
Hebbian Learning and Spiking NeuronsRichard Kempter�Physik Department, Technische Universit�at M�unchen,D-85747 Garching bei M�unchen, GermanyWulfram GerstnerySwiss Federal Institute of Technology,Center of Neuromimetic Systems, EPFL-DI,CH-1015 Lausanne, SwitzerlandJ. Leo van HemmenzPhysik Department, Technische Universit�at M�unchen,D-85747 Garching bei M�unchen, Germany(March 5, 1999)A correlation-based (\Hebbian") learning rule at a spikelevel with millisecond resolution is formulated, mathemati-cally analyzed, and compared with learning in a �ring-rate de-scription. The relative timing of pre- and postsynaptic spikesinuences synaptic weights via an asymmetric \learning win-dow". A di�erential equation for the learning dynamics isderived under the assumption that the time scales of learningand neuronal spike dynamics can be separated. The di�er-ential equation is solved for a Poissonian neuron model withstochastic spike arrival. It is shown that correlations betweeninput and output spikes tend to stabilize structure formation.With an appropriate choice of parameters, learning leads toan intrinsic normalization of the average weight and the out-put �ring rate. Noise generates di�usion-like spreading ofsynaptic weights.87.10.+e,87.22.Jb,5.90.+mI. INTRODUCTIONCorrelation-based or \Hebbian" learning [1] is thoughtto be an important mechanism for the tuning of neuronalconnections during development and thereafter. It hasbeen shown by various model studies that a learning rulewhich is driven by the correlations between presynapticand postsynaptic neurons leads to an evolution of neu-ronal receptive �elds [2{9] and topologically organizedmaps [10{12].In all these models, learning is based on the correla-tion between neuronal �ring rates, that is, a continuousvariable reecting the mean activity of a neuron. This isa valid description on a time scale of 100ms and more.�E-mail: Richard.Kempter@physik.tu-muenchen.deyE-mail: Wulfram.Gerstner@di.ep.chzE-mail: Leo.van.Hemmen@physik.tu-muenchen.de

On a time scale of 1ms, however, neuronal activity con-sists of a sequence of short electrical pulses, the so-calledaction potentials or spikes. During recent years experi-mental and theoretical evidence has accumulated whichsuggests that temporal coincidences between spikes on amillisecond or even sub-millisecond scale play an impor-tant role in neuronal information processing [13{24]. Ifso, a rate description may, and often will, neglect im-portant information that is contained in the temporalstructure of a neuronal spike train.Neurophysiological experiments also suggest that thechange of a synaptic e�cacy depends on the precisetiming of postsynaptic action potentials with respect topresynaptic input spikes on a time scale of 10ms. Specif-ically, a synaptic weight is found to increase, if presynap-tic �ring precedes a postsynaptic spike, and to decreaseotherwise [25,26]; see also [27{33]. Our description oflearning at a temporal resolution of spikes takes thesee�ects into account.In contrast to the standard rate models of Hebbianlearning, we introduce and analyze a learning rule wheresynaptic modi�cations are driven by the temporal corre-lations between pre- and postsynaptic spikes. First stepstowards a detailed modeling of temporal relations havebeen taken for rate models in [34] and for spike modelsin [22,35{43].II. DERIVATION OF THELEARNING EQUATIONA. Speci�cation of the Hebb RuleWe consider a neuron that receives input from N � 1synapses with e�cacies Ji, 1 � i � N ; cf. Fig. 1. Weassume that changes of Ji are induced by pre- and post-synaptic spikes. The learning rule consists of three parts.(i) Let tfi be the arrival time of the f th input spike atsynapse i. The arrival of a spike induces the weight Ji tochange by an amount � win which can be either positive1



or negative. The quantity � > 0 is a \small" parameter.(ii) Let tn be the n th output spike of the neuron underconsideration. This event triggers the change of all N ef-�cacies by an amount � wout which can also be positive ornegative. (iii) Finally, time di�erences between all pairsof input and output spikes inuences the change of thee�cacies. Given a time di�erence s = tfi � tn between in-put and output spike, Ji is changed by an amount �W (s)where the learning window W is a real-valued function.It is to be speci�ed shortly; cf. also Fig. 6.
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inputFIG. 1. Single neuron. We study the development ofsynaptic weights Ji (small �lled circles, 1 � i � N) of asingle neuron (large circle). The neuron receives input spiketrains denoted by Sini and produces output spikes denoted bySout.Starting at time t with an e�cacy Ji(t), the totalchange �Ji(t) = Ji(t + T ) � Ji(t) in a time interval T ,which may be interpreted as the length of a learning trial,is calculated by summing the contributions of input andoutput spikes as well as all pairs of input and outputspikes occurring in the time interval [t; t+ T ]. Denotingthe input spike train at synapse i by a series of � func-tions, Sini (t) =Pf �(t� tfi ), and, similarly, output spikesby Sout(t) = Pn �(t � tn), we can formulate the rules(i){(iii) explicitly by putting�Ji(t) = � t+TZt dt0 hwin Sini (t0) + wout Sout(t0)i (1a)+� t+TZt dt0 t+TZt dt00W (t00 � t0)Sini (t00)Sout(t0)= �"Xtfi 0win +Xtn 0wout + Xtfi ;tn0W (tfi � tn)#: (1b)In (1b) the prime denotes that only �ring times tfi and tnin the time interval [t; t+T ] are to be taken into account;cf. Fig. 2.
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FIG. 2. Hebbian learning and spiking neurons { schematic.In the bottom graph we plot the time course of the synap-tic weight Ji(t) evoked through input and output spikes (up-per graphs, vertical bars). An output spike, e.g. at time t1,induces the weight Ji to change by an amount wout whichis negative here. To consider the e�ect of correlations be-tween input and output spikes, we plot the learning windowW (s) (center graphs) around each output spike, where s = 0matches the output spike times (vertical dashed lines). Thethree input spikes at times t1i , t2i and t3i (vertical dotted lines)increase Ji by an amount win each. There is no inuence ofcorrelations between these input spikes and the output spikeat time t1. This becomes visible with the aid of the learningwindow W centered at t1. The input spikes are too far awayin time. The next output spike at t2, however, is close enoughto the previous input spike at t3i . The weight Ji is changedby wout < 0 plus the contribution W (t3i � t2) > 0, the sum ofwhich is positive (arrowheads). Similarly, the input spike attime t4i leads to a change win +W (t4i � t2) < 0.Equation (1) represents a Hebb-type learning rule sincethey correlate pre- and postsynaptic behavior. More pre-cisely, here our learning scheme depends on the time se-quence of input and output spikes. The parameters win,wout as well as the amplitude of the learning window Wmay, and in general will, depend on the value of the ef-�cacy Ji. Such a Ji dependence is useful so as to avoidunbounded growth of synaptic weights. Even though wehave not emphasized this in our notation, most of thetheory developed below is valid for Ji-dependent param-eters; cf. Sec. VB.B. Ensemble AverageGiven that input spiking is random but partially cor-related and that the generation of spikes is in generala complicated dynamic process, an analysis of (1) is aformidable problem. We therefore simplify it. We haveintroduced a small parameter � > 0 into (1) with theidea in mind that the learning process is performed ona much slower time scale than the neuronal dynamics.Thus we expect that only averaged quantities enter thelearning dynamics.Considering averaged quantities may also be useful inorder to disregard the inuence of noise. In (1) spikes2



are discrete events that trigger a discontinuous change ofthe synaptic weight; cf. Fig. 2 (bottom). If we assumea stochastic spike arrival or if we assume a stochasticprocess for generating output spikes, the change �Ji isa random variable, which exhibits uctuations aroundsome mean drift. Averaging implies that we focus on thedrift and calculate the expected rate of change. Fluctu-ations are treated in Sec.VI.1. Self-Averaging of LearningE�ective learning needs repetition over many trials oflength T , each individual trial being independent of theprevious ones. Equation (1) tells us that the result ofthe individual trials are to be summed. According to the(strong) law of large numbers [44] in conjunction with �being \small" [45] we can average the resulting equation,viz., (1), whatever the random process. In other words,the learning procedure is self-averaging. Instead of aver-aging over several trials we may also consider one singlelong trial during which input and output characteristicsremain constant. Again, if � is su�ciently small, timescales are separated and learning is self-averaging.The corresponding average over the resulting randomprocess is denoted by angular brackets h: : : i and calledan ensemble average, in agreement with physical usage.It is a probability measure on a probability space, whichneed not be speci�ed explicitly. We simply refer to theliterature [44]. Substituting s = t00� t0 on the right-handside of (1a), dividing both sides by T we obtainh�Jii(t)T = �T t+TZt dt0hwin hSini i(t0) + wout hSouti(t0)i (2)+ �T t+TZt dt0 t+T �t0Zt�t0 dsW (s) hSini (t0 + s)Sout(t0)i :2. Example: Inhomogeneous Poisson ProcessAveraging the learning equation before proceeding isjusti�ed if both input and output process will be taken tobe an inhomogeneous Poisson processes, which will be as-sumed throughout Secs. IV{VI. An inhomogeneous Pois-son process with time dependent rate function �(t) � 0 ischaracterized by two facts: (i) disjoint intervals are inde-pendent and (ii) the probability of getting a single eventat time t in an interval of length �t is �(t)�t, moreevents having a probability o(�t); see also [46], App.Afor a simple exposition of the underlying mathematics.The integrals in (1a) or the sums in (1b) therefore de-compose into many independent events and, thus, thestrong law of large numbers applies to them. The outputis a temporally local process as well so that the strong

