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Cell motility over adhesive 
substrates: a periodic phenomenon

Simple model for linear motion:
DIMILLA PA, BARBEE K, LAUFFENBURGER DA
MATHEMATICAL-MODEL FOR THE EFFECTS OF ADHESION AND 
MECHANICS ON CELL-MIGRATION SPEED     BIOPHYS J 60 (1): 15-37 JUL 1991  



Models and measurements

Simple model for linear motion:
DIMILLA PA, BARBEE K, LAUFFENBURGER DA
MATHEMATICAL-MODEL FOR THE EFFECTS OF ADHESION AND 
MECHANICS ON CELL-MIGRATION SPEED     BIOPHYS J 60 (1): 15-37 JUL 1991  

Adhesion strength

Migration 
velocity

Ahmed Z, Underwood S, Brown RA.

Low concentrations of fibrinogen increase cell migration speed 
on  fibronectin/fibrinogen composite cables.

Cell Motil Cytoskeleton. 2000 May;46(1):6-16.



Each step of the process 
is highly regulated



Cell paths are random
Neutrophils

2 different cells

Epithelial cells

2 different conditions



Language for trajectories:
random walk theory

• Probability primer 
• Position jump process

Exact solution – Binomial distribution
• Mean and variance
• Random variables 

Distribution function
• Observations of Berg and Brown

Exponentially distributed random variable



Position Jump Process (1)
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diffusive behavior

S. Chandrasekhar, Rev. Mod. Phys. 15, 1, 1-89, 1943



Binomial distribution

N



Position Jump Process (2)
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Approximation for large times
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earlier times: correlations in motion 
-> cell migration is like that

S. Chandrasekhar, Rev. Mod. Phys. 15, 1, 1-89, 1943



Model Organism: E.Coli

Size: 1 µm
Swims by rotating ~ 6  flagella
Speeds: up to 10 µm/s



Bacteria can be attracted/repelled by 
chemicals

Mechanism ?

“Chemoreceptors in bacteria.”

Adler, 1969 “Science” – READ!

This is sensing, not metabolism

Macroscopic phenomenon:  
flux of bacteria = F(gradient of chemicals)

attractant

Based on genetic approach!!!
No molecules yet



Random Motility and Chemotaxis



Trajectories

In the absence of chemical gradients, a swimming bacterium 
executes a three-dimensional random walk consisting of 
runs of swimming in a straight line punctuated by tumbles



http://curie.che.virginia.edu/cleb/clebmain.html





From Trajectories
to Microscopic Parameters 

of Cell Migration

(Velocity Jump Process)



Berg and Brown, 1972
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1. Runs punctuated by tumbles
2. Both runs and tumbles are exponentially distributed
3. Runs are longer than tumbles 
4. Constant velocity

MODEL: instantaneous tumbles (neglect tumble time) 



MODEL: instantaneous tumbles (neglect tumble time) 

Velocity Jump Process
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1. Continuous space & Continuous time
2. At every point: right- and left-moving cells
3. Follow a single cell & a population of cells



Velocity Jump Process

Simulation
λ =1; t=[0]; 

x=[0]; V=1; STEPS=30

for j=1:5

for i=1:STEPS;

T=-log(1-rand(1))/λ;     
N=length(t);

t=[t;t(N)+T]; 

x=[x;x(N)+V*T];

V=-V;

end; plot(x,t); hold on;

end;
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Inversion method



Velocity Jump Process



Velocity Jump Process (1)
instantaneous changes in velocity
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Velocity Jump Process (2)
ballistic and diffusive regimes
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Velocity Jump Process (3)
fitting data

1. Microscopic parameters can be extracted from data
2. Next step: expressions for macroscopic fluxes

BE Farrell et al, Cell Motil Cytoskeleton, 16:279-293, 1990       - example
RB Dickinson, RT Tranquillo, AICHE J,  39 (12): 1995, 1993   - estimation algorithms



Example: 
Growth Factor-Mediated Cell Motility

distributions
MF Ware, A Wells, DA Lauffenburger,  J.Cell Science, 111, 2423-2432, 1998



Cancer Lett 1997 Oct 14;118(2):173-80

Locomotory phenotypes of human tumor cell lines and T 
lymphocytes in a three-dimensional collagen lattice.
Niggemann B, Maaser K, Lu H, Kroczek R, Zanker KS, Friedl P.

