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Abstract

Spike timing synchronization across different neurons can be selective for the
situation where the neurons are driven at similar firing rates, a “many are equals”
computation. Such synchronization can be achieved, in the absence of synaptic
interactions between the synchronizing neurons, through phase-locking to a
common underlying oscillatory potential. Based on this principle, we instantiate an
abstract algorithm for robust odor recognition into a model network of spiking
neurons whose main features are taken directly from known properties of the
primary stages of biological olfactory systems. In this network, recognition of
known odors is signaled by spike timing synchronization of specific subsets of
'mitral cells." This synchronization is highly odor-selective and invariant to a wide
range of odor concentrations. It is also robust to the presence of strong distractor
odors, thus allowing odor segmentation within complex olfactory scenes.
Information about odors is encoded in both the identity of glomeruli activated above
threshold (1 bit of information per glomerulus), and in the analog degree of
activation of the glomeruli (approximately 3 bits per glomerulus).

Introduction

We have previously described a spiking neural network model in which a
computation dubbed ‘MANY ARE EQUALS’ was imbedded (Hopfield and Brody,
2000; 2001). In this network, when the external inputs to a large group of neurons
were equal or closely similar to each other, synaptic interactions between the
neurons were such that the neurons’ action potentials became synchronized. Thus,
synchronization served to compute, and indicate, similarity of inputs. The
computational power of this operation was demonstrated by using it to construct a
simple model network that was capable of a complex computation, recognizing a
short spoken word. Appropriate invariance is a feature of many pattern recognition
problems. The ‘MANY ARE EQUALS’ computation contains an in-built invariance
in that synchronization does not depend on the particular input level that is similar
across neurons. In our example network, this invariance was used to achieve time-
warp invariant recognition.



We now describe how the ‘MANY ARE EQUALS’ computation can be

implemented in a greatly simplified network in which synaptic interactions between
the synchronizing neurons are not necessary. The lateral synaptic interactions
between neurons, which earlier were responsible for the synchronization
phenomenon, are instead abstracted into a common subthreshold oscillation that
provides a common timing signal to all the neurons. Synchronization of action
potentials across neurons can then be achieved through each neuron’s phase-locking
its action potentials to the common oscillation; when the neurons phase lock at the
same phase, their input currents must be equal. We further show that the problem
of intensity-independent odor recognition can be transformed into a ‘MANY ARE
EQUALS’problem. Using the abstract sensory model described by Hopfield (1999),
we show that this implementation of odor recognition by a network of spiking
neurons can deal with mixtures and unknown backgrounds as well as a wide range
of concentrations.

Our new network, although simplified, still requires recognition units that will

detect synchrony in selected subsets of sensory neurons. (Such recognition units will
be neurons selective for words in the audition case, and highly selective for odors in
the olfaction case). The identity of the sensory stimulus that recognition units are
selective for is encoded in the pattern of feedforward synaptic connections from the
sensory units to the recognition unit. A biological system must learn such
connections, and in a companion paper (Hopfield and Brody, following paper) we
develop the synaptic plasticity rules that can lead to the development of such
feedforward connections in a biologically plausible fashion.

Our approach here and in the companion paper has not been to develop highly
detailed models that mimic all features of neurobiological systems. Rather, we have
tried to develop models that most clearly and simply illustrate the essence of the
computations. Many features of the models have been directly inspired by
properties of biological olfactory systems. In particular, the basic architecture (e.g.,
input dimensionality, convergence/divergence) has been chosen to match that of the
mammalian olfactory bulb. As a shorthand for communication, we therefore
sometimes use biological terms to refer to matching concepts in the model (e.qg.,
"glomeruli” encode the activity of a single receptor type, and each glomerulus
provides the principal input to a number of "mitral cells"). When successful, such
simplified models can be used as guides for later development of more detailed and
biological models. For example, the common subthreshold oscillatory drive,
observed in the primary stages of biological olfactory systems, and used here, could
be created in a variety of ways: through an external oscillator, through an

embedded oscillating network, or through feedback synaptic connections between
the synchronizing neurons themselves. However, elucidation of the specific
mechanism responsible for such an oscillation is not necessary at this computational
level of analysis.

