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Abstract

Transient Growth for a Sinusoidal Shear Flow Model

by

Lina Kim

Turbulence is widely recognized as one of the most important unsolved problems

in classical physics. The special case of shear flow turbulence, to be considered in

this thesis, has the interesting property that turbulence is found both experimen-

tally and in numerical simulations for values of the Reynolds number well below the

value at which the laminar state loses stability. Turbulent shear flows are of great

particular interest; indeed, the ability to understand and control these flows will

lead to dramatic improvements in the efficiency and performance of many techno-

logical devices. A growing body of literature has suggested that the phenomenon

of transient energy growth provides the key to understanding properties of shear

flow turbulence.

This thesis contributes to the study of properties of shear flow turbulence by

investigating transient energy growth due to the linear interaction between streaks

and streamwise vortices for a nine-dimensional ordinary differential equation model.

The model is based on Fourier modes for sinusoidal shear flow, in which fluid be-

tween two free-slip walls experiences a time-independent streamwise body force

which varies sinusoidally in the wall-normal direction. In particular, an analysis of
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how transient energy growth due to linear effects depends on initial conditions and

parameters such as Reynolds number and aspect ratio will be conducted. Addi-

tionally, the importance of transient energy growth for triggering nonlinear effects

which can lead to sustained turbulence will be explored.

For this research, the initial perturbations which give optimal initial and total

energy growth are obtained and a neutral transient growth curve, below which no

initial condition gives transient energy growth, is defined. These results are com-

pared to those obtained using pseudospectra analysis. Furthermore, the sensitivity

of the perturbations to the laminar state is examined. These results represent

a powerful generalization of standard hydrodynamic stability analysis to systems

which lack a linear instability. The standard analysis only captures asymptotic

behavior since it is limited to just calculating eigenvalues and the analysis in this

thesis overcomes these limitations by usefully capturing the transient behavior and

the importance of different initial distributions of energy.
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Chapter 1

Introduction

Shear flows are fluid flows which are non-homogeneous with a mean shear. Tur-

bulent shear flows are of great fundamental physical and mathematical interest

because [4]: (i) Turbulence is found both experimentally and in numerical simula-

tions for values of the Reynolds number well below the value at which the laminar

state loses stability [7]. This is in contrast to other flows in which turbulence arises

from laminar flow through a sequence of transitions to more and more complicated

behavior as some parameter increases, such as for Rayleigh-Bénard convection. (ii)

The governing partial differential equations possess numerous branches of (unsta-

ble) steady or traveling states consisting of wavy streamwise vortices and streaks

that arise in saddle-node bifurcations [24, 6, 31, 9]. Such solutions have recently

been detected experimentally [11, 4]. In [31] it was suggested that shear flow turbu-

lence might be a “chaotic repellor,” i.e., a repelling, transiently chaotic set in phase

space, formed from heteroclinic connections among such finite amplitude solutions.
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Despite preliminary results exploring this suggestion (e.g. [22]), it has not been

definitively proven to be relevant or not.

It has been suggested that transient energy growth provides a good basis for

understanding these properties of shear flow turbulence (e.g. [35]). Such transient

growth can significantly amplify small perturbations to the laminar state which can

then trigger nonlinear effects that lead to turbulence.

An investigation of transient growth for a low-dimensional model for sinusoidal

shear flow, recently introduced in [20], will be conducted in this thesis in order to

better understand shear flow turbulence. The dependence of such transient energy

growth on the initial conditions and parameters such as Reynolds number and

aspect ratio (the length over which periodicity is imposed, normalized by d/2) will

be analyzed. Furthermore, the importance of transient energy growth for triggering

nonlinear effects which can lead to sustained turbulence will be explored.

The flow of interest and formulation of the model are introduced in the remain-

der of §1. In §2, a geometrical interpretation of transient growth is given. Then, the

details of how such transient growth depends on initial conditions, Reynolds num-

ber, and aspect ratio are explored. Furthermore, the neutral transient growth curve,

below which no initial condition gives transient energy growth, is investigated. In

§3, the transient energy growth is interpreted using pseudospectra analysis, where a

lower bound for the maximum attainable energy is obtained using Kreiss’ Theorem.

In §4, the importance of such transient growth for triggering nonlinear effects that

might sustain turbulence is explored. Lastly, the conclusions are given in §5, with
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the appendices giving proofs of relevant mathematical results.

1.1 Fundamental Fluid Dynamics Equations

In fluid dynamics, the Navier-Stokes equations are used to describe the flow of a

fluid that is a continuum, that is, a fluid which satisfies the assumption that density

and velocity fields may be defined at every point in space [26]. In the following,

consider a Newtonian fluid for which shear stress is proportional to the velocity

gradient [26]. These conservation equations are often written using the differential

operator

D

Dt
(·) =

∂(·)
∂t

+ u · ∇(·), (1.1)

which is defined as the time derivative as seen by an observer moving with the fluid

and is often referred to as the material or substantial derivative. Conservation of

mass states that

Dρ

Dt
= −ρ∇ · u, (1.2)

where ρ is the density and u is the fluid velocity. The expression above is referred to

as the continuity equation under the continuum assumption. Similarly, conservation

of momentum states that

Du

Dt
= −1

ρ
∇p + ν∇2u + F, (1.3)

where p is the pressure, ν is the kinematic viscosity, and F is the body force acting

on the fluid.
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The present work considers sinusoidal shear flow, in which incompressible fluid

between two free-slip walls experiences a time-independent streamwise sinusoidal

body force which varies sinusoidally in the wall normal direction, and which gives

rise to a sinusoidal laminar profile. The free-slip boundary conditions

uy = 0,
∂ux

∂y
=

∂uz

∂y
= 0 (1.4)

are imposed at y = ±1, and the flow is assumed periodic in the streamwise (x)

and spanwise (z) directions, with lengths Lx and Lz, respectively; see Figure 1.1.

The characteristic velocity U0 is taken to be the laminar velocity arising due to

the forcing at a distance d/4 from the top wall [20]. Then, the lengths are non-

dimensionalized by d/2, velocities by U0, time by (d/2)/U0, and pressure by ρU 2
0 .

Keeping these non-dimensional considerations in mind, the continuity equation for

incompressible flow simplifies to

∇ · u = 0. (1.5)

The corresponding non-dimensionalized conservation of momentum equation for

this flow gives

∂u

∂t
= −(u · ∇)u −∇p +

1

Re
∇2u + F(y), (1.6)

where the Reynolds number is defined as

Re =
U0d

2ν
(1.7)

and the body force is

F(y) =

√
2π2

4Re
sin(πy/2)êx. (1.8)
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x - streamwise

y - wall normal

z - spanwise
d

d
2
Lz

d
2
Lx

laminar profile

Figure 1.1: Geometry for sinusoidal shear flow.

The steady laminar, rectilinear profile for sinusoidal shear flow,

U(y) =
√

2 sin(πy/2)êx (1.9)

is linearly stable for all Re [7]. Note that this does not violate Rayleigh’s theorem

that a necessary condition for instability of a rectilinear, steady shear flow is that

the shear profile has an inflection point; rather, it is a counter-example showing

that this is not a sufficient condition [7]. Although difficult to obtain experimen-

tally, sinusoidal shear flow represents a nontrivial shear flow which is amenable

to analytical treatment; it is hoped that the knowledge gained from the study of

sinusoidal shear flow is relevant to other shear flows such as plane Couette flow,

boundary layer flow, plane Poiseuille flow, pipe flow, wakes, jets and mixing layers.
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1.2 A Nine-Dimensional Model for Sinusoidal

Shear Flow

There have been many attempts to gain insight into shear flow turbulence

by studying reduced-order, low-dimensional ordinary differential equation models,

which provide simplified dynamical descriptions for such complicated systems. As a

result of their geometric simplicity, such models have typically been used to model

plane Couette flow, in which fluid is sheared between two infinite parallel no-slip

walls moving at the same speed but in opposite directions, and sinusoidal shear

flow. See [2] for a review of models emphasizing transient growth arising from

non-normality, [36, 37, 38, 8, 31, 20, 21] for models derived from Galerkin pro-

jection onto Fourier modes for sinusoidal shear flow, [22, 33] for models for plane

Couette flow derived using the proper orthogonal decomposition, and [19, 18] for

Swift-Hohenberg-like partial differential equation models. Proper orthogonal de-

composition is a technique which captures dominant components, such as energy,

of a complex system from data obtained from numerical simulations or experiments.

Models derived using proper orthogonal decomposition have also been studied for

turbulent boundary layers [1], channel flow [27], and transitional shear-layer flows

[25]; see also the references in [29]. Several of these models show characteristics of

the self-sustaining process elucidated in [37] and [38], in which streamwise vortices

cause streak formation, then streaks break down to give streamwise-dependent flow,

then streamwise vortices regenerate and the process repeats. It has been argued
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that this self-sustaining process is a universal characteristic of shear flow turbu-

lence [10, 38], cf. [28, 13, 17].