law of large numbers also applies to the output spikes attimes tn in (1).If we describe input spikes by inhomogeneous Poissonprocesses with intensity �ini (t), then we may identify theensemble average over a spike train with the stochasticintensity, hSini i(t) = �ini (t); cf. Fig. 3. The intensity �ini (t)can be interpreted as the instantaneous rate of spike ar-rival at synapse i. In contrast to temporally averagedmean �ring rates, the instantaneous rate may vary on afast time scale in many biological systems; cf. Sec. III C.The stochastic intensity hSouti(t) is the instantaneousrate of observing an output spike, where h: : : i is an en-semble average over both the input an the output. Fi-nally, the correlation function hSini (t00)Sout(t0)i is to beinterpreted as the joint probability density for observingan input spike at synapse i at the time t00 and an outputspike at time t0.
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) FIG. 3. Inhomogeneous Poisson process. In the uppergraph we have plotted an example of an instantaneous rate�ini (t) in units of Hz. The average rate is 10Hz (dashed line).The lower graph shows a spike train Sini (t) which is a real-ization of an inhomogeneous Poisson process with rate �ini (t).The spike times are denoted by vertical bars.C. Separation of Time ScalesWe require the length T of a learning trial in (2) to bemuch larger than typical interspike intervals. Both manyinput spikes at any synapse and many output spikesshould occur on average in a time interval of length T .Then, using the notation f(t) = T �1 R t+Tt dt0 f(t0), wemay introduce the mean �ring rates �ini (t) = hSini i(t) and�out(t) = hSouti(t). We call �ini and �out mean �ring ratesin order to distinguish them from the previously de�nedinstantaneous rates hSini i and hSouti which are the resultof an ensemble average only. Because of their de�nition,mean �ring rates � always vary slowly as a function oftime. That is, they vary on a time scale of the order ofT . The quantities �ini and �out therefore carry hardly anyinformation that may be present in the timing of discretespikes.For the sake of further simpli�cation of (2), we de�nethe width W of the learning window W (s) and considerthe case T � W . Most of the \mass" of the learning win-dow should be inside the interval [�W ;W ]. Formally we3



require RW�W ds jW (s)j � R �W�1 ds jW (s)j+R1W ds jW (s)j.For T � W the integration over s in (2) can be extendedto run from �1 to 1. With the de�nition of a tempo-rally averaged correlation function,Ci(s; t) = hSini (t+ s)Sout(t)i ; (3)the last term on the right in (2) reduces toR1�1 dsW (s)Ci(s; t). Correlations between pre- andpostsynaptic spikes, thus, enter spike-based Hebbianlearning through Ci convolved with the window W . Wenote that the correlation Ci(s; t), though being bothan ensemble and a temporally averaged quantity, maychange as a function of s on a much faster time scalethan T or the width W of the learning window. Thetemporal structure of Ci depends essentially on the neu-ron (model) under consideration. An example is given inSec. IVA.We require learning to be a slow process; cf. Sec. II B 1.More speci�cally, we require that J values do not changemuch in the time interval T . Thus T separates the timescaleW (width of the learning window W ) from the timescale of the learning dynamics, which is proportional to��1. Under those conditions we are allowed to approx-imate the left-hand side of (2) by the rate of changedJi=dt, whereby we have omitted the angular bracketsfor brevity. Absorbing � into the learning parameterswin, wout, and W , we obtainddtJi(t) = w in �ini (t) + wout �out(t) (4)+ Z 1�1 dsW (s)Ci(s; t) :The ensemble averaged learning equation (4), whichholds for any neuron model, will be the starting pointof the arguments below.III. SPIKE-BASED AND RATE-BASEDHEBBIAN LEARNINGIn this section we indicate the assumptions that are re-quired to reduce spike-based to rate-based Hebbian learn-ing and outline the limitations of the latter.A. Rate-Based Hebbian LearningIn neural network theory, the hypothesis of Hebb [1] isusually formulated as a learning rule where the change ofa synaptic e�cacy Ji depends on the correlation betweenthe mean �ring rate �ini of the i th presynaptic neuron andthe mean �ring rate �out of a postsynaptic neuron, viz.,dJidt � _Ji = a0 + a1 �ini + a2 �out (5)+a3 �ini �out + a4 (�ini )2 + a5 (�out)2 ;

where a0 < 0, a1, a2, a3, a4, and a5 are proportional-ity constants. Apart from the decay term a0 and the\Hebbian" term �ini �out proportional to the product ofinput and output rates, there are also synaptic changeswhich are driven separately by the pre- and postsynap-tic rates. The parameters a0; : : : ; a5 may depend on Ji.Equation (5) is a general formulation up to second orderin the rates; see, e.g., [3,47,12].B. Spike-Based Hebbian LearningTo get (5) from the spike-based learning rule in (4)two approximations are required. First, if there are nocorrelations between input and output spikes apart fromthe correlations contained in the instantaneous rates, wecan write hSini (t0 + s)Sout(t0)i � hSini i(t0 + s) hSouti(t0).Second, if these rates change slowly as compared to T ,then we have Ci(s; t) � �ini (t + s) �out(t). In addition,� = hSi is the time evolution on a slow time scale; cf. thediscussion after (3). Since we have T � W , the rates �inialso change slowly as compared to the width W of thelearning window and, thus, we may replace �ini (t+ s) by�ini (t) in the correlation term R1�1 dsW (s)Ci(s; t). Thisyields R1�1 dsW (s)Ci(s; t) � ~W (0) �ini (t) �out(t) where~W (0) := R1�1 dsW (s). Under the above assumptions wecan identify ~W (0) with a3. By further comparison of (4)with (5) we identify win with a1 and wout with a2, and weare able to reduce (4) to (5) by setting a0 = a4 = a5 = 0.C. Limitations of Rate-Based Hebbian LearningThe assumptions necessary to derive (5) from (4), how-ever, are not generally valid. According to the results ofMarkram et al. [25] the width W of the Hebbian learn-ing window in cortical pyramidal cells is in the range of100ms. At retinotectal synapses W is also in the rangeof 100ms [26].A mean rate formulation thus requires that all changesof the activity are slow at a time scale of 100ms. Thisis not necessarily the case. The existence of oscilla-tory activity in the cortex in the range of 40Hz (e.g.,[14,15,20,48]) implies activity changes every 25ms. Reti-nal ganglion cells �re synchronously at a time scale ofabout 10ms [49]; cf. also [50]. Much faster activitychanges are found in the auditory system. In the auditorypathway of, e.g., the barn owl, spikes can be phase-lockedto frequencies of up to 8 kHz [51{53]. Furthermore, be-yond the correlations between instantaneous rates addi-tional correlations between spikes may exist.Because of all the above reasons, the learning rule (5)in the simple rate formulation is insu�cient to provide agenerally valid description. In Secs. IV{V we will there-fore study the full spike-based learning equation (4).4



IV. STOCHASTICALLY SPIKING NEURONSA crucial step in analyzing (4) is determining the cor-relations Ci between input spikes at synapse i and outputspikes. The correlations, of course, depend strongly onthe neuron model under consideration. To highlight themain points of learning we study a simple toy model. In-put spikes are generated by an inhomogeneous Poissonprocess and fed into a stochastically �ring neuron model.For this scenario we are able to derive an analytical ex-pression for the correlations between input and outputspikes. The introduction of the model and the deriva-tion of the correlation function is the topic of the �rstsubsection. In the second subsection we use the corre-lation function in the learning equation (4) and analyzethe learning dynamics. In the �nal two subsections therelation to the work of Linsker [3] (a rate formulation ofHebbian learning) and some extensions based on spikecoding are considered.A. Poisson Input and Stochastic Neuron ModelWe consider a single neuron which receives input viaN synapses 1 � i � N . The input spike trains arrivingat the N synapses are statistically independent and gen-erated by an inhomogeneous Poisson process with time-dependent intensities hSini i(t) = �ini (t) with 1 � i � N[46].In our simple neuron model we assume that outputspikes are generated stochastically with a time-dependentrate �out(t) that depends on the timing of input spikes.Each input spike arriving at synapse i at time tfi increases(or decreases) the instantaneous �ring rate �out by anamount Ji(tfi ) �(t� tfi ), where � is a response kernel. Thee�ect of an incoming spike is thus a change in probabil-ity density proportional to Ji. Causality is imposed bythe requirement �(s) = 0 for s < 0. In biological terms,the kernel � may be identi�ed with an excitatory (or in-hibitory) postsynaptic potential. In throughout what fol-lows, we assume excitatory couplings Ji > 0 for all i and�(s) � 0 for all s. In addition, the response kernel �(s) isnormalized to R ds �(s) = 1; cf. Fig. 4.
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FIG. 4. The postsynaptic potential � in units of [e�1 ��10 ]as a function of time s in milliseconds. We have � � 0 fors < 0 so that � is causal. The kernel � has a single maximumat s = �0. For s ! 1 the postsynaptic potential � decaysexponentially with time constant �0; cf. also App.B 2.