The basic synchronization phenomenon



A non-adapting neuron that isdriven by an oscillating subthreshold potential plusa
constant current input can phase-lock its action potentials with the oscillating
potential. Thisphenomenon isresponsiblefor the phase-locking of the action
potentials coming from the cochlear nucleus neuronsin responseto low frequency
tones (Lavine (1971); Johnson (1980)). It isa phenomenon of most neural models,
including Hodgkin-Huxley neurons (s mulation not shown) and integr ate-and-fire
neurons. Thereisarange of strengths of the constant current input at which the
phaselocking will be 1-to-1 in the sense that each cycle of the oscillation will contain
one spike from the neuron. In the absence of noise, the phase of this spike with
respect to the underlying oscillation will be precisely determined by the strength of
the constant current input.

In the presence of noise, the phasing will no longer be precise, but there will
nevertheless be atendency tofire at a specific phase. Fig.(1) showsthe phase
locking of integrate-and-fire neurons having different current inputsin the presence
of acommon sinusoidal input current.

Figure 1. Action potential rastersfor integrate-and-fire neuronsin the presence of a subthreshold
sinusoidal current injection. Each row representsa neuron, and each neuron has a different DC
current injected into it, indicated by the ordinate. Dotsindicate the time of action potentials. The
common sinusoidal input current isindicated in the upper plot, and by the gray-scale shading
underlying the action potential rasters. Gaussian noiseisinjected into each cell. DC currents
between 0.5 and 0.7 (arbitrary units) result in excellent phase-locking, with phase progressing in an
orderly and almost linear fashion along this current range. The cell time constant was 20 msec, and
thedrivefrequency 35 Hz.

These phase-locking properties can be used to construct an M AE operation. If many
neuronsareall recelving a current input that iswithin the 1-to-1 phaselocking
range, and all of theseinput currentsare similar, then the neuronswill all befiring
at asimilar phase with respect to the underlying oscillation. The neurons will
therefore all be synchronized to each other. In contrast, if the neuronsreceive
constant current inputsthat are different from each other, or that are not within the
1-to-1 phaselocking range, then the spike timing synchronization acr oss neur ons will
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be much weaker. Thus, as in our previous network (Hopfield and Brody, 2000,
2001) similarity of inputs is signaled by synchronization of action potentials. In the
present network, however, synchronization across neurons is achieved through
synchronization to a common underlying signal, instead of being achieved through
direct neuron-to-neuron synaptic interactions.

A comparison of the MAE operation, computed through two different
synchronization-promoting mechanisms, is illustrated in Fig.(2). The left hand half
of this figure illustrates phase locking via ‘*horizontal’ connections as presented in
earlier work; the right hand the same MAE operation computed by a network
without horizontal connections, but using instead a common input sub-threshold
current to produce synchronization. Similar synchronization is seen with both
mechanisms, although there are differences. For example, the interspike separation
when well synchronized is always the reciprocal of the period of the common drive
in one case (right column), while it depends on the current level at which the
currents converge in the other (left column).
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Figure 2. "Many are equals" synchrony, indicating that the input currents to many cells are about

the same, implemented through two different mechanisms: ‘horizontal’ synaptic interactions
between a set of cells (a-c), versus a common input sinusoid to otherwise independent cells (d-f).
Each cell in panels (b) and (e) has a time-dependent current injected into it; the currents for these
cells are shown in (c) and (f). The spike rasters and their movement into and out of synchronization
are shown in (b) and (e). The synchrony is also illustrated in panels (a) and (d), which show the
membrane potential of a neuron that receives both excitatory (synaptic currents exponential= 2
ms) and inhibitory (alpha function currents, T = 6 ms.) input currents from the spike rasters shown

in (b) and (e), respectively. For panels (a) and (d), the cell time constant is 6 ms. In (d-e), the
underlying input frequency is 35 Hz.