1.2.1 Formulation of Modes

For sinusoidal shear flow, Fourier modes can be chosen to satisfy incompress-

ibility and the free-slip boundary conditions. Such modes correspond naturally to

streamwise vortices, streaks, and instability of streaks [20, 38]. A nine-dimensional

model, introduced in [20] and obtained by projecting onto such Fourier modes will

be considered for this thesis. For convenience, similar details from [20] are shown

for the derivation of the model. The aspect ratios for this model are defined as

α = 2π/Lx, β = π/2, and γ = 2π/Lz. This nine-dimensional model generalizes

the eight-mode model of [38]. The main improvement for the nine-mode model is

the inclusion of a mode which represents the lowest order modification of the mean

profile (1.9); other modes from the eight-mode model are modified slightly so that

they can couple to this new mode. Following [38], the modes for this model are

normalized so that the following condition is satisfied

∫∫∫

Ω

un(x) · uj(x) d3x = 2

(
2π

α

)(
2π

γ

)

δnj. (1.10)

The modes for this model are: the basic profile

u1 =











√
2 sin(πy/2)

0

0











, (1.11)
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representing a streamwise flow with the shape of the laminar profile,

u2 =











4√
3
cos2(πy/2) cos(γz)

0

0











, (1.12)

which represents streaks, that is, spanwise variations in the streamwise velocity,

and

u3 =
2

√

4γ2 + π2











0

2γ cos(πy/2) cos(γz)

π sin(πy/2) sin(γz)











, (1.13)

which represents a pair of streamwise vortices. The spanwise flow is represented by

the following two modes

u4 =











0

0

4√
3
cos(αx) cos2(πy/2)











, (1.14)

u5 =











0

0

2 sin(αx) sin(πy/2)











. (1.15)

There are also two normal vortex modes;

u6 =
4
√

2
√

3(α2 + γ2)











−γ cos(αx) cos2(πy/2) sin(γz)

0

α sin(αx) cos2(πy/2) cos(γz)











, (1.16)
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u7 =
2
√

2
√

α2 + γ2











γ sin(αx) sin(πy/2) sin(γz)

0

α cos(αx) sin(πy/2) cos(γz)











, (1.17)

and a fully-three dimensional mode

u8 = N8











πα sin(αx) sin(πy/2) sin(γz)

2(α2 + γ2) cos(αx) cos(πy/2) sin(γz)

−πγ cos(αx) sin(πy/2) cos(γz)











, (1.18)

where

N8 =
2
√

2
√

(α2 + γ2)(4α2 + 4γ2 + π2)
.

The modification to the laminar mean flow profile is represented by

u9 =











√
2 sin(3πy/2)

0

0











. (1.19)

1.2.2 Galerkin Projection

The nine-mode model for sinusoidal shear flow is obtained by Galerkin projec-

tion of (1.6) onto important flow structures; namely the u1 − u9 modes given in

(1.11-1.19). Galerkin projection is a technique in which the study of the dynamics

of a system is replaced by the study of the dynamics of a subspace of that system.

A useful Galerkin projection gives a good approximation of the full system

∂u

∂t
= F(u), (1.20)
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where F is an operator which can include differentiation, with a lower dimensional

model. For the present problem, the velocity is expanded as

u(x, t) =
9∑

j=1

aj(t)uj(x). (1.21)

Substituting (1.21) into (1.20) and taking the inner product with uj(x) gives a set

of nine coupled, nonlinear ordinary differential equations of the form

ȧn(t) =

(

F

(
9∑

j=1

aj(t)uj(x)

)

,un(x)

)

, (1.22)

where the amplitudes aj are real, and the modes uj are orthogonal under the

standard inner product given by

(un(x),uj(x)) =

∫∫∫

Ω

un(x) · uj(x) d3x. (1.23)

Inserting the modes obtained in §1.2.1 into (1.22) gives

da1

dt
=

β2

Re
− β2

Re
a1 −

√

3

2

βγ

καβγ

a6a8 +

√

3

2

βγ

κβγ

a2a3, (1.24)

da2

dt
= −

(
4β2

3
+ γ2

)
a2

Re
+

5
√

2

3
√

3

γ2

καγ

a4a6 −
γ2

√
6καγ

a5a7

− αβγ√
6καγκαβγ

a5a8 −
√

3

2

βγ

κβγ

(a1a3 + a3a9), (1.25)

da3

dt
= − β2 + γ2

Re
a3 +

2√
6

αβγ

καγκβγ

(a4a7 + a5a6)

+
β2(3α2 + γ2) − 3γ2(α2 + γ2)√

6καγκβγκαβγ

a4a8, (1.26)

da4

dt
= − 3α2 + 4β2

3Re
a4 −

α√
6
(a1a5 + a5a9) −

10

3
√

6

α2

καγ

a2a6

−
√

3

2

αβγ

καγκβγ

a3a7 −
√

3

2

α2β2

καγκβγκαβγ

a3a8, (1.27)
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da5

dt
= − α2 + β2

Re
a5 +

α√
6
(a1a4 + a4a9) +

α2

√
6καγ

a2a7

− αβγ√
6καγκαβγ

a2a8 +
2√
6

αβγ

καγκβγ

a3a6, (1.28)

da6

dt
= − 3α2 + 4β2 + 3γ2

3Re
a6 +

α√
6
(a1a7 + a7a9) +

10

3
√

6

α2 − γ2

καγ

a2a4

− 2

√

2

3

αβγ

καγκβγ

a3a5 +

√

2

3

βγ

καβγ

(a1a8 + a8a9), (1.29)

da7

dt
= − α2 + β2 + γ2

Re
a7 −

α√
6
(a1a6 + a6a9) +

1√
6

γ2 − α2

καγ

a2a5

+
1√
6

αβγ

καγκβγ

a3a4, (1.30)

da8

dt
= − α2 + β2 + γ2

Re
a8 +

γ2(3α2 − β2 + 3γ2)√
6καγκβγκαβγ

a3a4

+
2√
6

αβγ

καγκαβγ

a2a5, (1.31)

da9

dt
= −9β2

Re
a9 −

√

3

2

βγ

καβγ

a6a8 +

√

3

2

βγ

κβγ

a2a3, (1.32)

where

καγ =
√

α2 + γ2, κβγ =
√

β2 + γ2, καβγ =
√

α2 + β2 + γ2. (1.33)

The transition to turbulence for this nine-mode model is subcritical, i.e., it is pos-

sible to get stable turbulence at values of Re for which the laminar state is stable.

The distributions of turbulent lifetimes, i.e., the duration of turbulence before de-

caying to the laminar state, are exponential, in agreement with observations in

many shear flows [20]. The laminar state for this model corresponds to a fixed

point at a1 = 1, a2 = ... = a9 = 0.
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Chapter 2

Transient Growth for the

Streak-Streamwise Vortex

Interaction

The matrix M arising from the linearization of the nine-mode model from §1.2

about the laminar state is non-normal, i.e., MMT 6= MT M . This suggests that

even though its eigenvalues are all strictly negative for all Re, corresponding to

linear stability of the laminar state, it might be possible to have transient growth

of energy which could trigger nonlinear effects that sustain turbulence [35]. In this

chapter, a detailed analysis is conducted for the transient growth which occurs for

the 2 × 2 block of M that corresponds to the linear evolution of the amplitudes a2

and a3. Much effort is devoted to this interaction because it gives the strongest

transient energy growth compared to the other interactions of the linearized nine-

12



dimensional model. Also, streaks and streamwise vortices are dominant structures

in numerical simulations and are found as unstable steady solutions of the Navier-

Stokes equations [6, 22, 24, 31]. Furthermore, they are the most energetically

excited structures of the linearized Navier-Stokes equations with forced input and

can be explained as input-output resonances of frequency responses [16].

The dynamics associated with this block are given by the linear system







ȧ2

ȧ3







=







b c

0 d







︸ ︷︷ ︸

M23







a2

a3







, (2.1)

b = −
4β2

3
+ γ2

Re
, c = −

√

3/2 βγ
√

β2 + γ2
, d = −β2 + γ2

Re
.

The laminar state corresponds to a2 = a3 = 0; the stability of the laminar state

with respect to streak and streamwise vortex perturbations follows from the fact

that the eigenvalues b and d of M23 must be negative. The exact solution to (2.1)

is readily shown to be

a2(t) = a20e
bt +

c

d − b
a30(e

dt − ebt), (2.2)

a3(t) = a30e
dt. (2.3)

For this linear system, the energy is defined to be

E(t) = (a2(t))
2 + (a3(t))

2. (2.4)

13



2.1 Geometric Interpretation of Transient

Energy Growth

The solution (2.2,2.3) can be rewritten in a form which allows an instructive

geometric interpretation of transient energy growth, namely

a(t) = (a2(t), a3(t)) = v1b10e
bt

︸ ︷︷ ︸

s1(t)

+v2b20e
dt

︸ ︷︷ ︸

s2(t)

, (2.5)

where formulas for b10 and b20 in terms of a20 and a30 are readily obtained, and

v1 =







1

0







, v2 =
|d − b|

√

c2 + (d − b)2







c
d−b

1







(2.6)

are the normalized eigenvectors for M23. Since M23 is non-normal, v1 and v2

are non-orthogonal; for example, for typical values Lx = 1.75π, Lz = 1.2π and

Re = 400, they are almost anti-parallel. For the related system of plane Couette

flow, these parameters correspond to the minimal flow unit, the smallest domain

which is found numerically to sustain turbulence [10]. A small-amplitude initial

condition is thus the superposition of two very large-amplitude components; i.e.,

|s1(0)| and |s2(0)| are large, as sketched in the left panels of Figure 2.1. For the

linear system, b < d < 0, so the length of s1(t) decays more quickly than the length

of s2(t). This leads to an a(t) with larger length (and hence larger energy) than

a(0), as sketched in the right panel of Figure 2.1(a); thus, transient growth has

occurred. For longer times, the length of s2(t) also decreases substantially, and the

system asymptotically approaches the laminar state with a2 = a3 = 0.

14
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s1(t)

s2(t)
a0

a(t)
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s1(t)
a3

s2(t)

a2

a(t)

Figure 2.1: Geometrical interpretation of transient growth. The circles represent constant energy
equal to the initial energy. Because v1 and v2 are nearly anti-parallel, the initial condition is
a0 = s1(0) + s2(0) with large |s1(0)| and |s2(0)|, as shown in the left panels of (a) and (b).
Because of different decay rates, in the right panels |s1(t)| < |s2(t)| ≈ |s2(0)|. In (a), |a(t)| > |a0|
for short times, so that transient growth occurs. In (b), |a(t)| < |a0|, so that transient growth
does not occur, at least for short times. For clarity, the difference in decay rates is assumed to be
large for this figure.