The contributions from all N synapses as measured atthe axon hillock we assume to add up linearly. The resultgives rise to a linear inhomogeneous Poisson model withintensity �out(t) = �0 + NXi=1Xf Ji(tfi ) �(t� tfi ) : (6)Here, �0 is the spontaneous �ring rate and the sums runover all spike arrival times at all synapses. By de�nition,the spike generation process (6) is independent of previ-ous output spikes. In particular, this Poisson model doesnot include refractoriness.In the context of (4), we are interested in ensembleaverages over both the input and the output. Since (6) isa linear equation, the average can be performed directlyand yieldshSouti(t) = �0 + NXi=1 Ji(t) Z 10 ds �(s)�ini (t� s) : (7)In deriving (7) we have replaced Ji(tfi ) by Ji(t) becausee�cacies are assumed to change adiabatically with re-spect to the width of �. The ensemble-averaged outputrate in (7) depends on the convolution of � with the inputrates. In what follows we denote�ini (t) = Z 10 ds �(s)�ini (t� s) : (8)Equation (7) may suggest that input and output spikesare statistically independent { which is not the case.To show this explicitly, we determine the ensemble av-eraged correlation hSini (t + s)Sout(t)i in (3). SincehSini (t + s)Sout(t)i corresponds to a joint probability, itequals the probability density �ini (t+s) for an input spikeat synapse i at time t+ s times the conditional probabil-ity density of observing an output spike at time t giventhe above input spike at t+ s,hSini (t+ s)Sout(t)i (9)= �ini (t+ s) h�0 + Ji(t) �(�s) + NXj=1 Jj(t) �inj (t)i:The �rst term inside the square brackets is the sponta-neous output rate, the second term is the speci�c con-tribution caused by the input spike at time t+ s, whichvanishes for s > 0. We are allowed to write Ji(t) insteadof the \correct" weight Ji(t+ s); cf. the remark after (7).To understand the meaning of the second term, we recallthat an input spike arriving before an output spike (i.e.,s < 0) raises the output �ring rate by an amount propor-tional to �(�s); cf. Fig. 5. The sum in (9) contains themean contributions of all synapses to an output spike attime t. For the proof of (9), we refer to App.A.5
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The assumption of identical and constant mean inputrates, �ini (t) = �in for all i, reduces the number of freeparameters in (13) considerably and eliminates all e�ectscoming from rate coding. We de�nek1 = hwout + ~W (0) �ini �0 + win �in;k2 = hwout + ~W (0) �ini �in; and (14)k3 = �in Z dsW (s) �(�s)in (13) and arrive at_Ji = k1 +Xj (Qij + k2 + k3 �ij) Jj : (15)Equation (15) describes the ensemble averaged dynamicsof synaptic weights for a spike-based Hebbian learningrule (1) under the assumption of a linear inhomogeneousPoissonian model neuron.C. Relation to Linsker's EquationLinsker [3] has derived a mathematically equivalentequation starting from (5) and a linear graded-responseneuron, a rate-based model. The di�erence betweenLinsker's equation and (15) is, apart from a slightly dif-ferent notation, the term k3 �ij .Equation (15) without the k3 term has been analyzedextensively by MacKay and Miller [5] in terms of eigen-vectors and eigenfunctions of the matrix Qij + k2. Inprinciple, there is no di�culty in incorporating the k3term in their analysis, because Qij + k2 + �ij k3 containsk3 times the unit matrix and thus has the same eigen-vectors as Qij +k2. All eigenvalues are simply shifted byk3.The k3 term can be neglected, if the number N ofsynapses is large. More speci�cally, the inuence of thek3 term as compared to the k2 and Qij term is negligible,if for all i Xj jQij + k2j Jj � jk3j Ji : (16)This holds, for instance, if (i) we have many synapses,(ii) jk3j is smaller than or at most of the same orderof magnitude as jk2 +Qij j for all i and j, and (iii) eachsynapse is weak as compared to the total synaptic weight,Ji �Pj Jj . The assumptions (i){(iii) are often reason-able neurobiological conditions, in particular, when thepattern of synaptic weights is still unstructured. Theanalysis of (15) presented in Sec. V and focusing on nor-malization and structure formation is therefore based onthese assumptions. In particular, we neglect k3.Nevertheless, our approach even without the k3 term isfar more comprehensive than Linsker's rate-based ansatz(5) because we have derived (15) from a spike-based6



learning rule (1). Therefore correlations between spikeson time scales down to milliseconds or below can enter thedriving term Qij so as to account for structure formation.Correlations on time scales of milliseconds or below maybe essential for information processing in neuronal sys-tems; cf. Sec. III C. In contrast to that, Linsker's ansatzis based on a �ring-rate description where the term Qijcontains correlations between mean �ring rates only. Ifwe use a standard interpretation of rate coding, a mean�ring rate corresponds to a temporally averaged quantitywhich varies on a time scale of the order of hundreds ofmilliseconds. The temporal structure of spike trains isneglected completely.Finally, our ansatz (1) allows the analysis of the inu-ence of noise on learning. Learning results from stepwiseweight changes. Each weight performs a random walkwhose expectation value is described by the ensemble av-eraged equation (15). Analysis of noise as a deviationfrom the mean is deferred to Sec.VI.D. Stabilization of LearningWe now discuss the inuence of the k3 term in (15). Itgives rise to an exponential growth or decay of weights,depending on the sign of k3. Since �ring rates � are al-ways positive and k3 = �in R dsW (s) �(�s), the sign ofthe integral R dsW (s) �(�s) is crucial. Hebb's princi-ple suggests that for excitatory synapses, the integral isalways positive. To understand why, let us recall thats is de�ned as the time di�erence between input andoutput spikes. The response kernel � vanishes for neg-ative arguments. Thus the integral e�ectively runs onlyover negative s. According to our de�nition, s < 0 im-plies that presynaptic spikes precede postsynaptic �ring.These are the spikes that may have participated in �ringthe postsynaptic neuron. Hebb's principle [1] suggeststhat these synapses are strengthened, hence W (s) > 0for s < 0; cf. Fig. 6. This idea is also in agreementwith recent neurobiological results [25,26,33]: Only thosesynapses are potentiated where presynaptic spikes arriveoccurs a few milliseconds before a postsynaptic spike oc-curs so that the former arrive \in time". We concludethat R dsW (s) �(�s) > 0 and, hence, the k3 term is pos-itive.With k3 > 0 every weight and thus every structure inthe distribution of weights is enhanced. This may con-tribute to the stability of structured weight distributionsat the end of learning, in particular, when the synapsesare few and strong [22,54]. In this case, (16) may be notful�lled and the k3 term in (15) has an important inu-ence. Thus spike-based learning is di�erent from simplerate-based learning rules. Spike-spike correlations on amillisecond time scale play an important role and tendto stabilize existing strong synapses.
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s*FIG. 6. The learning window W in units of the learningparameter � as a function of the delay s = tfi � tn betweenpresynaptic spike arrival at synapse i at time tfi and post-synaptic �ring at time tn. If W (s) is positive (negative) forsome s, the synaptic e�cacy Ji is increased (decreased). Theincrease of Ji is most e�cient, if a presynaptic spike arrivesa few milliseconds before the postsynaptic neuron starts �r-ing (vertical dashed line at s = s�). For jsj ! 1 we haveW (s)! 0. The form of the learning window and parametervalues are as described in App.B 1.V. LEARNING DYNAMICSIn order to get a better understanding of the principalfeatures of the learning dynamics, we discuss (15) withk3 = 0 for a particularly simple con�guration: a modelwith two groups of synapses. Input rates are homoge-neous within each group but di�erent between one groupand the other. Our discussion focuses on intrinsic nor-malization of output rates and structure formation. Wetake lower and upper bounds for the J values into ac-count explicitly and consider the limiting case of weakcorrelations in the input. We will see that for a realis-tic scenario we need to require win > 0 and wout < 0and that we can formulate theoretical predictions of therelative magnitude of the learning parameters win; woutand the form of the learning window W . The theoreticalconsiderations are illustrated by numerical simulationswhose parameters are justi�ed in App.B and summa-rized in Table I.A. Models of Synaptic InputWe divide the N statistically independent synapses, allconverging onto the very same neuron, into two groups,M1 and M2. The number of synapses are M1 and M2,respectively, where M1 + M2 = N and M1, M2 � 1.Since each group contains many synapses we may assumethatM1 andM2 are of the same order of magnitude. Thespike input at synapses i in group M1 is generated bya Poisson process with a constant intensity �ini (t) � �in,which is independent of t. We therefore have Qij(t) � 0for i or j 2 M1; cf. Eqs. (11) and (12). The synapses iin group M2 are driven by an arbitrary time-dependentinput, �ini (t) = �in(t), with the same mean input rate7