Odor recognition

Consider a rat inhabitant of the New York City subway, scurrying along the tracks
in search of food. For olfaction to be a useful modality in this endeavor, the rat must
be able torecognize odors. But food odors in the natural world will rarely exist
alone—they will usually be experienced in the context of a large variety of other
odors also present in the environment. Thus, the rat must be able iegment, or
separate, a known odor from its olfactory background (similar to the way an
experienced cook may identify, by smell, a particular spice used in a soup).
Furthermore, the rat will experience an odor at various distances from the source,
implying experience of it at many different concentrations. Yet all these different
concentrations must be interpreted as coming from the same odor source; odor
recognition must thus be significantlyconcentration-invariant.

Hopfield (1999) proposed an abstract algorithm that simultaneously addressed these
three problems. The essential idea is based on the fact that there is a large family of
odor receptors cell types, numbering approximately 1,000. Each receptor cell class
responds to many different odors (Sicard and Holley 1984; Buck 1996) and any
particular odor thus activates, in a concentration-dependent manner, a substantial
subset of these receptors (on the order of hundreds of receptor cell types). In the rat,
each glomerulus in the olfactory bulb receives input from ~ 10,000 sensory cells
(Shepherd and Green 1998), all of which express a single type of receptor protein
(Buck and Axel 1991). There are ~ 1000 glomerular types, corresponding to the
number of receptor cell types. The primary dendritic branches of a single mitral cell
in the olfactory bulb lie largely within one glomerulus, and many different mitral

cells share a single glomerulus (Shepherd and Green 1998). Here we will call the
different mitral cells of a glomerulus the “glomerular repertoire” corresponding to

a receptor type (Figure 3a). We propose that during odor recognition, the many
neurons within a repertoire are all similarly driven by activation of their receptor

type, but in addition have different positive bias currents driving them (Fig. 3b).

We achieved this diversity here by assigning a random bias current to each
repertoire cell, the magnitude of which was then assumed to be a fixed property of
the cell.
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Figure 3. Glomerular repertoire and many-are-equals odor recognition. a, Each glomerulus has a set
of repertoire cells, each of which is driven by a random bias current, with strength represented by
the length of a black bar. b An odor that activates the 4 illustrated glomeruli above threshold. The
length of the gray bars indicates the degree of activation of each receptor type. Thae:/ input

current to each of the repertoire cells is its bias current plus its sensory current, and is represented
by the location of the right ends of the black bars. We can find a set of repertoire cells, designated by
asterisks, that all have total input current near to the same value (vertical dashed line); these can be
used for recognition of this particular odor through the MAE operation. c. Sum of receptor

activation plus selected repertoire cell bias currents (asterisked bars in b) for a target odor. d. Sum
of receptor activation plus selected bias currents for a non-target odor.

Now, consider a particular odor that generates an analog pattern of glomerular
activation. If each glomerulus has a repertoire of 'mitral' cells driven by random

bias currents as in Fig 3 a, we can find a set of repertoire cells (asterisks in Fig. 3b)
that receives, in addition to the receptor drive, a bias current such that the sum of
the receptor and bias currents is similar, across glomeruli. Presentation of the target
odor will then lead to similar net activation across the selected cells (Fig. 3c), while a
different, non-target odor would lead to quite diverse activations across the selected
cells (Fig. 3d). In essence, the set of bias currents of the selected mitral cells acts a
“lock” that corresponds to the “key” of receptor activations for a specific (target)
odor. The problem of odor recognition has thus been transformed into an MAE
problem: the target odor is deemed present when many of the selected mitral cells
have net activations (receptor + bias) that are closely similar to each other.