For other initial conditions, transient energy growth might not occur: see Fig-

ure 2.1(b). Clearly, the energy initially decreases with time. Depending on the rate

of decay of the length of s2(t), the energy might always remain below its initial

value, or might eventually grow above its initial value. Such considerations moti-

vate the following exploration of how transient energy growth depends on initial

conditions.

2.2 Optimal Transient Energy Growth

A general linear equation ȧ = Aa has the exact solution

a(t) = etA
a0, (2.7)
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where a0 = a(0). The energy of a solution is given by

E(t) = |a(t)|2 =
∑

a2
i , (2.8)

where the sum is over the components of a. It is found that

E ′(0) =
d

dt

∣
∣
∣
∣
t=0

|etA
a0|2 = 2a0 · Aa0 ≡ f(a0). (2.9)

To find the (normalized) initial condition which gives the maximum initial energy

growth, f(a0) is maximized subject to the constraint

g(a0) ≡ |a0|2 = 1. (2.10)

Using Lagrange multipliers to impose this constraint, this leads to the linear set of

equations

∂f

∂ai0

= λ
∂g

∂ai0

, (2.11)

where ai0 is the ith component of a0. Explicit computation shows that this is

equivalent to the equation

(A + AT )a0 = λa0. (2.12)

Thus the eigenvalues and eigenvectors of A+AT need to be found. It is also readily

shown that

a0 · Aa0 = a0 · AT
a0, (2.13)

which gives

E ′(0) = a0 · (A + AT )a0 = λ|a0|2. (2.14)

Therefore, the largest (resp., smallest) value that E ′(0) can obtain, when E(0) =

|a0|2 = 1, is equal to the largest (resp., smallest) eigenvalue of the matrix A + AT .
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The initial condition that maximizes (resp., minimizes) the initial energy growth is

the corresponding eigenvector of this matrix (cf. [2]).

2.3 Application to Model

2.3.1 General Results

For the present problem, take A = M23. The maximum value that E ′(0) can

take is the larger eigenvalue of M23 + MT
23:

[E ′(0)]max = b + d +
√

b2 + c2 − 2bd + d2 (2.15)

=
1

6Re

(

−14β2 − 12γ2 +

√

4β6 + 4β4γ2 + 54β2γ2Re2

β2 + γ2

)

. (2.16)

The corresponding (unnormalized) eigenvector is

(a20, a30) =

(
d − b −

√
b2 + c2 − 2bd + d2

c
,−1

)

(2.17)

=

(√

4β6 + 4β4γ2 + 54β2γ2Re2 − 2β2
√

β2 + γ2

3
√

6βγRe
,−1

)

. (2.18)

A surface plot showing how [E ′(0)]max depends on Re and γ is displayed in Fig-

ure 2.2. Taking a cut at a small fixed Re, Figure 2.3(a) shows that [E ′(0)]max

reaches a local maximum for a particular γ value; for Re = 10, this corresponds to

Lz = 1.0396π. For large Re it is found that

[E ′(0)]max ≈ |c| =

√

3/2βγ
√

β2 + γ2
. (2.19)

This is a monotonically increasing function in γ, and for large values it asymptot-

ically approaches
√

3/2β = 1.9238; see Figure 2.3(b). Since γ = 2π/Lz, for large
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Figure 2.2: Dependence of [E′(0)]max on Reynolds number Re and spanwise wavenumber γ. See
Figure 2.3 for two cuts at constant Re.

Re the maximum initial energy growth is larger for smaller spanwise aspect ratios.

The corresponding (normalized) eigenvector which maximizes E ′(0) in the limit of

large Re is readily shown to be

(a20, a30) = (1/
√

2,−1/
√

2). (2.20)

This corresponds to the initial energy being equally distributed between the streaks

and the streamwise vortices; as will be shown below, the phases between these

modes are such that the advection of fluid by the streamwise vortices reinforces the

streaks.

The minimum value that E ′(0) can take is given by the remaining eigenvalue of

M23 + MT
23:

[E ′(0)]min = b + d −
√

b2 + c2 − 2bd + d2 (2.21)

= − 1

6Re

(

14β2 + 12γ2 +

√

4β6 + 4β4γ2 + 54β2γ2Re2

β2 + γ2

)

. (2.22)
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Figure 2.3: Dependence of [E′(0)]max on spanwise wavenumber γ for (a) Re = 10 and (b) Re =
1 × 1010 where the dotted lined corresponds to

√

3/2β = 1.9238.

The corresponding (unnormalized) eigenvector is

(a20, a30) =

(
d − b +

√
b2 + c2 − 2bd + d2

c
,−1

)

(2.23)

=

(

−
√

4β6 + 4β4γ2 + 54β2γ2Re2 − 2β2
√

β2 + γ2

3
√

6βγRe
,−1

)

. (2.24)

For large Re,

[E ′(0)]min ≈ −|c| = −
√

3/2βγ
√

β2 + γ2
(2.25)

with corresponding (normalized) eigenvector

(a20, a30) ≈ (−1/
√

2,−1/
√

2). (2.26)

This also corresponds to the initial energy being equally distributed between the

streaks and the streamwise vortices, but as will be shown below, the streaks are

shifted by half of a spanwise wavelength with respect to the initial condition which

maximizes the initial energy growth. The streamwise vortices advect the fluid so

as to weaken the streaks.

The initial rate of energy growth E ′(0) clearly depends on the initial distribution

of energy between the streamwise vortices and the streaks. Let E(0) = a2
20+a2

30 = 1,
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and θ = tan−1(a30/a20). Thus, for example, θ = 0 corresponds to the initial energy

being entirely in the streaks. Differentiating E = a2
2 + a2

3 and using (2.1) gives

E ′(0) = 2ba2
20 + 2ca20a30 + 2da2

30

= 2b cos2 θ + c sin 2θ + 2d sin2 θ

= b + d + (b − d) cos 2θ + c sin 2θ. (2.27)

This is periodic with period π because rotation of θ by π corresponds to multipli-

cation of a20 and a30 by −1, which has only a trivial effect for a linear problem.

As expected from the discussion above, for systems with large Re (for which b → 0

and d → 0),

E ′(0) ≈ c sin 2θ. (2.28)

E ′(0) reaches its maximum value of |c| for θ ≈ 3π/4 and θ ≈ 7π/4, and its min-

imum value of −|c| for θ ≈ π/4 and θ ≈ 5π/4 (recall that c < 0). These results

demonstrate how different initial distributions of energy affect the transient dynam-

ics of the system, something which is not captured by standard eigenvalue analysis,

which only gives asymptotic behavior.

Progress can also be made in understanding how the maximum value that E(t)

reaches under the linear evolution depends on the initial distribution of energy

between streamwise vortices and streaks, as captured by θ. In the limit of large

Re, b → 0 and d → 0, so, for E(0) = a2
20 + a2

30 = 1,

E(t) = [a2(t)]
2 + [a3(t)]

2 ≈
(

c

d − b

)2

(edt − ebt)2 sin2 θ. (2.29)

The above also requires that θ is not too close to 0 or π, so that the first term of
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(2.2) has a small magnitude relative to the second term. By solving E ′(t) = 0 for

t using (2.29), E(t) reaches its maximum at

tmaxE ≈ log(d/b)

b − d
=

3Re

β2
log

(
4β2/3 + γ2

β2 + γ2

)

, (2.30)

with

Emax ≈ E(tmaxE)

≈
(

c

d − b

)2

(bb/(d−b)db/(b−d) − bd/(d−b)dd(b−d))2 sin2 θ

=
3

2
β2γ2Re2 sin2 θ

(β2 + γ2)5+6γ2/β2

(4β2/3 + γ2)8+6γ2/β2 . (2.31)

The absolute maximum energy that can occur for the linear dynamics of the modes

for streaks and streamwise vortices, for large fixed Re, thus occurs for θ ≈ π/2 and

θ ≈ 3π/2. This corresponds to the initial energy being entirely in the streamwise

vortices. Note that the initial conditions which maximize E ′(0) give sin2 θ = 1/2,

so that for large Re the absolute maximum energy is double the maximum energy

obtained for the initial condition which maximizes initial energy growth. Further-

more, note that when θ is sufficiently close to 0 or π, the approximations (2.29) and

(2.31) are not valid, and Emax = E(0). For example, θ = 0 implies that a30 = 0,

and that E(t) = a2
20e

2bt is monotonically decreasing.

2.3.2 Neutral Transient Growth

As just shown, initial conditions have a dramatic effect on transient energy

growth due to linear effects. A neutral transient growth curve, below which no

initial condition gives transient energy growth, can be found by solving [E ′(0)]max
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for Re using (2.16). The result yields the curve

Re∗(γ) =
2
√

2(β2 + γ2)2(4β2 + 3γ2)

3βγ
; (2.32)

see Figure 2.4. For a given aspect ratio γ, for Re > Re∗(γ) it is possible to find

an initial condition with initial transient energy growth, while for Re < Re∗(γ)

there are no such initial conditions. It was found that Re∗(γ) reaches a minimum

at γ∗ = 1.1634 with Re∗(γ∗) = 7.3573. For Re < Re∗(γ∗), there are no possible

initial conditions for which E ′(0) > 0. For Re > Re∗(γ∗), there will be a band of θ

values for which E ′(0) > 0.