�in = �in(t) as in group M1. Without going into de-tails about the dependence of �in(t) upon the time t weassume �in(t) to be such that the covariance qij(s; t) in(11) is independent of t. In this case it follows from (12)that Qij(t) � Q for i; j 2 M2, whatever t. For the sakeof simplicity we require in addition that Q > 0. In sum-mary, we suppose in the followingQij(t) = � Q > 0 for i; j 2 M20 otherwise. (17)We recall that Qij is a measure of the correlations inthe input arriving at synapses i and j; cf. (11) and (12).Equation (17) states that at least some of the synapsesreceive positively correlated input, a rather natural as-sumption. Three di�erent realizations of (17) are nowdiscussed in turn. 1. White-Noise InputFor all synapses in groupM2, let us consider the caseof stochastic white noise input with intensity �in(t) andmean �ring rate �in(t) = �in(t) � 0. The uctuations are[�in(t+ s)� �in(t+ s)] [�in(t)� �in(t)] = �0 �(s). Dueto the convolution (8) with �, (11) yields qij(s; t) =�0 �(�s), independently of t, i and j. We use (12) and�nd Qij(t) � Q = �0 R dsW (s) �(�s). We want Q > 0and therefore arrive at R W (s)�(�s) = k3=�in > 0. Wehave seen before in Sec. IVD that k3 > 0 is a naturalassumption and in agreement with experiments.2. Colored-Noise InputLet us now consider the case of an instantaneous andmemoryless excitation, �(s) = �(s). We assume that �in��in obeys a stationary Ornstein-Uhlenbeck process [62]with correlation time �c. The uctuations are thereforeqij(s; t) / exp(�jsj=�c), independently of the synaptic in-dices i and j. Q > 0 implies R dsW (s) exp(�jsj=�c) > 0.3. Periodic InputMotivated by oscillatory neuronal activity in the au-ditory system and in the cortex (cf. Sec. III C), wenow consider the scenario of periodically modulatedrates [�in(t) � �in] = ��in cos(! t), where ! � 2�=T .Let us �rst study the case �(s) = �(s). We �ndQ = (��in)2=2 R dsW (s) cos(! s). Positive Q hence re-quires the real part of the Fourier transform ~W (!) :=R dsW (s) exp(i!s) to be positive, i.e., <[ ~W (!)] > 0.For a general interaction kernel �(s), we �nd qij(s; t) =(��in)2=2 R ds0 �(s0) cos[! (s+ s0)] and henceQ = (��in)2=2 � <[ ~W (!) ~�(!)] ; (18)whatever of t. Then Q > 0 requires <[ ~W (!) ~�(!)] > 0.

B. NormalizationNormalization is a very desirable property for anylearning rule. It is a natural requirement that the av-erage weight and the mean output rate do not blow upduring learning but are stabilized at a reasonable value inan acceptable amount of time. Standard rate-based Heb-bian learning can lead to unlimited growth of the averageweight. Several methods have been designed to controlthis unlimited growth; for instance, subtractive or multi-plicative rescaling of the weights after each learning stepso as to impose either Pj Jj = const. or else Pj J2j =const. cf., e.g., [2,7,55]. It is hard to see, however, wherethis should come from. Furthermore, a J dependence ofthe parameters a1; : : : ; a5 in the learning equation (5) isoften assumed. Higher-order terms in the expansion (5)may also be used to control unlimited growth.In this subsection we show that under some mild con-ditions there is no need whatsoever to invoke the J de-pendence of the learning parameters, rescaling of weights,or higher-order correlations to get normalization, whichmeans here that the average weightJav = 1N NXi=1 Ji (19)approaches a stable �xed point during learning. More-over, in this case the mean output rate �out is also stabi-lized since �out = �0 +N Jav �in; cf. (7).As long as the learning parameters do not depend onthe J values, the rate of change of the average weight isobtained from (15), (19), and k3 = 0 (Sec. IVC),_Jav = k1 +N k2 Jav +N�1Xi;j Qij Jj : (20)In the following we consider the situation at the begin-ning of the learning procedure where the set of weightsfJig have not picked up any correlations with the setof Poisson intensities f�ini g yet and therefore are in-dependent. We may then replace Ji and Qij on theright-hand side of (20) by their average values Jav andQav = N�2PNi;j Qij , respectively. The speci�c input(17) described in the previous section yields Qav =(M2=N)2Q > 0. We rewrite (20) in the standard form_Jav = [Jav� � Jav]=�av, whereJav� = �k1=[N(k2 +Qav)] (21)is the �xed point for the average weight and�av = Jav� =k1 = �1=[N (k2 +Qav)] (22)is the time constant of normalization. The �xed point in(21) is stable, if and only if �av > 0.During learning, weights fJig and rates f�ini g may be-come correlated. In App.C we demonstrate that the in-uence of any interdependence between weights and rates8



on normalization can be neglected in the case of weakcorrelations in the input,0 < Q� �k2 : (23)The �xed point Jav� in (21) and the time constant �av in(22) are, then, almost independent of the average corre-lation Qav, which is always of the same order as Q.In Figs. 7 and 8 we show numerical simulations withparameters as given in App.B. The average weight Javalways approaches Jav� , independently of any initial con-ditions in the distribution of weights.
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FIG. 7. Numerical simulation of weight normalization withparameters as given in App.B. The four graphs show thetemporal evolution of synaptic weights Ji, 1 � i � 50, be-fore (t = 0) and during learning (t = 200, 500, and 1000seconds). Before learning, all weights are initialized at theupper bound # = 0:1. During learning, weights decrease to-wards the �xed point of the average weight, Jav� = 2:0 � 10�2;cf. also Fig. 8, topmost full line. The time constant of nor-malization is �av = 2:0 � 102 s, which is much smaller than thetime constant of structure formation; cf. Sec. VC and Fig. 9.For times t � 1000 s we therefore can neglect e�ects comingfrom structure formation.
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FIG. 8. Development of the average weight Jav as a func-tion of time t in units of 103 seconds. The simulationswe started at t = 0 with �ve di�erent average weights,Jav 2 f0; 0:01; 0:02 = Jav� ; 0:05; 0:1 = #g. Full lines indicatehomogeneous initial weight distributions, where Ji = Jav att = 0 for all i; cf. also Fig. 7, upper left panel. In all �ve cases,Jav decays with the time constant � av = 2:0 � 102 s describingthe rate of normalization to the �xed point Jav� = 2:0 � 10�2.Our theoretical prediction according to Sec. VB (crosses onthe uppermost full line) is in good agreement with the nu-merical results. The dashed line indicates the development ofJav starting from an inhomogeneous initial weight distribu-tion Ji = 0 for 1 � i � 25 and Ji = # for 25 < i � 50 = N . Inthe inhomogeneous case, � av is enlarged as compared to thehomogeneous case by a factor of 2 because only half of thesynapses are able to contribute to normalization; cf. App.D.The insets (signatures as in Fig. 7) show the inhomogeneousweight distributions (arrows) at times t = 0, 200, 500, and1000 s; the dotted line indicates the �xed point Jav� = 0:2 #.We note that here the distribution remains inhomogeneous.Weight Constraints Lead toFurther Conditions on Learning ParametersWe have seen that normalization is possible withouta J dependence of the learning parameters. Even if theaverage weight Jav approaches a �xed point Jav� , thereis no restriction for the size of individual weights, apartfrom Ji � 0 for excitatory synapses and Ji . N Jav� .This means that a single weight at most comprises thetotal (normalized) weight of all N synapses. The lat-ter case is, however, unphysiological, since almost everyneuron holds many synapses with nonvanishing e�cacies(weights) and e�cacies of biological synapses seem to belimited. We take this into account in our learning ruleby introducing a hard upper bound # for each individualweight. As we will demonstrate, a reasonable value of# does not inuence normalization in that Jav� remainsunchanged. However, an upper bound # > 0, whateverits value, leads to further constraints on the learning pa-rameters.To incorporate the restricted range of individualweights into our learning rule (1), we assume that wecan treat the learning parameters win, wout, and the am-plitude of W to be constant in the range 0 � Ji � #.For Ji < 0 or Ji > #, we take win = wout = W = 0. Inother words, we use (15) only between the lower bound0 and the upper bound # and set dJi=dt = 0, if Ji < 0or Ji > #.Because of lower and upper bounds for each synapticweight, 0 � Ji � # for all i, a realizable �xed pointJav� has to be within these limits. Otherwise all weightssaturate either at the lower or at the upper bound. Toavoid this, we �rst of all need Jav� > 0. Since �av =Jav� =k1 in (22) must be positive for stable �xed points,we also need k1 > 0. The meaning becomes transparentfrom (14) in the case of vanishing spontaneous activity9