How does receptor activation depend on odor concentration? Let i index receptor
types, and let the coverage; of receptor type i, in the presence of odor o, be given by

I = GKoi
where ¢ indicates the concentration of odor o and k is a constant that depends on

both receptor type and odor identity. The response defines~1000-dimension odor
vector having componentsit The net signal reaching the mitral cells in the
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glomerulus corresponding to receptor typei will be denoted s. We assumethat s
encodes odor concentration in aroughly logarithmic fashion, that is:

s =k log(1 + ck.i/0)
s~=0 for c,< O/ s~klog(kas/0) +klog(c,) for co> 0/ks (1)

wherek isthe samefor all receptor types. Below we will loosely refer to s asthe
glomerular activation corresponding to receptor typei. Theterm 6/k, representsa
threshold concentration for a logarithmic transfor mation, below which glomerulusi
isnegligibly activated, and above which the activation of glomerulusi is
approximately logarithmic. Thus a changein the concentration of an odor will lead
to an additive changein s across all above-treshold glomeruli. Figure 4a-d showsthe
receptor + biasactivationsfor a set of mitral cellsdriven by their target odor at
different concentrations. At the highest concentrations (Figs. 4a,b), a changein
concentration leads only to a change in the common level at which the mitral cells
aredriven: similarity of net drive acrossmitral cellsis preserved on concentration
changes. Thus, odor recognition based on the M AE operation will be concentration
invariant. As concentration fallsfurther, somereceptorsfall below threshold (Fig.
4c); corresponding mitral cells cease having a net drive similar totheothersin the
selected set. Sincethe MAE operation isrobust to a few outliers, correct odor
recognition will still be possible. At very low concentrations, where most or all
receptorsare below threshold, the mitral cellsaredriven only by their bias currents,
and recognition isno longer possible (Fig. 4d).
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Figure 4. Activation of selected mitral cellsfor atarget odor when that odor is presented at different
concentrations. Same conventions asin Fig. 3a. Panelsa, b, ¢, d, illustrate presentation of the target
odor at successively lower concentrations. At the very lowest concentration (panel d), none of the
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illustrated gomeruli are driven above threshold, and the mitral cell activities reflect only their bias
currents.

Following Hopfield (1999), we have developed this specific description in the context
of logarithmic encoding of concentration. However, the approach is generalizable to
other situations. Let the activation of each receptor type; be given by some

arbitrary but invertible function f ; that depends on both odor identity and odor
concentration.

ri =fi(c; 0)

The logarithmic encoding described above is a special case of this, where odor
identity determines threshold and k;, and odor concentration determines activation.
To test the hypothesis that some specific odor o is present, the functionsan be
inverted to get an estimate, from each;rof the concentration of odor o.

Gi =f(ri; 0)

When odor o is present, the estimates;icwill be the same across all receptors i. In
contrast, when receptors are driven by a different odor, u, the estimates,; will be
different to each other. This is true independently of concentration. Thus, an MAE
operation on the estimates £ will result in concentration-invariant odor
recognition.

The special case of logarithmic odor encoding permits concentration-invariance
without inverting the function f(). There is a range over which this may correspond
to the biological situation (Duchamp-Vieret et al. 2000; Meister and Bonhoeffer
2001). However, for some other odor encodings, neural implementation of the
inversion of f() is also feasible. For example, if receptor activation depended linearly
on odor concentration, = Ki.dor Codor , @ Variety of multiplicative synaptic weights
from a receptor to the glomerular repertoire would replace the additive bias
currents used in the logarithmic encoding case. To recognizing odor o, the mitral
cell selected in glomerulus i would be the one that had synaptic weight most closely
proportional to 1/k;. If odor encoding were quadratic, appropriate synaptic
depression from receptors to repertoire cells could be used to invert f(); if odor
encoding were proportional to the square root of concentration, synaptic facilitation
could be used to invert f(). In the absence of detailed knowledge, we use here the
simplest assumption, logarithmic encoding, but the essence of the computation can
readily be implemented biologically for other encodings as well.

So far, we have describedoncentration-invariant 0dor recognition. Odor segmentation can
be achieved by noticing that odors typically activate strongly only a subset of the
available receptor types. Even if a strong distractor odor drives most of the target
odor’s receptor types above threshold, when both the distractor and the target are
present, the relative activations of a significant fraction of the target’s receptor
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types will be dominated by the target odor, allowing recognition of the target odor
separately from the background. We explore this point more fully in the simulations
of Fig. 6b below.