There is a larger band of initial θ values for which E(t) > E(0) for some t > 0,

that is, for which the energy eventually exceeds its initial value. This includes the

band of θ values for which E ′(0) > 0; however, it is also possible to choose θ so

that E ′(0) is negative but after some initial decay the energy grows above E(0)

before finally decaying to zero. To find this boundary, let t1 > 0 be the time at

which E(t1) = 1. At this time, the trajectory lies on the unit circle in the (a2, a3)

phase space; for definiteness, let its location be (a21, a31) ≡ (a2(t1), a3(t1)), with

angle θ1 = tan−1(a31/a21). Furthermore, E ′(t1) = 0. Thus (similar to (2.27)),

E ′(t1) = b + d + (b − d) cos 2θ1 + c sin 2θ1 = 0, (2.33)

which can be solved for θ1. Now, from (2.3), a31 = a30e
dt1 , that is,

sin θ1 = sin θedt1 . (2.34)

This can be rearranged to give

t1 =
1

d
log

(
sin θ1

sin θ

)

. (2.35)
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Figure 2.4: Neutral transient growth curve Re∗(γ). Above this curve, E′(0) > 0 for some initial
distribution of energy as captured by θ. Below this curve, there are no such θ values. As discussed
in the text, above this curve it is possible to find an initial condition for which E(t) > E(0) for
some t > 0, while below this curve there is no such initial condition.

Finally, from (2.2),

a21 = a20e
bt1 +

c

d − b
a30(e

dt1 − ebt1), (2.36)

that is,

cos θ1 = cos θebt1 +
c

d − b
sin θ(edt1 − ebt1). (2.37)

Plugging in (2.35) and for a given γ and Re, this is an equation which can be solved

(numerically) for θ. These solutions lie on the boundary of the band of θ values for

which E(t) > E(0) for some t > 0.

Interestingly, the curve for Re∗(γ) given by (2.32) coincides with the curve above

which it is possible to find an initial condition for which E(t) > E(0) for some t > 0,

and below which there is no such initial condition. Without loss of generality, take

E(0) = 1. Certainly this new curve cannot lie above the curve for Re∗(γ), because

E ′(0) > 0 for some θ guarantees that E(t) > E(0) for some t > 0 for that initial

condition. Instead, suppose that one chooses Re < Re∗(γ∗), so that for all θ values

E ′(0) < 0. If there is a t1 such that E(t1) = E(0) = 1 and E ′(t1) > 0, then
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E(t) > E(0) for some t > t1 > 0. Now, at time t1 the solution has unit energy, and

corresponds to some value for θ. If the initial θ value was taken to be this, then it

would result in E ′(0) > 0. This contradicts the assumption that E ′(0) < 0 for all

θ values. Therefore, the new curve cannot lie below the curve for Re∗(γ), so they

must coincide.

For a very large aspect ratio system, the curve Re∗(γ) is defined to be the neutral

transient growth curve, much in the spirit of neutral stability curves for standard

hydrodynamic stability analysis: for fixed aspect ratio, it defines the value of Re

at which transient growth is possible, while for fixed Re it defines the range of

wavenumbers γ for which transient growth is possible. These results are viewed as

a powerful generalization of standard hydrodynamic stability analysis to systems

which lack a linear instability. The standard analysis is limited to calculating eigen-

values, and hence only captures asymptotic behavior. Furthermore, the standard

analysis would not identify key differences in the situation, for example, in which

there is an equal initial distribution of energy between streaks and rolls, or when

the energy is all initially in the streamwise vortices. The analysis in this section

overcomes these limitations by usefully capturing the transient behavior and the

importance of different initial distributions of energy.

2.3.3 Results for Lz = 1.2π

As a representative example, consider the aspect ratio Lz = 1.2π. (The results

are independent of Lx ∼ 1/α because the streak and streamwise vortex modes have
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Figure 2.5: Velocity fields for (top) the initial condition which maximizes E ′(0), and (bottom)
the state for this initial condition when E is maximized, both for Lz = 1.2π and Re = 400. The
velocity fields are represented by vectors for the components shown in the plane and by grayscale
for the velocity perpendicular to the plane. The vectors are identically scaled, so the shorter
arrows in the bottom plot indicate weaker vortices. The laminar profile has been included in
these plots.

no streamwise variation.) For these parameters, b = −6.0677/Re, c = −1.4000, and

d = −5.2452/Re.

For Re = 400, it was found that the unit energy initial condition (a2(0), a3(0)) =

(0.7066,−0.7076) (cf. (2.20)), with velocity reconstruction shown in the top panel

of Figure 2.5, gives [E ′(0)]max = 1.3717; the large Re prediction from (2.19) is

1.4000. Figure 2.6 shows a2(t), a3(t), and E(t) for this initial condition due to the

linear evolution; the maximum value E = 678.07 occurs at tmax = 70.12, with

(a2(tmax), a3(tmax)) = (26.0382,−0.2821) and velocity reconstruction shown in the

bottom panel of Figure 2.5. The large Re predictions from (2.30) and (2.31) (with

25



0 50 100 150 200 250 300 350 400
0

20

40

0 50 100 150 200 250 300 350 400

−1

−0.5

0

0 50 100 150 200 250 300 350 400
0

500

1000

1500

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

���

�

�

�

�

�

�

���

Figure 2.6: Solution for (2.1) with Lz = 1.2π, and Re = 400 for the initial condition which gives
the maximum initial energy growth E ′

max
(0) (solid lines) and the initial condition which gives the

absolute maximum energy Emax which can occur (dashed lines).
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Figure 2.7: Velocity field for the initial condition which minimizes E ′(0) for Lz = 1.2π and
Re = 400. Conventions are as in Figure 2.5.
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Figure 2.8: Velocity fields for (top) the initial condition which gives Emax, the absolute maximum
of E, and (bottom) the state for this initial condition when this Emax is obtained, both for
Lz = 1.2π and Re = 400. Conventions are as in Figure 2.5.

Re = 400 and θ = 3π/4) are tmaxE = 70.84 and Emax = 664.44. Since the energy

in the streamwise vortices decays monotonically, the bulk of the energy when it

reaches its peak is in the streaks.

The minimal initial energy growth [E ′(0)]min is obtained for the unit energy

initial condition (a2(0), a3(0)) = (−0.7076,−0.7066) (cf. (2.24)), with velocity re-

construction shown in Figure 2.7. Comparing this with the top panel of Figure 2.5,

the streaks are shifted by roughly half of a spanwise wavelength with respect to the

initial condition which maximizes the initial energy growth. Here the streamwise

vortices advect the fluid in such a way as to weaken the streaks.

Still keeping Lz = 1.2π and Re = 400, the absolute maximum energy which
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Figure 2.9: Results for Lz = 1.2π, showing (a) E′(0) vs θ for Re = 10 (solid), Re = 400 (dashed),
and the large Re limit given by (2.28) (dot-dashed, nearly coincident with dashed line), with
dotted lines at θ = π/4, 3π/4, 5π/4, and 7π/4; (b) Emax vs. θ for Re = 400 (solid) and for the
large Re limit given by (2.31) (dashed, nearly coincident with solid line); and (c) Emax vs. θ for
Re = 1000 (solid) and for the large Re limit given by (2.31) (dashed, indistinguishable from solid
line). In (b) and (c), the dotted lines are at θ = π/2, π, and 3π/2.

can occur for the linear dynamics with unit energy initial condition, is Emax =

1329.03. This occurs for (a2(0), a3(0)) ≈ (0,−1) at time tmaxE = 70.83, with

(a2(tmaxE), a3(tmaxE)) = (36.4537,−0.3950); see Figure 2.6 for the solutions, and

Figure 2.8 for velocity reconstructions. This compares favorably with the large Re

predictions from (2.30) and (2.31) (with Re = 400 and θ = 3π/2) of tmaxE = 70.84

and Emax = 1328.87. Here again, the bulk of the energy when it reaches its peak

is in the streaks.

Figure 2.9(a) plots (2.27) for this aspect ratio, showing how the initial rate of

energy growth depends on Re and on the initial distribution of energy between
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(solid) corresponding to right solid boundary of Figure 2.10, θ = 2.01069 (dashed) corresponding
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(dashed), and θ = 1.4 (dot-dashed).
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streamwise vortices and streaks, as captured by θ. Figure 2.9(b) shows the anal-

ogous plot for the maximum attainable energy, found by numerically maximizing

E(t) using the exact results (2.2-2.3). In the limit of large Re, it was confirmed that

(2.28) and (2.31) are good approximations. Clearly, it is possible to get substan-

tial transient energy growth for this system before it decays to the laminar state

(E = 0).

Next, consider boundaries of qualitatively different E(t). The boundary for

which E ′(0) > 0 is obtained by solving E(0) = 0 for θ from (2.27), see the solid line

in Figure 2.10. A plot of E(t) for the two θ values on the boundary of this band

for these parameters are shown in Figure 2.11(a) as solid and dashed lines. The

boundary showing [E ′(0)]max is found by studying the time series for the energy

for an initial condition (θ = 1.54592) on the boundary; see the dot-dashed line

in Figure 2.10. The last boundary, in dashed lines of Figure 2.10, corresponds

to the band of θ values for which E(t) > E(0) for some t > 0 and is found by

solving (2.37) for θ. Figure 2.11(b) shows the time series E(t) with initial conditions

in the different regions of Figure 2.10 for Re = 10.

2.3.4 Results for Lz = 2π

As a second example, the aspect ratio Lz = 2π will now be considered. For

this and Lx = 4π in the related system of plane Couette flow, this corresponds to

the domain size where the steady finite amplitude solutions appear at the smallest

value of Re [6, 39]. For these parameters, b = −4.2899/Re, c = −1.0332, and
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Figure 2.12: Solution for (2.1) with Lz = 2π, and Re = 400 for the initial condition which gives
the maximum initial energy growth E ′

max
(0) (solid lines) and the initial condition which gives the

absolute maximum energy Emax which can occur (dashed lines).

d = −3.4674/Re.

