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A correlation-based (“Hebbian”) learning rule at a spike
level with millisecond resolution is formulated, mathemati-
cally analyzed, and compared with learning in a firing-rate de-
scription. The relative timing of pre- and postsynaptic spikes
influences synaptic weights via an asymmetric “learning win-
dow”. A differential equation for the learning dynamics is
derived under the assumption that the time scales of learning
and neuronal spike dynamics can be separated. The differ-
ential equation is solved for a Poissonian neuron model with
stochastic spike arrival. It is shown that correlations between
input and output spikes tend to stabilize structure formation.
With an appropriate choice of parameters, learning leads to
an intrinsic normalization of the average weight and the out-
put firing rate. Noise generates diffusion-like spreading of
synaptic weights.
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I. INTRODUCTION

Correlation-based or “Hebbian” learning [1] is thought
to be an important mechanism for the tuning of neuronal
connections during development and thereafter. It has
been shown by various model studies that a learning rule
which is driven by the correlations between presynaptic
and postsynaptic neurons leads to an evolution of neu-
ronal receptive fields [2-9] and topologically organized
maps [10-12].

In all these models, learning is based on the correla-
tion between neuronal firing rates, that is, a continuous
variable reflecting the mean activity of a neuron. This is
a valid description on a time scale of 100 ms and more.
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On a time scale of 1 ms, however, neuronal activity con-
sists of a sequence of short electrical pulses, the so-called
action potentials or spikes. During recent years experi-
mental and theoretical evidence has accumulated which
suggests that temporal coincidences between spikes on a
millisecond or even sub-millisecond scale play an impor-
tant role in neuronal information processing [13-24]. If
so, a rate description may, and often will, neglect im-
portant information that is contained in the temporal
structure of a neuronal spike train.

Neurophysiological experiments also suggest that the
change of a synaptic efficacy depends on the precise
timing of postsynaptic action potentials with respect to
presynaptic input spikes on a time scale of 10 ms. Specif-
ically, a synaptic weight is found to increase, if presynap-
tic firing precedes a postsynaptic spike, and to decrease
otherwise [25,26]; see also [27-33]. Our description of
learning at a temporal resolution of spikes takes these
effects into account.

In contrast to the standard rate models of Hebbian
learning, we introduce and analyze a learning rule where
synaptic modifications are driven by the temporal corre-
lations between pre- and postsynaptic spikes. First steps
towards a detailed modeling of temporal relations have
been taken for rate models in [34] and for spike models
in [22,3543].

II. DERIVATION OF THE
LEARNING EQUATION

A. Specification of the Hebb Rule

We consider a neuron that receives input from N > 1
synapses with efficacies J;, 1 < i < N; cf. Fig.1. We
assume that changes of .J; are induced by pre- and post-
synaptic spikes. The learning rule consists of three parts.
(i) Let t{ be the arrival time of the fth input spike at
synapse i. The arrival of a spike induces the weight .J; to
change by an amount nw'™ which can be either positive



or negative. The quantity n > 0 is a “small” parameter.
(ii) Let t™ be the nth output spike of the neuron under
consideration. This event triggers the change of all IV ef-
ficacies by an amount n w°"* which can also be positive or
negative. (iii) Finally, time differences between all pairs
of input and output spikes influences the change of the
efficacies. Given a time difference s = t{ — 1™ between in-
put and output spike, J; is changed by an amount n W (s)
where the learning window W is a real-valued function.
It is to be specified shortly; cf. also Fig. 6.
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FIG. 1. Single neuron. We study the development of
synaptic weights J; (small filled circles, 1 < ¢ < N) of a
single neuron (large circle). The neuron receives input spike
trains denoted by Si* and produces output spikes denoted by
Sout-

Starting at time t with an efficacy J;(t), the total
change AJ;(t) = J;(t + T) — J;(t) in a time interval T,
which may be interpreted as the length of a learning trial,
is calculated by summing the contributions of input and
output spikes as well as all pairs of input and output
spikes occurring in the time interval [¢,¢ 4+ 7. Denoting
the input spike train at synapse i by a series of § func-
tions, Si"(¢) = Zf 6(t—tf), and, similarly, output spikes
by S°ut(t) = >, 6(t — "), we can formulate the rules
(i)—(iii) explicitly by putting