Simulation of a network of neurons for the model olfactory problem

We now demonstrate that the algorithm described above can be successfully
implemented in a network of spiking neurons. Since we are unable to validate this
implementation analytically, we instead performed extensive simulations using
simple integrate-and-fire units. Our goal is to provide a proof-of-concept that noisy
spiking neurons, using the MAE operation, can (1) achieve highly odor-selective
synchronization; (2) do so in a manner invariant to a wide range of odor
concentrations; and (3) do so in the presence of strong background distracting
odors. In addition, we used the results of the simulations as the basis for evaluating
what information about the odor vector is used in the network decision.

In our simulated network, there were 'odor inputs' from 400 glomeruli. Odors were
modeled as in Hopfield (1999), with components of random strength spread over a
relative intensity range of 10. An odor strength of 1.0 was defined as the strength of
odor such that half (statistically) of the glomeruli received input which would drive
them above threshold. For glomeruli driven above threshold, the input to the
glomerulus was taken to be logarithmically encoded.

Each glomerulus had its own ensemble of repertoire cells, with a range of steady
bias currents. The bias currents for repertoire cells were chosen at random within a
defined range (Fig. 3a). For most of the simulations, 14 repertoire cells were
assigned to each glomerulus.

All repertoire cells were also driven by a common oscillatory input current at 35 Hz.
The total input to each repertoire cell was thus

Isens.ory + Ibias + Iperiodic COS(Dt)

where lsensory fOr each repertoire glomerulus was linearly proportional to sof

equation (1). The repertoire cells were modeled as single compartment integrate-
and-fire neurons with 20 ms. time constants. The cells fired 'action potentials' of
negligible duration when their cell potential rose above a threshold. The cell
potential was then reset to a lower level, where it was held for a 2 ms. dead time.
Gaussian random noise was injected at each time step to each cell. Model cells with
these same parameters were used in an earlier study (Hopfield and Brody 2000,
2001).

The odor stimulus, represented by the set of activationg was a single 'sniff' lasting
0.5 sec. Mammals often sniff more rapidly than this, but also use multiple sniffs in
making decisions. 0.5 sec. was chosen in order to simulate a sniffing phenomenon,



while getting enough information in a single sniff to make multiple sniffs
unnecessary. When two odors are present, their components add. For the most
general case dealt with in the simulations, described as being due to two odorants A
and B simultaneously present, at concentrationss@nd G, the functional form of the
coverage of each receptor type i is half a sine wave

ri = [Sln(zlc *(t_t start)] [CA kAi + % kBi] If tstart < t <tstart + 05, 0 OtthWlse
0.5-sec long sniff

where ky is the input to the glomerulus from odor A alone at strength unity, and
lies in the range 16to 1C° (and similarly for B). The activation s of glomerulus i is
log(r;) if ri > 1 and is zero otherwise. Thus, if a single odor is present at
concentration 1.0 (¢ = 1, ¢=0), half the glomeruli will be activated above threshold.

Synchrony across chosen subsets of repertoire cells (e.g., starred repertoire cells in
Fig. 3c) is the event that indicates recognition of a specific odor. We use 'reportes’
cells, modeled (as earlier) in the same fashion as repertoire cells, but with faster (6
ms.) time constants, as simple detectors of the presence of synchrony. Connections
to ay-cell designed to recognize odor A were chosen by the following procedure:
approximately 200 glomeruli are driven above threshold by odor A at concentration
1.0. One repertoire cell was chosen from each of these glomeruli to make a
connection to they-cell; the repertoire cell was chosen so that the sum of the bias
current and the sensory input from odor A at concentration 1.0 was at the center of
the range of input currents where the repertoire cells showed good phase-locking.
Synaptic currents in they-cells were generated as a result of the activity of the
repertoire cells from which they received connections.