For Re = 400, Figure 2.12 shows a2(t), a3(t), and E(t) for the unit energy initial

condition (a2(0), a3(0)) = (0.7064,−0.7078) (cf. (2.20)) corresponding to maximum

initial energy growth. From these values, an [E ′(0)]max of 1.0137 was obtained and

compares favorably well with the large Re prediction from (2.19) of 1.0332. Fur-

thermore, the maximum energy was found at tmax = 102.55 with a corresponding

value of Emax = 785.77, with (a2(tmax), a3(tmax)) = (28.0300,−0.2910). These val-

ues are very close to Emax = 771.09 and tmax = 103.52, which were calculated for

the large Re predictions from (2.30) and (2.31) with Re = 400 and θ = 3π/4. Like

the results in §2.3.3, most of the energy is in the streaks when it reaches its peak

since the energy in the streamwise vortices decays monotonically.
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Re = 1000 (solid) and for the large Re limit given by (2.31) (dashed, indistinguishable from solid
line). In (b) and (c), the dotted lines are at θ = π/2, π, and 3π/2.

The absolute maximum energy that can occur for the linear dynamics can

be studied using the unit energy initial condition (a2(0), a3(0)) = (0,−1). For

Re = 400, the maximum value Emax = 1542.30 occurs at time tmax = 103.52, with

(a2(tmax), a3(tmax)) = (39.2705,−0.4077). Once again, these values compare well

with the predictions of large Re from (2.30) and (2.31) of Emax = 1542.17 and

tmax = 103.52 for Re = 400 and θ = 3π/2. Further analysis allows for the compar-

ison of the initial rate of the energy growth as a function of initial conditions for

various Re values; see Figure 2.13(a). In the limit of large Re, Figures 2.13(b) and

(c) shows how the maximum attainable energy depends on initial conditions and

confirms that (2.28) and (2.31) make valid approximations.

The various boundaries of E(t) are shown in Figure 2.14 for Lz = 2π. The three
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boundaries for E ′(0) > 0, E(t) > E(0) and [E ′(0)]max are similar to those found in

§2.3.3 and meet at Re = 7.466. Figure 2.15 shows the time evolution of energy for

Re = 10 and E(0) = 1 where θ = 1.3972 corresponds to the initial condition that

allows energy to grow above E(0) after an initial decay before decaying to zero.

A detailed analysis was conducted for the transient growth which occurs for

the linear interaction between the streaks and streamwise vortices of the nine-

mode model in §1.2. For this linear system, it was shown that it is possible to

get substantial transient growth before the system decays to the laminar state

and that the magnitude of growth depends on initial conditions, Re, and aspect

ratios. For large Re, it was found that the maximum energy obtained for the initial

condition which maximizes initial energy growth, which corresponds to an equal

initial energy distribution between the streaks and streamwise vortices, is half the

absolute maximum energy where the initial energy is entirely in the streamwise

vortices. Furthermore, a neutral transient growth curve, below which no initial

condition gives transient growth was found. Finally, boundaries for qualitatively

different E(t) were found to capture the transient behavior and the importance of

initial distributions of energy of the system.

33



0 1 2 3
0

10

20

30

40

50

θ

Re

Figure 2.14: Boundaries of qualitatively different E(t) for Lz = 2π. The θ values inside the
solid curve correspond to initial conditions for which E ′(0) > 0. The θ values to the right of the
dashed curve and to the left of the right branch of the solid curve correspond to initial conditions
for which E(t) > E(0) for some t > 0. The dot-dashed line shows the initial condition giving
[E′(0)]max.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

E

E

t

t

(a)

(b)

Figure 2.15: Time evolution of energy for Lz = 2π, Re = 10 and E(0) = 1 for (a) θ = 2.67898
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(dashed), and θ = 1.2 (dot-dashed)
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Chapter 3

Pseudospectra Analysis

An alternative method of analyzing a non-normal matrix is to calculate its

pseudospectrum [34, 30]. This represents a generalization of eigenvalue analysis

and as shown below, gives information about the physical behavior of a system.

For ε > 0, the ε-pseudospectrum of a matrix A is defined as

Λε(A) = {z ∈ �
: ||(zI − A)−1||2 ≥ ε−1}, (3.1)

with || · ||2 representing the 2-norm. When z is an eigenvalue of A, it is useful to

take the convention that ||(zI −A)−1||2 is infinite. Thus, the eigenvalues are given

by Λ0(A). The ε-pseudospectra are closed, and if ε1 < ε2, then Λε1 ⊂ Λε2 .

An equivalent definition of the pseudospectrum is that Λε(A) is the set of all

complex numbers z for which the smallest singular value of L ≡ zI −A is less than

or equal to ε. This follows from the above definition and the fact that the 2-norm

of (zI − A)−1 equals the smallest singular value of zI − A = L. The boundary of

the ε-pseudospectrum Λε(A) is then found by setting the smallest singular value
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of L equal to ε. Recall that the singular values of L are the square roots of the

eigenvalues of LL†, with the 2-norm of L being equal to its largest singular value.

For the present problem let A = M23, and therefore the ε-pseudospectra can be

found exactly from the definition

L = zI − M23

=







z − b −c

0 z − d







=







X + iY − b −c

0 X + iY − d







, (3.2)

where z = X + iY . Furthermore,

LL† =







b2 + c2 − 2bX + X2 + Y 2 c(d − X + iY )

c(d − X − iY ) d2 − 2dX + X2 + Y 2







. (3.3)

The boundary of Λε(A) is found by setting the square root of the smallest eigenvalue

of (3.3) equal to ε, giving

ε =
1√
2
(b2 + c2 + d2 − 2bX − 2dX + 2X2 + 2Y 2 − (b4 + c4 + d2(d − 2X)2

−4b3X − 4b(c2 − d(d − 2X))X + 2b2(c2 − d2 + 2dX + 2X2)

+2c2(d2 − 2dX + 2(X2 + Y 2)))1/2)1/2. (3.4)

Kreiss’ theorem uses pseudospectra to obtain a lower bound for the maximum

attainable energy [30]. Specifically,

max
t>0

||eAt||22 ≥
[

sup
ε>0

δ(ε)

ε

]2

, (3.5)
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where the left hand side is the maximum attainable energy given a unit energy

initial condition, and

δ(ε) = sup
�
(z)>0

z∈Λε(A)

(
�
(z)), (3.6)

that is, δ(ε) is the largest distance from the imaginary axis to a point in the unstable

half-plane lying within the ε-pseudospectrum contour, see Appendix A for a detailed

derivation.

3.1 Results for Lz = 1.2π

For Lz = 1.2π,Re = 10, the eigenvalues of M23 are b = −0.6068 and d =

−0.5245. For small values of ε, the boundary of Λε(M23) is disconnected, with

separate components surrounding each eigenvalue individually; for larger values of

ε, the boundary encloses both eigenvalues; see Figure 3.1(a). To find a lower bound

for Emax, the ratio of δ(ε) to ε was calculated as a function of ε; see Figure 3.2(a).

This ratio was maximized for ε = 2.6, yielding a lower bound of 1.0471, which

compares reasonably well with the numerically-obtained absolute maximum energy

of Emax = 1.19.

Keeping Lz = 1.2π but for Re = 400, the eigenvalues are much closer to one

another, with b = −0.0152, and d = −0.0131. This means that extremely small ε

values, on the order of 10−8, are needed to give boundaries which surround each

eigenvalue individually; see Figure 3.1(b). As above, a lower bound for Emax can

be calculated. Figure 3.2(b) shows that the ratio δ(ε)/ε peaks at 24.774 with

ε = 5.8 × 10−4. Therefore the lower bound for the maximum attainable energy is
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Figure 3.1: Boundaries for pseudospectra for Lz = 1.2π with (a) Re = 10 and (b) Re = 400, with
ε values as labeled.

613.70, approximately half the numerically-obtained value of Emax = 1328.87 from

§2.3.3.

3.2 Results for Lz = 2π

The results for this aspect ratio are very similar to the results in §3.1. For

Re = 10, the eigenvalues of M23 are b = −0.4290 and d = −0.3467. Here, it will

require larger ε values to enclose each of the small eigenvalues individually and

as a result, the ε contours for this aspect ratio are less round and slightly peanut

shaped compared to those for Lz = 1.2π; see Figure 3.3(a). A lower bound was

found at ε = 1.3, where the ratio δ(ε)/ε reaches a maximum at 1.0426, therefore

giving a lower bound of 1.0871 which is reasonably close to the numerically-obtained

absolute energy of Emax = 1.3121; see Figure 3.4(a).

For Lz = 2π and Re = 400, the eigenvalues are b = −1.0725 × 10−2 and
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(a) Re = 10, (b) Re = 400.

d = −8.669× 10−3, and as expected from the results in §3.1 the contours surround

both of the eigenvalues for the ε values used. Smaller ε values would be required

to enclose each of the eigenvalues individually due to their closeness, as shown in

Figure 3.3(b). A lower bound for the maximum attainable energy was calculated

to be 714.0386, where the maximum ratio δ(ε)/ε = 26.7215 corresponds to ε =

3.6 × 10−4; see Figure 3.4(b). Similar to the results for Lz = 1.2π and Re = 400,

Emax = 1542.30 is approximately twice the value of the lower bound obtained from

pseudospectra analysis. Note that the lower bound calculation is slightly more

accurate for Lz = 1.2π than for Lz = 2π.

Figures 3.5 and 3.6 show that relationship between Emax and the lower bound

obtained using Kreiss’ theorem as a function of Re for Lz = 1.2π and Lz = 2π,

respectively. The lower bound becomes less sharp as Re increases, but both the

absolute maximum attainable energy and the lower bound scale as Re2, the former

being expected from (2.31); see Figures 3.5(b) and 3.6(b). These results strengthen
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the validity of the analysis conducted in § 2.3 and suggests that although pseu-

dospectra is an important tool for studying non-normal matrices, it may not provide

the best results.
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Chapter 4

Transient Growth and the

Transition to Turbulence

The importance of transient energy growth for turning on nonlinear effects which

can lead to sustained turbulence will be studied in this chapter. This will be

achieved by carefully investigating the four-mode subspace that arises from the

nonlinear coupling of the streaks and the streamwise vortices, and the full nine-

mode model which becomes engaged by activating one of the dormant modes in

this four-mode model. That is, it will be determined how the dynamics of the linear

model are carried through to the nonlinear four-mode model and subsequently the

full nine-mode model.
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4.1 A Four-Mode Subspace

The interaction between streaks and streamwise vortices gives rise to the non-

linear term N23 ≡ a2a3, which is present in the full nine-mode model of §1.2 in the

equations for the amplitudes a1 and a9. Indeed, the full nonlinear equations for the

interactions of the a1, a2, a3, a9 amplitudes are

da1

dt
=

β2

Re
− β2

Re
a1 +

√

3

2

βγ

κβγ

a2a3, (4.1)

da2

dt
= −

(
4β2

3
+ γ2

)
a2

Re
−
√

3

2

βγ

κβγ

a1a3 −
√

3

2

βγ

κβγ

a3a9, (4.2)

da3

dt
= −β2 + γ2

Re
a3, (4.3)

da9

dt
= −9β2

Re
a9 +

√

3

2

βγ

κβγ

a2a3. (4.4)

These equations form an invariant subspace for the full nine-mode model of §1.2.