t+T
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In (1b) the prime denotes that only firing times t{ and t"
in the time interval [¢, ¢+ 7] are to be taken into account;
cf. Fig. 2.
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FIG. 2. Hebbian learning and spiking neurons — schematic.
In the bottom graph we plot the time course of the synap-
tic weight J;(¢) evoked through input and output spikes (up-
per graphs, vertical bars). An output spike, e.g. at time ',
induces the weight .J; to change by an amount w°"® which
is negative here. To consider the effect of correlations be-
tween input and output spikes, we plot the learning window
W (s) (center graphs) around each output spike, where s = 0
matches the output spike times (vertical dashed lines). The
three input spikes at times t7, t7 and ¢? (vertical dotted lines)
increase .J; by an amount w™ each. There is no influence of
correlations between these input spikes and the output spike
at time ¢'. This becomes visible with the aid of the learning
window W centered at t'. The input spikes are too far away
in time. The next output spike at >, however, is close enough
to the previous input spike at ¢3. The weight .J; is changed
by w°"* < 0 plus the contribution W (¢} —t?) > 0, the sum of
which is positive (arrowheads). Similarly, the input spike at
time ¢/ leads to a change w™ + W (¢! —¢*) < 0.

Equation (1) represents a Hebb-type learning rule since
they correlate pre- and postsynaptic behavior. More pre-
cisely, here our learning scheme depends on the time se-
quence of input and output spikes. The parameters w'™,
w°" as well as the amplitude of the learning window W
may, and in general will, depend on the value of the ef-
ficacy J;. Such a J; dependence is useful so as to avoid
unbounded growth of synaptic weights. Even though we
have not emphasized this in our notation, most of the
theory developed below is valid for J;-dependent param-
eters; cf. Sec. V B.

B. Ensemble Average

Given that input spiking is random but partially cor-
related and that the generation of spikes is in general
a complicated dynamic process, an analysis of (1) is a
formidable problem. We therefore simplify it. We have
introduced a small parameter n > 0 into (1) with the
idea in mind that the learning process is performed on
a much slower time scale than the neuronal dynamics.
Thus we expect that only averaged quantities enter the
learning dynamics.

Considering averaged quantities may also be useful in
order to disregard the influence of noise. In (1) spikes



are discrete events that trigger a discontinuous change of
the synaptic weight; cf. Fig.2 (bottom). If we assume
a stochastic spike arrival or if we assume a stochastic
process for generating output spikes, the change AJ; is
a random variable, which exhibits fluctuations around
some mean drift. Averaging implies that we focus on the
drift and calculate the expected rate of change. Fluctu-
ations are treated in Sec. VI.

1. Self-Averaging of Learning

Effective learning needs repetition over many trials of
length 7", each individual trial being independent of the
previous ones. Equation (1) tells us that the result of
the individual trials are to be summed. According to the
(strong) law of large numbers [44] in conjunction with 7
being “small” [45] we can average the resulting equation,
viz., (1), whatever the random process. In other words,
the learning procedure is self-averaging. Instead of aver-
aging over several trials we may also consider one single
long trial during which input and output characteristics
remain constant. Again, if n is sufficiently small, time
scales are separated and learning is self-averaging.

The corresponding average over the resulting random
process is denoted by angular brackets (...) and called
an ensemble average, in agreement with physical usage.
It is a probability measure on a probability space, which
need not be specified explicitly. We simply refer to the
literature [44]. Substituting s = ¢ —¢' on the right-hand
side of (1a), dividing both sides by 7 we obtain
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2. Ezxample: Inhomogeneous Poisson Process

Averaging the learning equation before proceeding is
justified if both input and output process will be taken to
be an inhomogeneous Poisson processes, which will be as-
sumed throughout Secs. IV-VI. An inhomogeneous Pois-
son process with time dependent rate function A(¢) > 0 is
characterized by two facts: (i) disjoint intervals are inde-
pendent and (ii) the probability of getting a single event
at time ¢ in an interval of length At is A(t) A¢, more
events having a probability o(At); see also [46], App. A
for a simple exposition of the underlying mathematics.
The integrals in (1la) or the sums in (1b) therefore de-
compose into many independent events and, thus, the
strong law of large numbers applies to them. The output
is a temporally local process as well so that the strong

law of large numbers also applies to the output spikes at
times ¢" in (1).

