈ (Ω1 ∪ Ω2), the net flow of probability per

unit time from Ω2 to Ω1 is

lim
∆t→0

1

∆t

∫

Ω1

∫

Ω2

(p(x, t+ ∆t; ξ, t) − p(ξ, t+ ∆t;x, t)) dξdx

=

∫

S12

n · J(x, t)dS =
∂P

∂t
, (B.26)
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where n points from Ω2 to Ω1 [36].

B.5.3 Absorbing Boundary Conditions

Absorbing boundary conditions mean that when a particle reaches S, it is re-

moved from the system; hence the boundary absorbs. Therefore, the probability of

being on the boundary is zero, and the boundary conditions are

p(x, t) = 0 for x ∈ S. (B.27)

B.6 Sturm-Liouville Equation

The Sturm-Liouville Equation has the form

− d

dx

[
p(x)

d

dy

]
+ q(x)y = λw(x)y (B.28)

where y is a function of x, p(x) > 0, q(x), and w(x) > 0 are specified at the outset.

The function w(x) is the weight function.

A general equation

P (x)y′′ +Q(x)y′ +R(x)y = 0 (B.29)

can be converted into Sturm-Liouville form using the integrating factor
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e
R Q(x)

P (x)
dx. (B.30)
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Appendix C

Appendix for Chapter 3

C.1 Proof of Equation (3.45)

We begin with the general cdf of GDTs for the Majority First scheme for N

general DMs. Let Γ0g
JD

≡ 1. Then Equation (3.43) becomes

qmfgN
g (tg) =

Θ∑

θ=0


Γθg

J S

N∏

k=1,
k /∈J

qkS + Γθg
JN

N∏

k=1,
k /∈J

qkN


 . (C.1)

Taking the derivative with respect to tg, we then get

pmfgN
g (tg) =

Θ∑

θ=0




d

dtg


Γθg

J S

N∏

k=1,
k /∈J

qkS


+

d

dtg


Γθg

JN

N∏

k=1,
k /∈J

qkN





 . (C.2)

Since the S and N solutions are clearly related by symmetry and are non-

interacting, for simplicity, consider the generic term
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pmfgN
gD

(tg) =

Θ∑

θ=0




d

dtg


Γθg

JD

N∏

k=1,
k /∈J

qkD





 . (C.3)

Clearly pmfgN
gS (tg)+p

mfgN
gN (tg) = pmfgN

g (tg). If pmfgN
gD

(tg) can be simplified, it automat-

ically follows that Equation (C.2) can be simplified. Now, note that by definition,

d

dtg


Γθg

JD

N∏

k=1,
k /∈J

qkD


 =

d

dtg

[
Γθg
JD

] N∏

k=1,
k /∈J

qkD + Γθg
JD

d

dtg




N∏

k=1,
k /∈J

qkD


 , (C.4)

and that (Θ + 1) of these pairs appear during differentiation:

pmfgN
gD

(tg) =
d

dtg

[
Γ0g
JD

] N∏

k=1,
k /∈J

qkD + Γ0g
JD

d

dtg




N∏

k=1,
k /∈J

qkD


+

d

dtg

[
Γ1g
JD

] N∏

k=1,
k /∈J

qkD+

Γ1g
JD

d

dtg




N∏

k=1,
k /∈J

qkD


+ · · ·+ d

dtg

[
ΓΘg
JD

] N∏

k=1,
k /∈J

qkD + ΓΘg
JD

d

dtg




N∏

k=1,
k /∈J

qkD


 .

(C.5)

Now, the simplification step becomes significantly more straightforward if one

can show that

− d

dtg

[
Γθg
JD

] N∏

k=1,
k /∈J

qkD = Γ
(θ−1)g
JD

d

dtg




N∏

k=1,
k /∈J

qkD


 , (C.6)

since this leads to all of the terms canceling out except the first and last term.

(Note that the second Gamma term has a different θ index from the first Gamma
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term.)

On the left-hand side, we have

−
N−θ+1∑

j1=1

N−θ+2∑

j2=j1+1

· · ·
N∑

jθ=jθ−1+1




d

dtg

[
θ∏

m=1

[1 − qjmD]

]
N∏

k=1,
k /∈J

qkD


 . (C.7)

There are θ terms in the square brackets, and (N − θ) terms in the right-hand

product. After differentiating, the left-hand side becomes

N−θ+1∑

j1=1

N−θ+2∑

j2=j1+1

· · ·
N∑

jθ=jθ−1+1




θ∑

m=1


pjmD

θ∏

ℓ=1,
ℓ 6=m

[1 − qjℓD]




N∏

k=1,
k /∈J

qkD


 . (C.8)

The summation terms outside of the square brackets define all unique subsets of

size θ, and the terms in the parentheses iterate over all unique combinations of p

and [1 − q] within each subset. The product term on the right-hand side is made

up of the remaining group members who were not in the subset.

Meanwhile, on the right-hand side, we have

N−θ+2∑

j1=1

N−θ+3∑

j2=j1+1

· · ·
N∑

jθ−1=jθ−2+1




θ−1∏

m=1

[1 − qjmD]
d

dt




N∏

k=1,
k /∈J

qkD





 , (C.9)

with (θ− 1) terms on the left, and (N − θ+1) terms on the right. This expands to
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N−θ+2∑

j1=1

N−θ+3∑

j2=j1+1

· · ·
N∑

jθ−1=jθ−2+1




θ−1∏

m=1

[1 − qjmD]

N∑

k=1,
k /∈J

pkD

N∏

ℓ=1,
ℓ/∈J
ℓ 6=k

qℓD



. (C.10)

Note that there are (θ−1) terms in the left product and (N − θ) terms in the right

product. We can rearrange this to

N−θ+2∑

j1=1

N−θ+3∑

j2=j1+1

· · ·
N∑

jθ−1=jθ−2+1

N∑

k=1,
k /∈J



pkD

θ−1∏

m=1

[1 − qjmD]
N∏

ℓ=1,
ℓ/∈J
ℓ 6=k

qℓD



. (C.11)

This is close to the general form we desire. Next, note that the j subscripted

summation signs on the left iterate over all unique subsets of size (θ − 1), and the

k subscripted summation sign iterates over the remaining choices. Together, the

summations iterate over all unique subsets of size θ. Thus, we can rename the

summation indices to

N−θ+1∑

j1=1

N−θ+2∑

j2=j1+1

· · ·
N∑

jθ=jθ−1+1




θ∑

m=1


pjmD

θ∏

ℓ=1,
ℓ 6=m

[1 − qjℓD]




N∏

k=1,
k /∈J

qkD


 , (C.12)

which is equal to Equation (C.8). It is now clear that Equation (C.6) holds. Thus,

all of the terms in Equation (C.5) cancel, except for the first and last terms. How-

ever, since Γ0g
JD

= 1, the first term is zero. Thus, we have
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pmfgN
gD

(tg) = ΓΘg
JD

d

dtg




N∏

k=1,
k /∈J

qkD


 = ΓΘg

JD

N∑

k=1,
k /∈J



pkD

N∏

m=1,
m/∈J ,
m6=k

qmD



, (C.13)

which expands to Equation (3.45) after adding the D = S and D = N cases. 2
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