in the output, �0 = 0. Then k1 > 0 reduces towin > 0 ; (24)which corresponds to neurobiological reality [28,56,31].A second condition for a realizable �xed point arisesfrom the upper bound # > Jav� . This requirement leadsto k2 < �k1=(N #)�Qav. Exploiting only k2 < 0, we �ndfrom (14) that wout + ~W (0) �in < 0, which means thatpostsynaptic spikes on average reduce the total weightof synapses. This is one of our predictions that can betested experimentally. Assuming ~W (0) > 0, which seemsreasonable { with the bene�t of hindsight { in terms ofrate-coded learning �a la Hebb (Sec. III), we predictwout < 0 ; (25)which has not been veri�ed by experiments yet.Weight constraints do not inuence the position of the�xed point Jav� (as long as it remains realizable) but mayenlarge the value of the time constant �av of normal-ization (see details in App. D). The time constant �avchanges because weights saturated at the lower (upper)bound cannot contribute to a decrease (increase) of Jav.If fewer than the total number of weights add to our(subtractive) normalization, then the �xed point is ap-proached more slowly; cf. Fig. 8, dashed line and insets.The factor, however, by which �av may be enlarged is oforder 1, if we take the upper bound to be # = (1+d) Jav� ,where d > 0 is of order 1, which will be assumed through-out what follows; cf. App.D.C. Structure FormationIn our simple model with two groups of input, struc-ture formation can be measured by the di�erence J strbetween the average synaptic strength in groupsM1 andM2; cf. Sec. VA. We derive conditions under which thisdi�erence increases during learning. In the course of theargument we also show that structure formation takesplace on a time scale � str considerably slower than thetime scale �av of normalization.We start from (15) with k3 = 0 and randomly dis-tributed weights. For the moment we assume that nor-malization has already taken place. Furthermore, we as-sume small correlations as in (23), which assures thatthe �xed point Jav� � �k1=(Nk2) is almost constant dur-ing learning; cf. (21) and (C1). If the formation of anystructure in fJig is slow as compared to normalization,we are allowed to use Jav = Jav� during learning. Theconsistency of this ansatz is checked at the end of thissection.The average weight in each of the two groupsM1 andM2 isJ (1) = 1M1 Xi2M1 Ji and J (2) = 1M2 Xi2M2 Ji : (26)

If lower and upper bounds do not inuence the dynamicsof each weight, the corresponding rates of change are_J (1) = k1 +M1J (1) k2 +M2J (2)k2 ; (27)_J (2) = k1 +M2J (2)(k2 +Q)+M1J (1)k2 :One expects the di�erence J str = J (2) � J (1) betweenthose average weights to grow during learning becausegroup M2 receives a stronger reinforcement than M1.Di�erentiating J str with respect to time, using (27) andthe constraint Jav = Jav� = N�1 (M1J (1) +M2J (2)), we�nd the rate of growth_J str = M1M2N QJ str +M2QJav� : (28)The �rst term on the right-hand side gives rise to anexponential increase (Q > 0) while the second term givesrise to a linear growth of J str. Equation (28) has anunstable �xed point at J str� = �N=M1 Jav� . Note thatJ str� is always negative and independent of Q.We associate the time constant � str of structure for-mation with the time that is necessary for an increaseof J str from a typical initial value to its maximum.The maximum of J str is of order Jav� , if M1=M2 isof order 1 (Sec. VA) and if # = (1 + d) Jav� , whered > 0 is of order 1 (Sec. VB). At the beginningof learning (t = 0) we may take J str(0) = 0. Us-ing this initial condition, an integration of (28) leadsto J str(t) = (N=M1) Jav� [exp(tM1M2Q=N) � 1]. Witht = � str and J str(� str) = Jav� we obtain � str =N=(M1M2Q) log(M1=N + 1). Since we only need an es-timate of � str we drop the logarithm, which is of order 1.Finally, approximating N=(M1M2) by 1=N we arrive atthe estimate � str = (N Q)�1: (29)We could adopt a re�ned analysis similar to the one wehave used for Jav to discuss the e�ects of the upper andlower bounds for individual weights. We will not do so,however, since the result (29) su�ces for our purpose:the comparison of time constants.A comparison of �av in (22) with � str in (29) shows thatwe have a separation of the fast time scale of normaliza-tion from the slow time scale of structure formation, if(23) holds.A numerical example con�rming the above theoreticalconsiderations is presented in Fig. 9. Simulation param-eters are as given in App.B.
10



0 2x10
4

4x10
4

6x10
4

t [s]

0

ϑ

J*

av

0.04

0.06

0.08

Jav
, J

(1
) , J

(2
)

1 50
0

ϑ
Ji

t=10
3
s 10

4
s τstr

7x10
4
s

J
(2)

J
(1)

J
av

FIG. 9. Temporal evolution of average weights Jav, J(1),and J(2) as a function of the learning time t in units of 104 sec-onds. The quantity Jav is the average weight of all synapses,J(1) and J(2) are average weights in groups M1 and M2,respectively. Synapses i in group M1, where 1 � i � 25,receive incoherent input whereas synapses i in group M2,where 26 � i � 50, are driven by a coherently modulatedinput intensity. Parameters are as given in App.B. Sim-ulations started at time t = 0 with a homogeneous weightdistribution Ji = # = 0:1 for all i. The normalization of theaverage weights takes place within a time of order O(100 s);see also the uppermost full line in Fig. 8. On the time scaleof � str = 2:93 � 104 s a structure in the distribution of weightsemerges in that J(2) grows at the expense of J(1). The aver-age weight Jav remains almost una�ected near Jav� = 2 � 10�2(dashed line). The slight enlargement of Jav between t = 104 sand t = 7 � 104 s can be explained by using (C1) and takingalso the k3 term into account. The insets (signatures as inFigs. 7 and 8) show the weight distributions at times t = 103,104, 2:93 � 104, and 7 � 104 s (arrows).D. Stabilization of LearningUp to this point we have neglected the inuence ofthe k3 term in (15), which may lead to a stabilizationof weight distributions, in particular, when synapses arefew and strong [22,54]; cf. Sec. IVD. This is the case,for example, in the scenario of Fig. 10, which is the �nalresult of the simulations described in Fig. 9. The shownweight distribution is stable so that learning has termi-nated apart from minor rapid uctuations due to noise.
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FIG. 10. The asymptotic distribution of weights fJig attime t = 105 s; signatures are as in Fig. 7. This distribution isthe �nal result of the numerical simulation shown in Fig. 9 andremains stable thereafter apart from minor rapid uctuations.All but one of the synapses are saturated either at the loweror at the upper bound.In stable weight distributions, it is now shown thatall synapses but one are saturated either at the loweror the upper bound. In the scenario of Fig. 10, thek3 term keeps a single weight Jm1 in group M1 at theupper bound #, even though there is a non-saturatedone Jm2 in M2. Group M2 (in contrast to M1) com-prises most of the total weight and is driven by positivelycorrelated input. Why does Jm1 not decrease in favorof Jm2? The answer comes from (15). Weight Jm1 re-ceives a stronger reinforcement than Jm2 , if _Jm1 > _Jm2holds. Using (15) we �nd Jm1 > Q=k3Pj2M2 Jj + Jm2 .Approximating Pj2M2 Jj = N Jav� = �k1=k2 we ob-tain Jm1 > �Qk1=(k2 k3) + Jm2 . This condition is ful-�lled because Jm1 � 0:1, Jm2 � 0:04 (cf. Fig. 10), and�Qk1=(k2 k3) � 0:01 (cf. Table I); here k1 > 0, k2 < 0,and k3 > 0. VI. NOISEIn this section we discuss the inuence of noise on theevolution of each weight. Noise may be due to jitterof input and output spikes and the fact that we dealwith spikes per se (Sec. II B). This gives rise to a ran-dom walk of each weight around the mean trajectory de-scribed by (15). The variance VarJi(t) of this randomwalk increases linearly with time as it does in free di�u-sion. From the speed of the variance increase we derivea time scale �noise. A comparison with the time constant� str of structure formation leads to further constraints onour learning parameters and shows that, in principle, anycorrelation in the input, however weak, can be learnt, ifthere is enough time available for learning.The calculation of VarJi is based on four approxi-mations. First, we neglect upper and lower bounds ofthe learning dynamics as we have done for the calcu-lation of the time constants of normalization (Sec. VB)and structure formation (Sec. VC). Second, we neglectspike-spike correlations between input and output andwork directly with ensemble-averaged rates. As we haveseen, spike-spike correlations show up in the term k3 in(15) and have little inuence on learning, given many,weak synapses and an appropriate scenario for our learn-ing parameters; cf. Sec. IVC. Third, we assume constantinput rates �ini (t) = �in for all i. A temporal structurein the input rates is expected to play a minor role here.Fourth, as a consequence of constant input rates we as-sume a constant output rate �out(t) = �out.Despite such a simpli�ed approach we can study someinteresting e�ects caused by neuronal spiking. Withinthe limits of our approximations, input and output spikes11