Here, the streamwise vortices pull up negative fluid and pull down positive fluid

causing the streaks to strengthen, which leads to the modification of the basic

profile. This modification to the mean profile then leads to the weakening of the

streaks. The interaction between the streamwise vortices, streaks, and basic profile

in this subspace essentially captures the re-distribution of energy in the system.

The laminar state corresponds to a fixed point at (a1, a2, a3, a9) = (1, 0, 0, 0) and

the energy about this state is defined as

E4(t) = (a1(t) − 1)2 + (a2(t))
2 + (a3(t))

2 + (a9(t))
2. (4.5)
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4.1.1 Optimal Growth of the Nonlinear Term N23

The initial growth rate for N23 is given by

N ′
23(0) = a′

2(0)a3(0) + a2(0)a
′
3(0)

= (b + d)a20a30 + ca2
30. (4.6)

Similar to §2.2, finding the extrema of this subject to the constraint

a2
20 + a2

30 = 1 (4.7)

leads to an eigenvalue problem, here







0 (b + d)/2

(b + d)/2 c













a20

a30







= λ







a20

a30







. (4.8)

The eigenvalues are

λ± = c ±
√

b2 + c2 + 2bd + d2 (4.9)

=
−3

√
3βγRe ±

√

98β6 + 266β4 + 72γ6 + 3β2(80γ4 + 9γ2Re2)

3
√

2(β2 + γ2)Re
(4.10)

with (unnormalized) eigenvectors

e±=

(

−c ±
√

b2 + c2 + 2bd + d2

b + d
, 1

)

(4.11)

=

(

−3
√

3βγRe ∓
√

98β6 + 266β4 + 72γ6 + 3β2(80γ4 + 9γ2Re2)
√

2(β2 + γ2)(7β2 + 6γ2)
, 1

)

. (4.12)

respectively. The large Re limit is most easily captured by considering (4.8) with

b → 0 and d → 0. This gives

λ+ ≈ 0, e+ ≈ (1, 0), (4.13)
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λ− ≈ c = −
√

3/2βγ
√

β2 + γ2
, e− ≈ (0, 1), (4.14)

where the eigenvectors have been normalized.

Letting E(0) = a2
20 + a2

30 = 1 and θ = tan−1(a30/a20), (4.6) is rewritten as

N ′
23(0) = (b + d) cos θ sin θ + c sin2 θ (4.15)

=
b + d

2
sin 2θ +

c

2
(1 − cos 2θ). (4.16)

This is periodic in θ with period π. For systems with large Re,

N ′
23(0) ≈

c

2
(1 − cos 2θ). (4.17)

In this limit, N ′
23(0) must always be less than or equal to zero, since c < 0. Fur-

thermore, in this limit |N ′
23(0)| reaches its maximum value of |c| for θ ≈ π/2 and

θ ≈ 3π/2, and its minimum value of 0 for θ ≈ 0 and θ ≈ π, results consistent with

(4.13) and (4.14).

As in §2.3, progress can be made in understanding how the maximum value

that |N23(t)| reaches under the linear evolution depends on the initial distribution

of energy between streamwise vortices and streaks, as captured by θ. The value of

this analysis is limited as perturbations to the laminar state grow, since the linear

dynamics becomes less relevant as nonlinear interactions increase. Nevertheless, it

is hoped that useful information will be extracted from this investigation. Using

(2.2) and (2.3) for unit initial energy and taking the limit of large Re for which

b → 0 and d → 0, the following is obtained

N23(t) ≈
c

d − b
edt(edt − ebt) sin2 θ. (4.18)
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This also requires that θ is not too close to 0 or π so that the other term can be

dropped. Since d > b and c < 0, N23 is expected to be negative for all times.

Solving N ′
23(t) = 0 for t using (4.18), it is found that |N23| reaches its maximum

value at

tmaxN23 ≈
log(2d/(b + d))

b − d
=

3Re

β2
log

(
7β2 + 6γ2

6(β2 + γ2)

)

. (4.19)

with

|N23|max ≈ |N23(tmaxN23)|

≈ (2(β2 + γ2))11/2+6γ2/β2
315/2+6γ2/β2

βγ

(7β2 + 6γ2)7+6γ2β2 Re sin2 θ. (4.20)

Thus, |N23|max reaches its absolute maximum value for θ ≈ π/2 and θ ≈ 3π/2, the

same θ values for which |N ′(0)| is maximized.

4.1.2 Results for Lz = 1.2π

As an example, consider the aspect ratio Lz = 1.2π. Figure 4.1(a) and (b)

respectively show how N ′
23(0) and the maximum value of |N23| due to the linear

evolution depend on the initial distribution of energy between the streamwise vor-

tices and the streaks, as captured by θ and Re. The initial condition (a20, a30) =

(0.0101, 0.9999) maximizes |N ′
23(0)| with the approximate value |c| = 1.4, and the

linear evolution gives the maximum value |N23| = 18.90 reached at t = 36.71 with

(a2, a3) = (30.5805,−0.6179). Note that the large Re predictions from (4.19) and

(4.20) (with θ = π/2 and Re = 400) are tmaxN23 = 36.71 and |N23|max = 18.90,

which are identical to this precision with the results for the above initial condition.
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For comparison, for the initial condition (a20, a30) = (0.7066,−0.7076) which max-

imizes E ′(0), the linear evolution gives the maximum value |N23| = 9.6438 reached

at t = 36 with (a2, a3) = (21.8505,−0.4414); see Figure 4.2.

4.1.3 Results for Lz = 2π

The results for the aspect ratio Lz = 2π are very similar to those in §4.1.2.

Figure 4.3(a) and (b) respectively show N ′
23(0) and the maximum value of |N23|

due to the linear evolution as a function of the initial distribution of energy be-

tween the streamwise vortices and the streaks, as captured by θ, and on Re. The

initial condition (a20, a30) = (0.0101, 0.9999) maximizes |N ′
23(0)| with the approx-

imate value |c| = 1.033, and the linear evolution reached a maximum value at

t = 54.52 of |N23| = 20.70, with (a2, a3) = (33.2075,−0.6233). The large Re pre-

dictions from (4.19) and (4.20) for θ = π/2 and Re = 400 are tmaxN23 = 54.51

and |N23|max = 20.71. Again, for comparison, the linear evolution gives the max-

imum value |N23| = 10.5488 reached at t = 53.54 with (a2, a3) = (23.71,−0.4450)

for the initial condition (a20, a30) = (0.7066,−0.7076) which maximizes E ′(0); see

Figure 4.4.

4.1.4 Time Evolution due to Nonlinear Interactions

Thus far, only the dynamics associated with the linearization about the laminar

state have been considered. Here, the effects of the nonlinear terms on the dynamics

of (4.1-4.4) are explored, with an emphasis on the role of transient growth. To do
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Figure 4.1: Results for Lz = 1.2π, showing (a) |N ′

23
(0)| vs. θ for Re = 10 (solid), Re = 400

(dashed), and the large Re limit given by (4.17) (dot-dashed, nearly coincident with dashed line);
(b) |N23|max vs. θ for Re = 400 (solid) and the large Re limit given by (4.20) (dashed, nearly
coincident with solid line); and (c) |N23|max vs. θ for Re = 1000 (solid) and the large Re limit
given by (4.20) (dashed, indistinguishable from solid line). The dotted lines are at θ = π/2, π,
and 3π/2.
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Figure 4.2: Time evolution of |N23| for (solid) initial condition which maximizes E ′(0) and
(dashed) initial condition which maximizes |N ′
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(0)| at t = 0.
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Figure 4.5: Pictorial representation of the effect of nonlinear terms on the modal amplitudes.
The interaction between modes 2 and 3 gives the nonlinear term N23 = a2a3, which affects the
dynamics of modes a1 and a9. Modes 1 and 3 interact to give the nonlinear term a1a3, which
affects the dynamics of mode 2. Modes 3 and 9 interact to give the term a3a9, which affects the
dynamics of mode 2.

this, it is important to understand the energy flow for this problem. The constant

term in (4.1) is due to the sinusoidal body force, and is the only source of energy.

The linear terms in (4.1-4.4) are due to viscous dissipation, and extract energy

from the system. The nonlinear terms in (4.1-4.4) are energy conserving, merely

transferring energy from one mode to another, e.g., [22]: see Figure 4.5. Since the

modes u1, u2, u3, u9 are all streamwise invariant, general arguments imply that all

disturbances to the laminar state must eventually decay [23, 22]; see Appendix B.

However, the transient behavior leading to this decay can be nontrivial, as will be

seen in the following.
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• A Small Perturbation to the Laminar State

Now consider the initial condition

(a10, a20, a30, a90) = (1, 0.07066,−0.07076, 0), (4.21)

corresponding to a small perturbation to the laminar state in the direction of fastest

initial transient energy growth. The initial energy is E(0) = a2
20 + a2

30 = 0.1.