Active cellular locomotion is a feature of such diverse cell types as lymphocytes and cancer 
cells. The locomotory phenotype of a cell  should ultimately reflect the biochemical basis 
of different migratory strategies. We investigated the locomotory behavior of five epithelial 
cell lines and one non-epithelial human cell-line as well as human CD4+ T lymphocytes in a 
three-dimensional collagen type I matrix using time-lapse video microscopy and computer 
assisted cell-tracking. 

Migration velocity was up to 70 times lower in tumor cells (0.1-0.3 microm/min) as compared 
to T lymphocytes (7-7.5 microm/min), whereas the percentage of spontaneously active cells 
was up to twice as high in tumor cells (80-90%) in comparison to T lymphocytes (54%). 
Persistence, i.e. the degree of roaming, varied appreciably between the different cell types. 

In conclusion, velocity and persistence may describe distinct migration strategies in 
different cell types.



More Complex Models

1. Higher dimensions: turning operators, anisotropy, etc
• Dickinson RB.A generalized transport model for biased cell 
migration in an anisotropic environment. 
J Math Biol. 2000 Feb;40(2):97-135.
• Othmer HG, Dunbar SR, Alt W. Models of dispersal in 
biological systems. J Math Biol. 1988;26(3):263-98.

2. Finite tumble time
• Schnitzer MJ.Theory of continuum random walks and 
application to chemotaxis. Phys Rev E, 1993 Oct;48(4):2553-2568.

3. Internal state random walks
• Grunbaum D Advection-diffusion equations for internal state-

mediated random walks SIAM J APPL MATH 61 (1): 43-73 
JUL 19 2000 



From Microscopic Parameters 
to Macroscopic Balances

(Expression for the  Chemotactic Flux)



Macroscopic Flux (1)
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Macroscopic Flux (2)
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Three contributions to flux: 
1. random motility 
2. chemotaxis (right- and left- moving cells reverse differently) 
3. chemokinesis (gradient in cell velocity)

in phenomenological models
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To couple to external concentration field, combine 
with the experimentally determined dependencies of µ and Tp



Flux in a 1D Gradient (1) 
Motivated by Berg & Brown 1972 Experiments

random
motility

chemotaxis

gradient

receptor-mediated mechanism:
# of occuppied receptorsBN −

• runs & tumbles
• tumble duration is zero
• use velocity jump process in 1D
• motion in a gradient
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Flux in a 1D Gradient (2) 

time derivative 

seen by the “bacterium”
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Flux in a 1D Gradient (3)
Simple Ligand/receptor Equilibrium
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If the model is correct: macroscopic flux can be estimated from
data on binding and microscopic parameters for cell migration



Flux in a 1D Gradient (4): Analysis
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1. Random motility coefficient increases with temporal gradient

2. Random motility coefficient is a decreasing function of 
spatial gradient: at large gradients all cells swim in one direction

3. Chemotactic velocity has a limiting value: the population can 
not move faster than the maximal cell speed



“Chemotactic Wave Paradox”
Observation 

aggregation to the source of chemical wave
pulse of cAMP is nearly symmetric

Devreotes & Tomchik, Science 212, 443-6, 1981

Simple-model: 
symmetric chemotactic velocity 
no net directed motion

Worse: cells stay longer in the negative gradient region

Prediction: cells move away from the wave source

What is the problem?

Experiment: Cells move only in the wave front and not in 
the back => chemotactic response can not be determined 
by the concentration gradient alone

[cAMP]

x

c(kx+vt)

Wave

source

( )χ χ α=

chemotactic 
sensitivity



Model: Soll, Wessels, Sylwester, 1993 

Peak of the wave:
suppression of pseudopod 
formation and cellular translocation; 
freeze in cell morphology

Back of the wave:
increased frequency of random 
pseudopod formation; loss of 
elongate cell morphology; little 
net translocation

Translocation phase:
Rapid & persistent translocation; 
suppressed lateral pseudopods formation;
elongate shape

Decision phase:
high frequency of random 
pseudopod formation; nonpolar 
cell morphology; no net translocation

10-8 cAMP 10-8 cAMP

10-6 cAMP

~35 sec

~145 sec

~30 sec

~180 sec
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