are generated by independent Poisson processes with con-stant intensities. The variance VarJi(t) increases basi-cally because of shot noise at the synapses. We now turnto the details.A. Calculation of the VarianceWe start with some weight Ji(t0) at time t0 and calcu-late the variance VarJi(t) := hJ2i i(t)�hJii2(t) as a func-tion of t for t > t0. Angular brackets h: : : i again denotean ensemble average; cf. Sec. II B. A detailed analysis isoutlined in App. E. The result isVarJi(t) = (t� t0)D for t� t0 �W ; (30)where W is the width of the learning window W (cf.Sec. II C) andD = �in(win)2 + �out(wout)2 + �in�out Z dsW (s)2 (31)+�in�out ~W (0) h2(win + wout) + ~W (0)(�in + �out)i :Thus because of Poisson spike arrival and stochastic out-put �ring with disjoint intervals being independent, eachweight Ji undergoes a di�usion process with di�usionconstant D.To discuss the dependence of D upon the learning pa-rameters, we restrict our attention to the case �in = �outin (31). Since mean input and output rates in biolog-ical neurons typically are not too di�erent, this makessense. Moreover, we do not expect that the ratio �in=�outis a critical parameter. We recall from Sec.VB that�out = �k1=k2 �in once the weights are already normal-ized and if �0 = Qav = 0. With �in = �out this is equiva-lent to k1 = �k2. Using the de�nition of k1 and k2 in (14)we �nd win + wout = � ~W (0) �in. If we insert this into(31), the �nal term vanishes. In what remains of (31) weidentify the contributions due to input spikes, �in (win)2,and output spikes, �out (wout)2. Weight changes becauseof correlations between input and output spikes enter(31) via �in�outR dsW (s)2.Equation (30) describes the time course of the vari-ance of a single weight. Estimating VarJi is numericallyexpensive because we have to simulate many indepen-dent learning trials. It is much cheaper to compute thevariance of the distribution fJig of weights in a singlelearning trial. For the sake of a comparison of theoryand numerics in Fig. 11, we plotVar fJig(t) := 1N � 1 NXi=1[Ji(t)� Jav(t)]2 ; (32)which obeys a di�usion process withVar fJig(t) = (t� t0)D0 ; (33)

in a way similar to (30). The di�usion constant D0 is,however, di�erent from D because weights of single neu-rons do not develop independently of each other. Eachoutput spike triggers the change of all N weights byan amount wout. Therefore, output spikes do not con-tribute to a change of Var fJig(t) as long as upper andlower bounds have not been reached. Furthermore, allsynapses `see' the same spike train of the postsynap-tic neuron they belong to. In contrast to that, inputspikes at di�erent synapses are independent. Again weassume that input and output spikes are independent;cf. the second paragraph at the beginning of Sec. VI.Combining the above arguments we obtain the di�u-sion constant D0 by simply setting wout = 0 and dis-regarding the term [�in ~W (0)]2�out in (31), which leadsto D0 = �in (win)2 + �in �out[R dsW (s)2 + 2win ~W (0) +~W (0)2 �out]. The boundaries of validity of (33) are illus-trated in Fig. 12.
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should exceed 1 so as to enable structure formation (inthe sense of Sec. VC). Otherwise weight di�usion dueto noise spreads the weights between the lower bound 0and the upper bound # and, consequently, destroys anystructure.We note that D in (35) is quadratic in win; wout, andW , whereas k1, k2, and Q are linear; cf. (12), (14), (17),and (31). As a consequence, scaling win, wout, and W (s)[or the learning parameter �] in (1) by a common fac-tor  changes the ratio of time constants in (35) by 1=without a�ecting the (normalized) mean output rate andthe �xed points Jav� and J str� = �Jav� N=M1; cf. (21).Hence it is always possible to achieve �noise=� str > 1 bytuning . This means that any covariance matrix (11)that gives rise to Q > 0, however small, can be learnt.More precisely, it can be learnt, if there is enough timefor learning.A reduction of  also increases the time constant� str = 1=(N Q) of structure formation; cf. (29). If thelearning time is limited, which may be the case in biolog-ical systems, only input with Q larger than some minimalvalue can be learnt. Considering the learning parametersas �xed, we see that increasing the number of synapses,on the one hand, helps reducing the time � str necessaryfor learning but, on the other hand, decreases the ratio�noise=� str in (35), possibly below 1.With parameters as given in App.B the ratio (35) is5:5. Therefore the desired structure in Fig. 9 can emergebefore noise spreads the weights at random.VII. DISCUSSIONChanges of synaptic e�cacies are triggered by therelative timing of presynaptic and postsynaptic spikes[25,26]. The learning rule (1) discussed in this paperis a �rst step towards a description and analysis of thee�ects of synaptic changes with single-spike resolution.Our learning rule can be motivated by elementary dy-namic processes at the level of the synapse [54,57] andcan also be implemented in hardware; cf. [40]. A phe-nomenological model of the experimental e�ects whichis close to the model studied in the present paper hasbeen introduced [42]. A compartmental model of the bio-physics and ion dynamics underlying spike-based learningalong the lines of [58] has not been attempted yet. Asan alternative to changing synaptic weights, spike-basedlearning rules which act directly on the delays may alsobe considered [59{61].The learning rule (1) discussed in the present paper israther simple and contains only terms that are linear andquadratic in the pre- and postsynaptic spikes (`Hebbian'learning). This simple mathematical structure, which isbased on experiment [25,26,30], has allowed us to deriveanalytical results and identify some key quantities.First of all, if the input signal contains no correlationswith the output at the spike level, and if we use a linear13



Poissonian neuron model, the spike-based learning rulereduces to (15), which is closely reminiscent of Linsker'slinear learning equation for rate coding [3]. The only dif-ference is an additional term k3, which is not accountedfor by pure rate models. It is caused by precise temporalcorrelations between an output spike and an input spikethat has triggered the pulse. This additional term rein-forces synapses that are already strong and hence helpsto stabilize existing synapse con�gurations.In the limit of rate coding, the form of the learn-ing window W is not important but only the integralR dsW (s) counts: R dsW (s) > 0 would be called \Heb-bian", R dsW (s) < 0 is sometimes called \anti-Hebbian"learning. In general, however, input rates may be mod-ulated on a fast time scale or contain correlations at thespike level. In this case, the shape of the learning win-dow does matter. A learning window with a maximum ats� < 0 (thus maximal increase of the synaptic strengthfor a presynaptic spike preceding a postsynaptic spike; cf.Fig. 6) picks up the correlations in the input. In this casea structured distribution of synaptic weights may evolve[22].The mathematical approach developed in this paperleads to a clear distinction between di�erent time scales.First, the fastest time scale is set by the time course ofthe postsynaptic potential � and the learning windowW .Correlations in the input may occur on the same fast timescale, but can also be slower or faster, there is no restric-tion. Second, learning occurs on a much slower time scaleand in two phases: (i) an intrinsic normalization of totalsynaptic weight and the output �ring rate followed by (ii)structure formation. Third, if the learning rate is smallenough, then di�usion of the weights due to noise is slowas compared to structure formation. In this limit, thelearning process is described by the di�erential equation(4) for the expected weights.Normalization is possible, if at least win > 0 andwout < 0 for R dsW (s) > 0 in (1) (\Hebbian" learning).In this case, the average weight may decay exponentiallyto a �xed point, though there is no decay term for indi-vidual weights. In other words, normalization is an in-trinsic property since we do not invoke multiplicative orsubtractive rescaling of weights after each learning step[2,7,55].The uctuations due to noise have been treated rathercrudely in the present paper. In principle, it should bepossible to include the e�ects of noise directly at the levelof the di�erential equation, as is standard in statistics[62]. Such an approach would then lead to a Fokker-Planck equation for the evolution of weights as discussedin [63]. All this is in principle straightforward but inpractice very cumbersome.Finally, we emphasize that we have used a crudelyoversimpli�ed neuron model, viz., a linear stochastic unit.In particular, there is no spike emission threshold nor re-set or spike afterpotential. Poisson �ring is not as unre-alistic as it may at �rst seem, though. Large networksof integrate-and-�re neurons with stochastic connectivity