If we describe input spikes by inhomogeneous Poisson
processes with intensity Ai*(¢), then we may identify the
ensemble average over a spike train with the stochastic
intensity, (Si")(¢) = AI"(¢); cf. Fig. 3. The intensity A ()
can be interpreted as the instantaneous rate of spike ar-
rival at synapse ¢. In contrast to temporally averaged
mean firing rates, the instantaneous rate may vary on a
fast time scale in many biological systems; cf. Sec.III C.
The stochastic intensity (S°U)(¢) is the instantaneous
rate of observing an output spike, where (...) is an en-
semble average over both the input an the output. Fi-
nally, the correlation function (Si"(#") S°ut(#')) is to be
interpreted as the joint probability density for observing
an input spike at synapse 7 at the time ¢" and an output
spike at time #'.
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FIG. 3. Inhomogeneous Poisson process. In the upper
graph we have plotted an example of an instantaneous rate
A"(t) in units of Hz. The average rate is 10 Hz (dashed line).
The lower graph shows a spike train Si®(¢) which is a real-
ization of an inhomogeneous Poisson process with rate Ai*(¢).
The spike times are denoted by vertical bars.

C. Separation of Time Scales

We require the length 7 of a learning trial in (2) to be
much larger than typical interspike intervals. Both many
input spikes at any synapse and many output spikes
should occur on average in a time interval of length 7.
Then, using the notation f(f) = 7! tHT dt’ f(¢'), we

may introduce the mean firing rates v (t) = (Si")(¢) and
vOut(t) = (Sout)(t). We call vi* and v°"* mean firing rates
in order to distinguish them from the previously defined
instantaneous rates (Si") and (S°Ut) which are the result
of an ensemble average only. Because of their definition,
mean firing rates v always vary slowly as a function of
time. That is, they vary on a time scale of the order of
7. The quantities vi" and v°" therefore carry hardly any
information that may be present in the timing of discrete
spikes.

For the sake of further simplification of (2), we define
the width W of the learning window W (s) and consider
the case T > W. Most of the “mass” of the learning win-
dow should be inside the interval [-WV,W]. Formally we



require fl/vw ds |[W(s)| > f__ol;v ds [W(s)[+ [y ds [W(s)].
For T > W the integration over s in (2) can be extended
to run from —oo to co. With the definition of a tempo-
rally averaged correlation function,

Ci(s;t) = (S{"(t + 5) Seut(1)) 3)

the last term on the right in (2) reduces to
ffooo dsW(s) C;(s;t). Correlations between pre- and
postsynaptic spikes, thus, enter spike-based Hebbian
learning through C; convolved with the window W. We
note that the correlation C;(s;t), though being both
an ensemble and a temporally averaged quantity, may
change as a function of s on a much faster time scale
than 7 or the width W of the learning window. The
temporal structure of C; depends essentially on the neu-
ron (model) under consideration. An example is given in
Sec. IV A.

We require learning to be a slow process; cf. Sec. IIB 1.
More specifically, we require that J values do not change
much in the time interval 7. Thus 7 separates the time
scale W (width of the learning window W) from the time
scale of the learning dynamics, which is proportional to
n~!. Under those conditions we are allowed to approx-
imate the left-hand side of (2) by the rate of change
dJ;/dt, whereby we have omitted the angular brackets
for brevity. Absorbing n into the learning parameters
w'™, w°" and W, we obtain

d in _in out . out
i) = w Tyt () + 0 () (4)
o0
+ / ds W(s) C;(s;t) .
—0o0

The ensemble averaged learning equation (4), which
holds for any neuron model, will be the starting point
of the arguments below.

ITI. SPIKE-BASED AND RATE-BASED
HEBBIAN LEARNING

In this section we indicate the assumptions that are re-
quired to reduce spike-based to rate-based Hebbian learn-
ing and outline the limitations of the latter.

A. Rate-Based Hebbian Learning

In neural network theory, the hypothesis of Hebb [1] is
usually formulated as a learning rule where the change of
a synaptic efficacy J; depends on the correlation between
the mean firing rate 1/%rl of the i th presynaptic neuron and
the mean firing rate v°% of a postsynaptic neuron, viz.,

dJ;
dt

=J,=ap+a 1/2n + ag O (5)

+as Vin Vout +ay (V§H)2 + as (Vout)2 ,

where ag < 0, a1, as, a3, a4, and as are proportional-
ity constants. Apart from the decay term ag and the
“Hebbian” term 1/%rl v°" proportional to the product of
input and output rates, there are also synaptic changes
which are driven separately by the pre- and postsynap-
tic rates. The parameters ayg, . ..,as may depend on J;.
Equation (5) is a general formulation up to second order
in the rates; see, e.g., [3,47,12].