It is unlikely that biology uses single cell responses to correspond to single odors.
We use a 'grandmother cell' representation of an odor as a surrogate of a 'highly
selective cell' in neurobiology. In they-cell representation, there is no limit to the
number of odors which could be separately recognized, each by its ogueell. In
actuality, biology is much more likely to find a combinatorial representation of
odors.

The y-cells are driven by both excitatory and inhibitory synapses from the

designated repertoire cells. The important part of this drive is excitatory input,

which was modeled as a fast current, decaying exponentially with a 2 msec time
constant. All excitatory synapses were of the same strength. Since the input to the
repertoire cells does not involve the synapses in question, all synapse properties are
irrelevant to the basic synchronization phenomenon.

Inhibitory synapses with a 6 msec time constant were introduced to help keep the
systenry-cell inputs in automatic balance. The function served by the inhibition
would be as well served by an inhibitory network driven by the inputs of all
repertoire cells, and inhibiting all y-cells. The strength of the inhibitory synapses
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was chosen so that the total charge that flowed intojacell due to an action
potential in one of its repertoire cells was zero.

Results of Simulations

After constructing a network as described in the previous section, we recorded the
behavior of the 'reporter' y-cells in response to odors at various concentrations and
odor mixtures. We now show that a-cell's spiking is highly odor-specific,
responding to its target odor (only) over a wide range of concentrations, and
recognizing its odor in the presence of strong distractor scents. We examine the
extent to which the relative activations of different glomeruli, rather than merely
the binary pattern of active vs. inactive glomeruli, are essential to these results and
other olfactory tasks.

Figure 5b illustrates the behavior of ay-cell designed to recognize an odor labeled A,
in response to a presentation of A at concentration 1.5. Thecell spikes robustly. In
contrast, in response to a different odor, B, at a concentration of 3.0, thyecell does
not fire any spikes (Fig. 5d). Panel 5a illustrates the response of tirxeell to a much
higher concentration of odor A; panel 5c¢ illustrates the response to a much lower
concentration. Recognition events defined as 4 or more spikes from the A-selective
v-cell will thus be invariant to at least a 50-fold range of concentrations. We have
not investigated the ultimate odor selectivity of the system here, but empirically we
examined the response of an odor-selectiyecell to 3,000,000 non-target random
odors of strength 1.5. For computational efficiency, we used smaller, and therefore
less selective, systems (the selectivity increases rapidly with the number of
glomeruli). At 280 glomeruli, none of the 3*10random odors examined generated
even a single-cell spike in response. A 400 glomerulus system would be even more
selective. Requiring 4 spikes for odor identification is thus an extremely
conservative criterion, given the unresponsiveness of the A-selective cell to random
odors.
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Figure 5. Odor-selective, concentration-invariant responses of a y-cell. a-c, response of a y-cell
designed to be selective for odor A, upon presentation of odor A at three different concentrations.
The solid line representsthe membrane potential of they-cell. Spiking threshold is 20 mV; small
vertical lines above the membrane potential indicate spikes. Vertical gray linesindicate the
beginning and end of the 0.5-second long odor presentation. d, Response of same y-cell upon
presentation of a different, random, odor B.

Figure 6a shows theresponse of a y-cell selectiveto odor A when presented with a
mixture of odor A at concentration 1.0 and odor B at concentration 3.0. Thiscell,
which does not respond to B alone, doesrespond briskly to the mixture. By
contrast, a cell which isresponsiveto athird random odor C will not respond to A,
B, or to thismixture (not shown). Similarly in Figure 6b they-cell selectivefor B
respondsto this mixture. These patternsindicatethat a cell can identify itsown
target odor even in the presence of a background which isstronger than the target
odor, and that thisresponseisindeed theresult of the presence of itstarget, not a
general response of all cellsto a complex mixture.
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Figure 6. Odor selectivity and odor segmentation. Same format as Fig. 5. a, response gfcall
selective for odor A upon presentation of its target odor plus a stronger background odor. b,
response of a-cell selective for the background odor B. c, response ptell selective for odor A
upon presentation of a distorted odor A (see text). d, responsejetell selective for odor A upon

presentation of a random odor that has 100% overlap with odor A of glomeruli driven above
threshold.