exhibit Poisson-like �ring [64]. Experimental spike inter-val distributions are also consistent with Poisson �ring[65]. In the present paper, the simple Poisson model hasbeen chosen so as to grasp the mathematics and get anexplicit expression for the correlation between input andoutput spikes. The formulation of the learning rule andthe derivation of the learning equation (4) is general andholds for any neuron model. The calculation of the corre-lations which enter in the de�nition of the parameter Qijin (15) are, however, much more di�cult, if a nonlinearneuron model is used.Spike-based Hebbian learning has important implica-tions for the question of neural coding since it allows topick up and stabilize fast temporal correlations [38,22,41].A better understanding of spike-triggered learning maythus also contribute to a resolution of the problem ofneural coding [17,19,65{67].ACKNOWLEDGMENTSThe authors thank Christian Leibold for helpful com-ments and a careful reading of the manuscript. RK hasbeen supported by the Deutsche Forschungsgemeinschaft(DFG) under grant numbers He 1729/8-1 and Kl 608/10-1 (FG H�orobjekte). The authors also thank the DFG fortravel support (He 1729/8-1).APPENDIX A: PROOF OF EQUATION (9)In proving Eq. (9) there is no harm in putting �0 = 0.We then have to compute the averagehSini (t+ s)Sout(t)i (A1)= �Sini (t+ s)�fi(t) + Xj(6=i)fj(t)��where fi(t) = Ji(t)Pf �(t � tfi ) with the upper index franging over the �ring times tfi < t of neuron i, thathas an axonal connection to synapse i; here 1 � i � N .Since � is causal, i.e., �(s) � 0 for s < 0, we can dropthe restriction tfi < t. The synapses being independentof each other, the sum over j(6= i) is independent of Siniand thus we obtain�Sini (t + s) �Xj(6=i)fj(t)�� (A2)= hSini i(t+ s) �Xj(6=i)hfji(t)�= �ini (t+ s)�Xj(6=i)Jj(t) 1Z0 dt0 �(t0)�inj (t� t0)�:
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The term hSini (t+s) fi(t)i in (A1) has to be handled withmore care as it describes the inuence of synapse i on the�ring behavior of the postsynaptic neuron,hSini (t+ s) fi(t)i (A3)= *�Xf 0 �(t+ s� tf 0i )� �Ji(t)Xf �(t� tfi )�+ :The �rst term on the right in (A3) samples spike eventsat time t+ s. To be mathematical precise, we sample allspikes in a small interval of size �t around t+s, average,and divide by �t. We replace the �rst sum in (A3) bythe (approximate) identity (�t)�111fspike in [t+s;t+s+�t)g,where 11f:::g is the indicator function of the set f: : : g;i.e., it equals 1 when its argument is in the set f: : : g and0 elsewhere. Because the postsynaptic potential � is acontinuous function we approximate the second sum byPk 11fspike in [tk;tk+�t)g �(t� tk), where f[tk; tk+�t); k 2Zg is a decomposition of the real axis. Since it is under-stood that �t ! 0, all events with two or more spikesin an interval [tk; tk +�t) have a probability o(�t) and,hence, can be neglected. It is exactly this property thatis typical to a Poisson process { and to any biologicalneuron.What we are going to compute is the correlation be-tween Sini , the input at synapse i, and the output Sout,that is governed by all synapses, including synapse i.Here the simplicity of the linear Poissonian neuron modelpays o� as Sout is linear in the sum of the synaptic in-puts and, hence, in each of them. Furthermore, whateverthe model, the synaptic e�cacies Ji(t) are changing adi-abatically with respect to the neuronal dynamics so thatthey can be taken to be constant and, thus, out of theaverage. In the limit �t ! 0 we can therefore rewritethe right-hand side of (A3) so as to �ndJi(t) (�t)�1Xk �(t� tk) (A4)�
11fspike in [t+s;t+s+�t)g 11fspike in [tk;tk+�t)g�:Without restriction of generality we can choose our parti-tion so that tk = s+ t for some k, say k = l. Singling outk = l, the rest (k 6= l) can be averaged directly, sinceevents in disjoint intervals are independent. Becauseh11f:::gi = Probfspike in [t+s; t+s+�t)g = �ini (t+s)�t,the result is Ji(t)�ini (t+s) �ini (t), where we have used (8).As for the term k = l, we plainly have 112f:::g = 11f::: g, asan indicator function assumes only two distinct values, 0and 1. We obtain Ji(t)�ini (t+ s) �(�s).Collecting terms and incorporating �0 6= 0 we �nd (9).APPENDIX B: PARAMETERS FORNUMERICAL SIMULATIONSWe discuss the parameter regime of the simulations asshown in Secs.V and VI. Numerical values and impor-tant derived quantities are summarized in Table I.

1. Learning WindowWe use the learning windowW (s) = �8><>: exp( s� syn ) [A+(1� s~�+ )+A�(1� s~�� )] for s � 0;A+ exp(� s�+ ) +A� exp(� s�� ) for s > 0:(B1)Here s is the delay between presynaptic spike arrivaland postsynaptic �ring, � is a \small" learning parame-ter, � syn, �+, ��, ~�+ := � syn�+=(� syn + �+), and ~�� :=� syn��=(� syn+��) are time constants. The dimensionlessconstants A+ and A� determine the strength of synap-tic potentiation and depression, respectively. Numericalvalues are � = 10�5, � syn = 5ms, �+ = 1ms, �� = 20ms,and A+ = 1, A� = �1,; cf. Table I. The learning win-dow (cf. Fig. 6) is in accordance with experimental results[25,26,28,29,33]. A detailed explanation of our choice ofthe learning window on a microscopical basis of Hebbianlearning can be found elsewhere [54,57].For the analysis of the learning process we need theintegrals ~W (0) := R dsW (s) and R dsW (s)2. The nu-merical result is listed in Table I. Using c+ := � syn=�+and c� := � syn=�� we obtainZ dsW (s) = � � synhA� (2 + c� + c�1� ) (B2)+A+ (2 + c+ + c�1+ )iandZ dsW (s)2 = �24 �A2� �� hc3� + 4c2� + 5c� + 2i (B3)+A2+ �+ hc3+ + 4c2+ + 5c+ + 2i+2A+A� � syn hc+c� + 2 (c+ + c�)+5 + 4=(c+ + c�)i�:2. Postsynaptic PotentialWe use the excitatory postsynaptic potential (EPSP)�(s) = s=�20 exp(�s=�0)H(s) ; (B4)where H(:) denotes the Heaviside step function, andR ds �(s) = 1. For the membrane time constant weuse �0 = 10ms, which is reasonable for cortical neurons[68,69]. The EPSP has been plotted in Fig. 4. Using (B1)and (B4) we obtainZ dsW (s) �(�s) = � (� syn)2=(� syn + �0)3 (B5)�hA� (2 � syn �0=�� + � syn + 3�0)+A+ (2 � syn �0=�+ + � syn + 3�0)i:15