The initial dynamics are dominated by the transient growth due to the inter-

action of the streaks and streamwise vortices. This causes the nonlinear term N23

to become more negative, making a1 and a9 decrease. Physically, the streamwise

vortices pull up negative velocity fluid at z = Lz/2 and pull down positive velocity

fluid at z = 0. When this is averaged across the z-direction, the amount of energy

in the mean flow modes 1 and 9 is diminished. Since a1 started at 1, it is expected

to remain positive, at least for small times. Since a3 is negative, the term propor-

tional to −a1a3 in (4.2) is positive: physically, the streamwise vortices strengthen

the streaks. On the other hand, a9 starts at zero and becomes negative for small

times. Thus, the term proportional to −a3a9 in (4.2) is negative. Physically, this

comes from the fact that the mean flow modification associated with a9 is positive

just below the midplane and negative just above the midplane. Advection of this

modification to the mean profile by the streamwise vortices leads to a weakening

of the streaks.

As time progresses, the linear and nonlinear terms conspire to cause a2 to start

to decrease at an earlier time and smaller magnitude than one would expect from

the linear dynamics. Indeed, instead of the energy peaking at E = a2
2 +a2

3 = 6.7807
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with (a2, a3) = (2.60382,−0.02821) at t = 70.12, as would be expected due to linear

transient growth (see §2.3.3), it only reaches E4 = (a1 − 1)2 + a2
2 + a2

3 + a2
9 = 1.3222

for the four-mode subspace and E = a2
2 + a2

3 = 0.4636 for the streak-streamwise

vortex interaction with (a2, a3) = (0.6782,−0.0607) at t = 11.69. Next, a2 reaches

a local minimum at t = 44.09 before growing to a local maximum at t = 108.7

and then decaying monotonically to zero; see Figure 4.6. This differs from the

linear dynamics, in which a2 monotonically decreases after reaching its first peak;

see Figure 2.6. Such “ringing” behavior is due to the nonlinear interactions, and

will be more prominent for larger initial perturbations. Note that a3 monotonically

increases toward zero as time progresses. Physically the decay of streamwise vortices

is due to dissipation; there are no interactions for the set of modes in (4.1-4.4) which

excite this mode.

Next, consider the initial condition

(a10, a20, a30, a90) = (1, 0,−0.1, 0), (4.22)

corresponding to a small perturbation to the laminar state in the direction of max-

imum transient energy growth for the linear problem, with same energy as the

initial condition just considered. Instead of the energy peaking at E = 13.2903

with (a2, a3) = (3.64537,−0.03950) at time t = 70.83, as would be expected due to

linear transient growth (see §2.3.3), it only reaches E4 = 1.4693 and E = 0.4781

with (a2, a3) = (0.6856,−0.0894) at t = 8.57; see Figure 4.6. For both initial con-

ditions, the nonlinearities greatly restrict the magnitude of the transient growth.

52



0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

0 20 40 60 80 100 120 140 160 180 200
−0.1

0

0.1

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

0 20 40 60 80 100 120 140 160 180 200
−0.1

−0.05

0

0 20 40 60 80 100 120 140 160 180 200
−1

−0.5

0

a3

a9

E

N23

a1

a2

t

t

t

t

t

t

Figure 4.6: Time evolutions for a1(t), a2(t), a3(t), a9(t), E(t), N23(t) for the initial conditions
(a1, a2, a3, a9) = (1, 0.07066,−0.07076, 0) and (1, 0,−0.1, 0) shown in solid and dashed lines,
respectively.
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• A Larger Perturbation to the Laminar State

Consider the initial condition

(a10, a20, a30, a90) = (1, 0.7066,−0.7076, 0), (4.23)

corresponding to a larger perturbation to the laminar state in the direction of

fastest initial transient energy growth. (The values a20 and a30 are a factor of

ten higher than those just considered, giving E(0) = a2
20 + a2

30 = 1.) As above,

the nonlinear terms prevent a2 from reaching its maximum found by just con-

sidering linear dynamics. Indeed, here the energy peaks at E4 = 3.2411 and

E = 1.4816 with (a2, a3) = (0.9941,−0.7024) at time t = 0.56, whereas in §2.3.3

it was found that this initial condition would lead to an energy E = 664.44 with

(a2, a3) = (26.0382,−0.2821) at time t = 70.12 under linear dynamics. The same

physical processes as described above occur here. However, there is much more

prominent ringing behavior, in which a2 undergoes decaying oscillations on its way

to zero; see Figure 4.7. The ringing is associated with the streaks being pulled apart

and advecting around the streamwise vortices, returning for another lap; see Figure

4.8. The timescale of the oscillations is approximately one characteristic turnover

time as estimated from the velocity reconstruction for this particular perturbation

to the laminar state. The size of such oscillations decreases with time (not surpris-

ingly, since the system must approach the laminar state for large times) and their

frequency decreases (as a3 decays away, the characteristic turnover time gets longer

and longer).
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Figure 4.8: Velocity reconstructions showing the advection of streaks by the streamwise vortices
for the initial conditions (a1, a2, a3, a9) = (1, 0.7066,−0.7076, 0) at (a) t = 0, (b) t = 0.56, (c)
t = 1.32, (d) t = 2.08, (e) t = 2.85, and (f) t = 5.22.

Finally, consider the initial condition

(a10, a20, a30, a90) = (1, 0,−1, 0), (4.24)

corresponding to a larger perturbation to the laminar state in the direction of

maximum transient energy growth for the linear problem, with same energy as

the initial condition just considered. Here the energy peaks at E4 = 2.8889 and

E = 1.477 with (a2, a3) = (0.7051,−0.9897) at time t = 0.79, whereas in §2.3.3

it was found that this initial condition would lead to an energy E = 1329.03 with

(a2, a3) = (36.4537,−0.3950) at time t = 70.83 under linear dynamics.
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4.2 The Full Nine-Mode Model

By perturbing one of the other amplitudes, say a4, away from zero, nonlinear

interactions cause all of the modes in the nine-mode model of §1.2 to become

active. If the perturbation away from the four-mode subspace is sufficiently small,

the dynamics described above are expected to be present, at least for short times.

However, the dynamics for longer times are very sensitive to the initial conditions.

To further emphasize this argument, the relevance of the two-mode linear model to

the four-mode model is shown by perturbing a20 and a30 by a small factor µ as

(a20, a30) = µ(0.7066,−0.7076). (4.25)

In Figure 4.9, it is shown that as E(0) or µ decreases, linear analysis becomes

important for the four-mode model and as expected, small perturbations from the

laminar state minimize the effects of nonlinearities on the magnitude of the transient

growth. Furthermore, perturbing a4 from the laminar state allows to investigate

the importance of transient growth to the full nine-mode model. For very small a40,

the dynamics of the four-mode model are carried through the nine-mode model. As

µ increases, linear analysis and the four-mode model are less valid. The possibility

of turbulence in the nine-mode model in terms of the amount of perturbation on

a2, a3 and a4 can also be determined; see Figure 4.10. All disturbances below the

curve will eventually decay back to the laminar state whereas disturbances above

the curve might trigger turbulence.

This is illustrated by considering the parameter values Lz = 1.2π,Re = 400,
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perturbations below the curve decay to the laminar state whereas perturbations above might
drive the system to sustained turbulence.

for which it has been shown that a stable periodic orbit coexists with the stable

laminar state [20, 21]. The stable periodic orbit may be interpreted as a sustained

turbulent state. Consider initial conditions

(a10, a20, a30, a50, a60, a70, a80, a90) = (1, 0.07066,−0.07076, 0, 0, 0, 0, 0), (4.26)

with various values for a40. Figure 4.11 shows that it is very difficult to predict

which values of a40 lead to sustained turbulence or decay to the laminar state.
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Indeed, this is reminiscent of the fractal lifetime properties of [20] in which it was

demonstrated that the length of time for which turbulence persists is very sensitive

to initial conditions at any resolution. This sensitivity to initial conditions is further

illustrated in Figures 4.12 and 4.13, which compare the dynamics for a40 values equal

to 0.06 and 0.059975. Initially, the trajectories for the two initial conditions are

very close, and (moderate) transient growth is evidently present for a short time

until it is damped by the nonlinear effects due to the coupling of the modes. The

two solutions later diverge to either the laminar state (stable fixed point) or the

sustained turbulent state (stable periodic orbit), with changes in a40 of 2.5 × 10−6

or less leading to different outcomes.
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to the laminar state.
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Figure 4.12: Time evolution of the nine modes for the initial condi-
tions (a1, a2, a3, a4, a5, a6, a7, a8, a9) = (1, 0.07066,−0.07076, 0.06, 0, 0, 0, 0, 0) and
(1, 0.07066,−0.07076, 0.059975, 0, 0, 0, 0, 0) shown in solid and dashed lines, respectively.
The first initial condition gives a trajectory which asymptotes on the stable periodic orbit, while
the latter gives a trajectory which decays to the laminar state.
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Figure 4.13: Time evolution of the nine modes for the initial conditions from Figure 4.12, zoomed
in to show the behavior for short times.
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Chapter 5

Conclusion

Transient growth due to the linear interaction between streaks and streamwise

vortices for a nine-dimensional model for sinusoidal shear flow was investigated in

this thesis. Initial perturbations which give optimal initial and total energy growth

were obtained along with the neutral transient growth curve, below which no initial

condition gives transient energy growth. The dependence of the dynamics on the

initial distribution of perturbation energy between streaks and streamwise vortices

was characterized. An alternative interpretation of transient growth was given

using pseudospectra, which leads to a lower bound for the maximum attainable

energy. Finally, the importance of such transient growth for triggering nonlinear

effects that might sustain turbulence was considered by studying the dynamics of

the four-mode subspace, resulting from the nonlinear coupling of the streaks and

the streamwise vortices, and the full nine-mode model.