The analog strength of the glomeruli driven above threshold is essential in these
recognitions. They are not merely the result of using the pattern of glomeruli driven
above threshold (which varies strongly with concentration, Meister & Bonhoeffer
2001). To demonstrate this, we constructed an odor A" which drove above threshold
precisely the same set of glomeruli driven above threshold by odor A, but with
different, random analog activations. Figure 6d shows that the A-selectivecell did
not fire any spikes in response to this “scrambled' odor A. The binary pattern of
above-threshold glomeruli does not describe the selectivity of this system: theilog
pattern of activations is crucial.

Unlike a response based only on the identities of glomeruli driven above threshold,
increasing the strength of the drive to above-threshold glomeruli cadecrease the

response of a-cell. Fig 6¢ shows the behavior of an odor A-specifiecell in
response to odor A plus the injection of a common excitatory current into half of
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odor A's glomeruli. This current was equivalent to increasing the 'effective
concentration' driving the injected glomeruli by a factor of 4. The result is that the
v-cell virtually ceases to generate action potentials, even though half of odor A's
glomerular inputs were reinforced. This counterintuitive result comes about not by
activation of an inhibitory pathway, but from the failure of all cells to share in a
common phase of synchronization.

The analog aspect facilitates the analysis of mixtures (or rejecting backgrounds), an
important olfactory task. Figure 6 indicates that two random odors A and B that
activate only partially overlapping sets of glomeruli can be individually recognized

in the mixture 1*A + 3 *B. We have also examined this separation problem in the
much more difficult case, when odorst and B are chosen so that they drive exactly the same
glomerular set. The decomposition is nonetheless successfully carried out by the
network. The y-cell for odor A responds somewhat less robustly than in the
completely random case, but typically produces ~ 5 spikes in response to A alone
and to 1*A + 3*B, yet produces zero spikes in response to B alone (data not shown).
In this case, all three of A alone, B alone, and 1*A + 3 *B have exactly the same
pattern of glomeruli driven above threshold. Odor recognition based only on the
pattern of glomeruli activated above threshold cannot accomplish this task, nor can
it explain the capacity of the network to deal with this problem.

The quantity of analog information used

For channels that are driven strongly enough that their responses are above
threshold, the pattern of analog responses is essential to the recognition process.
How much information is carried by the analog degree of activation of each
glomerulus? We address this quantitatively by varying the number of repertoire
cells per glomerulus: if we had a system with only 1 repertoire cell per glomerulus,
then for glomeruli driven above threshold by an odor that single repertoire cell
would be the 'nearest' one in the selection process used to choose connections for
recognizing the odor. In this case, therefore, the representation of known odors
would have no information about the relative degrees to which different glomeruli
were driven above threshold by the target odor—in this limit, there would be zero
analog information stored. When there are n repertoire cells per glomerulus,
knowing which is nearest contains some information about the analog strengths of
the target odor; the larger the number of repertoire cells n, the more precisely those
analog strengths are known.

The information in 'bits' due to knowing which repertoire cell (of the random set) is
closest can be evaluated in straightforward but tedious mathematics. We have done
a Monte-Carlo evaluation of that mathematics to show that the information

available in principle per glomerulus for n=2, 4, 7, 14, and 28 repertoire cells is 0.87,
1.76, 2.53, 3.50 and 4.48 bits, respectively. For large n this grows as 1 bit per two-
fold increase in n. How much of this information is used by the system?
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Fig 7 shows histograms of the number of spikes produced byyaell nominally
selective to an odor when that odor is present, as a function of n, the number of
repertoire cells per glomerulus available to the system. With 2 repertoire cells, the
cell does not respond at all: the representation of the analog strengths of the target
odor is too poor to represent the odor within the accuracy detectable by the system.
As more repertoire cells are added, the analog strengths are better and better
represented by the choice of which repertoire cells are connected to tpeell, and
more spikes are likely to be generated. The response saturates shortly beyond 14
repertoire cells. This shows that the system does not use a storage precision for
known odors greater than the information per glomerulus corresponding to 14
repertoire cells/glomerulus. Thus, f