3. Synaptic InputThe total number of synapses is N = 50. For 1 � i �M1 = 25 synapses in groupM1 we use a constant inputintensity �ini (t) = �in. The remaining M2 = 25 synapsesreceive a periodic intensity, �ini (t) = �in + ��in cos(! t)for i 2 M2; cf. also Sec. VA 3. Numerical parameters are�in = 10Hz, ��in = 10Hz, and !=(2�) = 40Hz. For thecomparison of theory and simulation we need the valueof Q in (18). We numerically took the Fourier transformsof � and W at the frequency !. The time constant � stris calculated via (29); cf. Table I.4. Parameters win, wout, �0, and #We use the learning parameters win = � and wout =�1:0475 �, where � = 10�5. The spontaneous outputrate is �0 = 0 and the upper bound for synaptic weightsis # = 0:1. These values have been chosen in order toful�ll the following �ve conditions for learning: First, theabsolute values of win and wout are of the same orderas the amplitude of the learning window W ; cf. Fig. 6.Furthermore, these absolute values are small as comparedto the normalized average weight (see below). Second,the constraints on k1 and k2 for a stable and realizable�xed point are satis�ed; cf. Sec. VB and (14). Third,the correlations in the input are weak so that 0 < Q ��k2; cf. (23). This implies that the time scale �av ofnormalization in (22) is orders of magnitude smaller thanthe time scale � str of structure formation in (29); cf. alsoTable I. Fourth, the k3 term in (14) can be neglected inthe sense of Sec. IVC. Proving this we note that the �xedpoint for the average weight is Jav� = 2 � 10�2 [cf. (21)]and k3 = 7:04 � 10�5 s�1. We now focus on (16). SinceQij (� jk2j for all i; j) can be neglected and Ji � # for alli we �nd from (16) the even more restrictive conditionN jk2j Jav� =# � jk3j which is ful�lled in our parameterregime. Fifth, input and output rates are identical fornormalized weights, �in = �out for �0 = 0; see Sec. VB.APPENDIX C: NORMALIZATION ANDCORRELATIONS BETWEENWEIGHTS AND INPUT RATESThe assumption of independence of the weights fJigand the rates f�ini g used in Sec. VB for the derivation ofa normalization property of (15) is not valid in general.During learning we expect weights to change accordingto their input. For the con�guration of the input as in-troduced in Sec. VA this depends on whether synapsesbelong to groups M1 or M2. To show that even un-der the condition of interdependence of fJig and f�ini gthere is a normalization property of (15) similar to thatderived in Sec. VB we investigate the most extreme casein which the total mass of synaptic weight is, e.g., in

M2. Taking Ji = 0 for i 2 M1 into account we re-place N�1Pij Jj Qij in (20) by M�12 N2JavQav. The�xed point Jav� is similar to that in (21) except for amultiplicative prefactor N=M2 of order 1 preceding Qavin (21), Jav� = �k1=[N(k2 +QavN=M2)] : (C1)Since N=M2 > 1, k1 > 0, and k2 + QavN=M2 < 0, Jav�in (C1) is larger than Jav� in (21), where we assumedindependence of fJig and f�ini g. Correlations betweenfJig and f�ini g can be neglected, however, if we assume0 < Q � Qav � �k2; cf. (23). In this case Jav� in (21)and (C1) are almost identical and independent of Qav.APPENDIX D: NORMALIZATION ANDWEIGHT CONSTRAINTSLet us consider the inuence of weight constraints(Sec. VB) on the position of the �xed point Jav� in (21)and and the time constant �av of normalization in (22).We call N# and N" the number of weights at the lowerbound 0 and the upper bound # > 0, respectively. Byconstruction we have N#+N" � N , where N is the num-ber of synapses.For example, if the average weight Jav approaches Jav�from below, then only N � N" weights can contributeto an increase of Jav. For the remaining N" saturatedsynapses we have _Ji = 0. Deriving from (15) an equa-tion equivalent to (20) we obtain _Jav = (1�N"=N) (k1+N k2 Jav+ JavQav=N). The �xed point Jav� remains un-changed as compared to (21) but the time constant �avfor an approach of Jav� from below is increased by a fac-tor (1 � N"=N)�1 � 1 as compared to (22). Similarly,�av for an approach of Jav� from above is increased by afactor (1�N#=N)�1 � 1.The factor by which �av is increased is of order 1, ifwe use the upper bound # = (1 + d) Jav� , where d > is oforder 1. If Jav = Jav� , at most N" = N=(1 + d) synapsescan saturate at the upper bound comprising the totalweight. The remaining N# = N �N=(1+d) synapses areat the lower bound 0. The time constant �av is enhancedby at most 1+1=d and 1+d for an approach of the �xedpoint from below and above, respectively.APPENDIX E: RANDOM WALKOF SYNAPTIC WEIGHTSWe consider the random walk of a synaptic weight Ji(t)for t > t0, where Ji(t0) is some starting value. The timecourse of Ji(t) follows from Eq. (1),
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Ji(t) = Ji(t0) + tZt0 dt0 hwin Sini (t0) + wout Sout(t0)i (E1)+ tZt0 dt0 tZt0 dt00W (t00 � t0)Sini (t00)Sout(t0) :For a speci�c i the spike trains Sini (t0) and Sout(t0) arenow assumed to be statistically independent and gener-ated by Poisson processes with constant rates �in for alli and �out, respectively; cf. Secs. II A and IVA. Here �incan be prescribed whereas �out then follows; cf. for in-stance (7). For large N the independence is an excellentapproximation. The learning parameters win and woutcan be positive or negative. The learning window W issome quadratically integrable function with a width Was de�ned in Sec. II C. Finally, it may be well to realizethat spikes are described by � functions.The weight Ji(t) is a stepwise constant function oftime; see Fig. 2 (bottom). According to (E1) an inputspike arriving at synapse i at time t changes Ji at thattime by a constant amount win and a variable amountR tt0 dt0W (t� t0)Sout(t0), which depends on the sequenceof output spikes in the interval [t0; t]. Similarly, an outputspike at time t results in a constant weight change woutand a variable one that equals R tt0 dt00W (t00 � t)Sini (t00).We obtain a random walk with independent steps butrandomly variable step size. Suitable rescaling of thisrandom walk leads to Brownian motion.As in Sec. II B we substitute s = t00 � t0 in the sec-ond line of (E1) and extend the integration over the newvariable s so as to run from �1 to 1. This does notintroduce a big error for t� t0 �W . The second line of(E1) then reduces to R dsW (s) R tt0 dt0 Sini (t0+ s)Sout(t0).We denote ensemble averages by angular bracketsh: : : i. The variance then readsVarJi(t) = hJ2i i(t) � hJii2(t) : (E2)To simplify the ensuing argument, upper and lowerbounds for each weight are not taken into account.For the calculation of the variance in (E2) we �rst of allconsider the term hJii(t). We use the notation hSini i(t) =�in and hSouti(t) = �out because of constant input andoutput intensities. Stochastic independence of input andoutput leads to hSini (t0 + s)Sout(t0)i = �in �out. Using(E1) and R dsW (s) = ~W (0) we then obtainhJii(t) = Ji(t0) (E3)+(t� t0)�win�in + wout�out + �in�out ~W (0)� :Next, we consider the term hJ2i i(t) in (E2). Using (E1)once again we obtain for t� t0 �W

hJ2i i(t) = �Ji(t0)2 + 2Ji(t0) hJii(t) + tZt0 dt0 tZt0 du0 (E4)�(DSini (t0)Sini (u0)E (win)2 + DSout(t0)Sout(u0)E (wout)2 + DSini (t0)Sout(u0)E 2winwout+2 Z dsW (s) hDSini (t0)Sini (u0 + s)Sout(u0)Ewin + DSout(t0)Sini (u0 + s)Sout(u0)Ewouti+ Z ds Z dvW (s)W (v)DSini (t0 + s)Sini (u0 + v)Sout(t0)Sout(u0)E):Since input and output were assumed to be independent,we get hSini Sini Sout Souti = hSini Sini i hSout Souti;hSini Sini Souti = hSini Sini i hSouti; (E5)hSout Sout Sini i = hSout Souti hSini i:We note that hSini i = �in for all i and hSouti = �out.Input spikes at times t0 and u0 are independent aslong as t0 6= u0. In this case we therefore havehSini (t0)Sini (u0)i = �in �in. For arbitrary times t0 and u0we �nd (cf. App. A)hSini (t0)Sini (u0)i = �in [�in + �(t0 � u0)]: (E6)Similarly, for the correlation between output spike trainswe obtainhSout(t0)Sout(u0)i = �out [�out + �(t0 � u0)]: (E7)Using (E5), (E6), and (E7) in (E4), performing the in-tegrations, and inserting the outcome together with (E3)into (E2) we arrive atVarJi(t) = (t� t0)D (E8)whereD = �in(win)2 + �out(wout)2 + �in�out Z dsW (s)2 (E9)+ �in�out ~W (0) h2 (win + wout) + ~W (0) (�in + �out)i ;as announced.
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TABLE I. Values of the parameters used for the numericalsimulations (�rst part) and derived quantities (second part).ParametersLearning � = 10�5win = �wout = �1.0475 �A+ = 1A� = �1�+ = 1ms�� = 20ms� syn = 5msEPSP �0 = 10msSynaptic input N = 50M1 = 25M2 = 25�in = 10 s�1��in = 10 s�1!=(2�) = 40 s�1Further parameters �0 = 0# = 0.1Derived quantities~W (0) := R dsW (s) = 4.75�10�8 sR dsW (s)2 = 3.68�10�12 sR dsW (s) �(�s) = 7.04�10�6Q = 6.84�10�7 s�1k1 = 1�10�4 s�1k2 = �1�10�4 s�1k3 = 7.04�10�5 s�1� av = 2�102 s� str = 2.93�104 s�noise = 1.62�105 sJav� = 2�10�2D = 2.47�10�9 s�1D0 = 1.47�10�9 s�1
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