Dynamical Systems with Symmetry - ME225DS
 Winter 2008

Homework \#3 - Due Thursday, January 31, in class

1. Consider the symmetric group S_{8}.
(a) (5 pts) Simplify the product

$$
\pi_{1}=(1,2,3)(1,2,8)(3,7)(2,7)(1,2,4,5,8)(7,8)(1,3,2)(1,7)
$$

by writing it as a product of disjoint cycles.
(b) (5 pts) Find the inverse of the element

$$
\pi_{2}=(1,3,4)(2,7)
$$

2. Consider the group

$$
D_{4}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle=\left\{e, \gamma_{2}, \gamma_{2}^{2}, \gamma_{2}^{3}, \gamma_{1}, \gamma_{1} \gamma_{2}, \gamma_{1} \gamma_{2}^{2}, \gamma_{1} \gamma_{2}^{3}\right\}
$$

with

$$
\gamma_{1}^{2}=e, \quad \gamma_{2}^{4}=e, \quad \gamma_{2} \gamma_{1} \gamma_{2}=\gamma_{1}
$$

(a) (10 pts) Find all normal subgroups of D_{4}, and for each normal subgroup H find the quotient group D_{4} / H.
(b) (5 pts) Let H be a subgroup of Γ. The normalizer $N(H)$ of H is

$$
N(H)=\left\{\gamma \in \Gamma: \gamma^{-1} H \gamma=H\right\} .
$$

(Note that, in general, the normalizer is the largest subgroup of Γ that has H as a normal subgroup.) For $\Gamma=\mathrm{D}_{4}$, what is the normalizer of $H=\left\{e, \gamma_{1}\right\}$?
(c) (5 pts) What is the quotient group $N\left(\left\{e, \gamma_{1}\right\}\right) /\left\{e, \gamma_{1}\right\}$?
3. (10 pts) Let H be a subgroup of Γ, and let $\gamma_{0} \in \Gamma$. The set

$$
H \gamma_{0}=\left\{h \gamma_{0}: h \in H\right\}
$$

is called the right coset of H determined by γ_{0}. Prove that two right cosets $H \gamma_{1}$ and $H \gamma_{2}$ are either identical or have no elements in common.
4. (20 pts) Describe all groups of order 21.