rom Fig. 7 we conclude that the useful precision in the analog value of the logarithm
of the odor intensity is about 3.5 bits.
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Figure 7. The dependence of gcell designed to be responsive to a given odor on the number of
repertoire cells used. Statistics collected on 300 odors, with 2, 4,7, 14, and 28 repertoire cells per
glomerulus, representing 0.87, 1.76, 2.53, 3.50, and 4.48 bits of information about the degree to
which a glomerulus is driven above threshold. N_glomeruli = 400.

To further pursue the selectivity available through making use of analog values, we
examined the behavior of g-cell selective for an odor A in response to a set of
random odorsiall involving only exactly the same glomeruli as odor A being driven above
threshold. Thus, the only thing that distinguishes these odors from each other is their
different analog strengths across the set of activated glomeruli. If by ‘'odor pattern’
one were to mean only the identity of the set of glomeruli that are driven above
threshold, all these random odors would be functionally equivalent to odor A, and
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they should all produce the vigorous ~ 15 spike response that odor A does. We
applied 3,000,000 such random odors to a system which, for computational
efficiency, was a smaller system with 200 glomeruli. Only a small fraction, 4*2@f
the total produced a single spike, andone produced more than one spike. The selectivity
and signal to noise increase with the number of glomeruli; with 280 glomeruli, no
action potentials were generated by any of the 3*2@andom odors. With 400 or

more glomeruli, the functional selectivity due to analog information will be enormous.
In the more natural case of random odors across all glomeruli (i.e., not always using
the same set of glomeruli activated above threshold), the functional selectivity is
even greaterfunctional

Conclusion

We have shown that noisy spiking neurons, using the many-are-equal operation, can
be configured, in a manner reminiscent of the anatomical and functional
organization of the olfactory bulb, to solve some of the major computational
problems faced by olfactory systems in a natural environment. The many mitral
cells for each glomerulus are tuned to the same odors, but they provide a repertoire
of different response strengths that are the basis for representing, and computing
with, analog signal strength. The presence of target odors is indicated by
synchronization across a number of 'mitral' cells in different glomeruli, and is

highly odor-selective. This selective synchronization is invariant to a 50-fold change
in concentration. Odor-selective synchronization still occurs in the presence of
strong background odors, thus allowing odor segmentation and the decomposition
of mixtures of known odors into their components.

The MAE operation allows a system to ignore badly contaminated information, as
long as it does not affect too large a fraction of information channels. The use of
MANY, rather than ALL, is essential to carrying out olfactory tasks, for a

particular odorant can easily dominate many glomeruli while other glomeruli are
responding to other odorants which are simultaneously present. In the simulations,
the higher the number of similarly-activated mitral cells connected to g-cell, the
more strongly they will drive they-cell. We can choose connections strengths and
thresholds for they-cell such that strong firing will result if half or more of the

mitral cells are synchronized. This allows high odor selectivity, since it is highly
unlikely that a random odor would match a subset of this size. At the same time, this
threshold level allows significant robustness, since any half of the receptor set may
be corrupted without disrupting odor recognition (Hopfield ez al. 1998).

In this scheme, it is the relative activations between glomeruli that are the key to the
definition of a target odor (Fig. 3a). Thus, differentiating between two individually
presented random odors that have as much as 100% overlap in the identity of
activated receptors is readily done (compare Figs. 4a-c to Figs. 5a-b; in the situation
more nearly resembling the natural olfactory problem, two odors have much less
glomerular overlap, further simplifying the problem). More surprisingly, and

thanks to the robustness to corrupted components of the MAE operation, the system
can even separately recognize two simultaneously presented random odors with
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100% glomerular overlap. Such problems would be totally intractable if odors were
described merely by a 'spatial pattern,’ i.e., by the identity of the glomeruli excited
above some fixed threshold.
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