These results represent a powerful generalization of standard hydrodynamic sta-
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bility analysis to systems which lack a linear instability. The standard analysis just

calculates eigenvalues, and hence only captures asymptotic behavior. Furthermore,

the standard analysis would not identify any difference in the situation, for exam-

ple, in which there is an equal initial distribution of energy between streaks and

rolls, or when the energy is all initially in the streamwise vortices. The analysis in

this thesis overcomes these limitations by usefully capturing the transient behavior

and the importance of different initial distributions of energy.

The results show that the linear dynamics of the streaks and streamwise vortices

can lead to substantial transient growth and are consistent with previous results

for the plane Couette flow [5] and Taylor-Couette flow in the plane Couette flow

limit [12]. The approach presented in this thesis has the advantage of exploring how

the results depend on the aspect ratio, Reynolds number, and initial conditions. For

example, the results were obtained for two distinct domains. For the related system

of plane Couette flow, the first is Lx = 1.75π and Lz = 1.2π, which corresponds to

the minimal flow unit, the smallest domain which is found numerically to sustain

turbulence [10]. The second is Lx = 4π and Lz = 2π, larger than the previous, it

corresponds to the domain size where the steady finite amplitude solutions appear

at the smallest value of the Reynolds number [6, 39]. For both domains, it was found

that in the limit of large Reynolds number, the initial conditions which maximizes

initial energy growth involved an equal distribution of energy between the streaks

and streamwise vortices, with the vortices advecting the fluid in such a way as to

strengthen the streaks. On the other hand, in this limit the initial condition which
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gives the absolute maximum value of energy has all of the energy in the streamwise

vortices; this is also the initial condition which initially turns on nonlinear terms

in an optimal fashion.

Overall, it was found that the transient growth due to the linear interaction

between the streaks and the streamwise vortices is severely limited by nonlinear

effects. The four-mode subspace, containing the nonlinear coupling between the

streaks and streamwise vortices, was initially dominated by transient growth and

exhibited a ”ringing” behavior before decaying to the laminar state. Indeed, for the

full nonlinear problem, transient growth mechanisms are apparently only important

for initial conditions very close to the laminar state, and for short times. The

system was found to be very sensitive to small perturbations to the laminar state,

and exhibited the fractal lifetime properties of [20]. Nevertheless, the analysis of

transient growth mechanisms helps to clarify the transition to and nature of shear

flow turbulence.

In the simulation of the full nine-mode model, transient growth is greatly re-

stricted by the nonlinearities of the system suggesting that it is not the main force

which drives the system to a state of turbulence. Therefore, future research will

involve investigating the mechanisms which determine the transition to turbulence

for the nine-dimensional model. Specifically, a distinction between solutions which

give transient and sustained turbulence will be made. Furthermore, the mechanisms

responsible for driving the solutions to either the laminar, transient turbulence, or

sustained turbulence state will be explored.
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Appendix A

Finding a Lower Bound for

Transient Energy Growth Using

Kreiss’ Theorem

A lower bound for transient energy growth can be obtained for a matrix expo-

nential using Kreiss’ theorem [30]. For a general linear equation ȧ = Aa, which

has the exact solution

a(t) = etA
a0, (A.1)

the lower bound is calculated by defining the Laplace transform

L (a) = ã =

∫ ∞

0

e−st
adt. (A.2)

Since L (eAt) = (sI − A)−1, (A.2) can be expressed as

ã = (sI − A)−1
a0 =

∫ ∞

0

e−steAt
a0dt. (A.3)
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To find the bound, (sI − A)−1 must be estimated from (A.3) as follows

||(sI − A)−1||2 ≤
∫ ∞

0

|e−st| ||eAt||2dt

≤ max
t>0

||eAt||2
∫ ∞

0

e− � (s)tdt. (A.4)

Since
∫ ∞

0

e− � (s)tdt =

[

− 1
�
(s)

e− � (s)t

]∞

0

=
1

�
(s)

, (A.5)

then

||(sI − A)−1||2 ≤
1

�
(s)

max
t>0

||eAt||2. (A.6)

Rearranging (A.6) gives

max
t>0

||eAt||2 ≥ �
(s)||(sI − A)−1||2

≥ max
� (s)>0

�
(s)||(sI − A)−1||2. (A.7)

Now, recall the definition of pseudospectra,

Λε(A) = {z ∈ �
: ||(zI − A)−1||2 ≥ ε−1}, (A.8)

and choose some ε > 0 so that

||(sI − A)−1||2 ≥ ε−1 ∀ z ∈ Λε(A). (A.9)

Let s → z, giving

max
t>0

||eAt||2 ≥ max�
(z)>0

z∈Λε(A)

( �
(z)

ε

)

. (A.10)

Eqn (A.10) is true for any ε > 0, therefore taking the supremum over all ε gives

Kreiss’ theorem:

max
t>0

||eAt||2 ≥ sup
ε>0

sup
�
(z)>0

z∈Λε(A)

( �
(z)

ε

)

≡ Γ. (A.11)
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Squaring (A.11) gives the maximum attainable energy for all times. Therefore a

lower bound for the maximum attainable energy is

max
t>0

||eAt||22 = Γ2 ≥
[

sup
ε>0

δ(ε)

ε

]2

, (A.12)

where δ(ε) is the largest distance from the imaginary axis to a point in the unstable

half-plane lying within the ε-pseudospectrum contour.
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Appendix B

Proof that Streamwise Invariance

Leads to Decay

It can be shown that all disturbances decay to the laminar state for flows with

streamwise invariance using fundamental fluid dynamics concepts; here, the discus-

sion in [23] is followed. The material derivative, from (1.1), for streamwise invariant

flows reduces to

D

Dt
=

∂

∂t
+ v

∂

∂y
+ w

∂

∂z
, (B.1)

the Navier-Stokes and vorticity equations in the streamwise direction are

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
+ v

∂U

∂y
= ν

(
∂2u

∂y2
+

∂2u

∂z2

)

(B.2)

Dωx

Dt
= ν

(
∂2

∂y2
+

∂2

∂z2

)

ωx (B.3)

where u, v, w are the velocities in their respective x, y, z directions, U is the steady

laminar profile for sinusoidal shear flow and ωx is the vorticity, both in the stream-

wise direction. It is useful to note that the flow in the cross-stream direction has
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decoupled from the mean flow as shown in (B.3). The continuity equation, for

incompressible flows, states that the divergence in the fluctuations is zero and is

given by

∇ · u = 0. (B.4)

The energy in the cross-stream direction is defined as

d

dt

∫∫

(v2 + w2)dy dz = 2

∫∫ (

v
∂v

∂t
+ w

∂w

∂t

)

dy dz. (B.5)

From the Navier-Stokes equations in the y and z directions

∂v

∂t
= ν

(

v
∂v

∂t
+ w

∂w

∂t

)

− 1

ρ

∂p

∂y

∂w

∂t
= ν

(

v
∂v

∂t
+ w

∂w

∂t

)

− 1

ρ

∂p

∂z
, (B.6)

equation (B.5) reduces to

d

dt

∫∫

(v2 + w2)dy dz = 2ν

∫∫

v

(
∂2

∂y2
+

∂2

∂z2

)

v dy dz

+ 2ν

∫∫

w

(
∂2

∂y2
+

∂2

∂z2

)

w dy dz. (B.7)

Furthermore, suppose that

∫

v
∂2v

∂y2
dy =

[

v
∂v

∂y

]∞

0

−
∫ (

∂v

∂y

)2

dy (B.8)

where the first term of (B.8) goes to zero, then

∫∫

v

(
∂2

∂y2
+

∂2

∂z2

)

v dy dz = −
∫∫

[(
∂v

∂y

)2

+

(
∂v

∂z

)2
]

dy dz. (B.9)

Applying (B.9), Eqn (B.7) may now be written as

d

dt

∫∫

(v2 + w2)dy dz = −2ν

∫∫
[(

∂v

∂y

)2

+

(
∂v

∂z

)2

+

(
∂w

∂y

)2

+

(
∂w

∂z

)2
]

dy dz.

(B.10)
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Rearranging the right-hand side in terms of vorticity, which is equivalent to the

curl of the velocity, i.e.

ω = ∇× u, (B.11)

the x-component of the vorticity is defined as

ωx =
∂w

∂y
− ∂v

∂z
. (B.12)

By squaring (B.12) and using the definition of continuity where ∂v
∂y

= −∂w
∂z

, Eqn.

(B.10) can be re-written as

d

dt

∫∫

(v2 + w2)dy dz = −2ν

∫∫

ω2
xdy dz. (B.13)

From the above, the energy in the cross-steam direction accordingly decays to zero,

therefore v → 0 and w → 0 as t → ∞.

It can be shown that for a streamwise invariant flow, the streamwise velocity u

cannot become infinite in finite time [3]. Suppose that enough time has passed so

that v and w are very small; a similar argument can be made to show that u must

also decay to zero, as follows. For v = w = 0, (B.2) reduces to a two-dimensional

diffusion equation for u:

∂u

∂t
= ν

(
∂2u

∂y2
+

∂2u

∂z2

)

. (B.14)

By forming the dot product of u with (B.14) and integrating, it is found that the

energy in the streamwise direction is

d

dt

∫∫

u2dy dz = 2ν

∫∫ (

u
∂2u

∂y2
+ u

∂2u

∂z2

)

dy dz. (B.15)
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Using (B.8) to evaluate the right-hand side, (B.15) is rearranged to

d

dt

∫∫

u2dy dz = −2ν

∫∫
[(

∂u

∂y

)2

+

(
∂u

∂z

)2
]

dy dz. (B.16)

Since the right hand side of (B.16) is negative provided u 6= 0, the energy in

the streamwise direction monotonically decays to zero, hence u → 0 as t → ∞.

Therefore, although the velocity in the streamwise direction may encounter some

transient growth, it must eventually decay to zero. An analogous proof of decay,

following transient energy growth, for flows with streamwise invariance is given

in [14, 15].
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