B. Spike-Based Hebbian Learning

To get (5) from the spike-based learning rule in (4)
two approximations are required. First, if there are no
correlations between input and output spikes apart from
the correlations contained in the instantaneous rates, we
can write (SI(¢ + 5) SOUt(#)) ~ (S (' + s) (SOUt)(¢').
Second, if these rates change slowly as compared to T,
then we have C;(s;t) = vi"(t + s) v°"*(¢). In addition,
v = (S) is the time evolution on a slow time scale; cf. the
discussion after (3). Since we have T > W, the rates v\
also change slowly as compared to the width W of the
learning window and, thus, we may replace vi*(¢ + s) by
vi8(t) in the correlation term ffooo ds W (s) C;(s;t). This

yields [*°_dsW(s) C;(s;t) ~ W(0) v™(t) v°u(t) where

(3

W(0) := [*_dsW(s). Under the above assumptions we

can identify W(0) with a3. By further comparison of (4)
with (5) we identify w™ with a; and w°"* with as, and we
are able to reduce (4) to (5) by setting ap = a4 = a5 = 0.

C. Limitations of Rate-Based Hebbian Learning

The assumptions necessary to derive (5) from (4), how-
ever, are not generally valid. According to the results of
Markram et al. [25] the width W of the Hebbian learn-
ing window in cortical pyramidal cells is in the range of
100ms. At retinotectal synapses W is also in the range
of 100 ms [26].

A mean rate formulation thus requires that all changes
of the activity are slow at a time scale of 100ms. This
is not necessarily the case. The existence of oscilla-
tory activity in the cortex in the range of 40Hz (e.g.,
[14,15,20,48]) implies activity changes every 25 ms. Reti-
nal ganglion cells fire synchronously at a time scale of
about 10ms [49]; cf. also [50]. Much faster activity
changes are found in the auditory system. In the auditory
pathway of, e.g., the barn owl, spikes can be phase-locked
to frequencies of up to 8 kHz [51-53]. Furthermore, be-
yond the correlations between instantaneous rates addi-
tional correlations between spikes may exist.

Because of all the above reasons, the learning rule (5)
in the simple rate formulation is insufficient to provide a
generally valid description. In Secs.IV-V we will there-
fore study the full spike-based learning equation (4).



IV. STOCHASTICALLY SPIKING NEURONS

A crucial step in analyzing (4) is determining the cor-
relations C; between input spikes at synapse i and output
spikes. The correlations, of course, depend strongly on
the neuron model under consideration. To highlight the
main points of learning we study a simple toy model. In-
put spikes are generated by an inhomogeneous Poisson
process and fed into a stochastically firing neuron model.
For this scenario we are able to derive an analytical ex-
pression for the correlations between input and output
spikes. The introduction of the model and the deriva-
tion of the correlation function is the topic of the first
subsection. In the second subsection we use the corre-
lation function in the learning equation (4) and analyze
the learning dynamics. In the final two subsections the
relation to the work of Linsker [3] (a rate formulation of
Hebbian learning) and some extensions based on spike
coding are considered.

A. Poisson Input and Stochastic Neuron Model

We consider a single neuron which receives input via
N synapses 1 < ¢ < N. The input spike trains arriving
at the IV synapses are statistically independent and gen-
erated by an inhomogeneous Poisson process with time-
dependent intensities (Sin)(t) = A"(¢) with 1 <i < N
[46].

In our simple neuron model we assume that output
spikes are generated stochastically with a time-dependent
rate A°%*(¢) that depends on the timing of input spikes.
Each input spike arriving at synapse ¢ at time t{ increases
(or decreases) the instantaneous firing rate A°“'* by an
amount Ji(t{) e(t— t{), where € is a response kernel. The
effect of an incoming spike is thus a change in probabil-
ity density proportional to J;. Causality is imposed by
the requirement €(s) = 0 for s < 0. In biological terms,
the kernel e may be identified with an excitatory (or in-
hibitory) postsynaptic potential. In throughout what fol-
lows, we assume excitatory couplings J; > 0 for all ¢ and
€(s) > 0 for all s. In addition, the response kernel €(s) is
normalized to [dse(s) = 1; cf. Fig. 4.
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FIG. 4. The postsynaptic potential € in units of [e™" 75 !]
as a function of time s in milliseconds. We have ¢ = 0 for
s < 0 so that € is causal. The kernel € has a single maximum
at s = 79. For s — oo the postsynaptic potential € decays
exponentially with time constant 7o; cf. also App.B2.

The contributions from all N synapses as measured at
the axon hillock we assume to add up linearly. The result
gives rise to a linear inhomogeneous Poisson model with
intensity

N
M) =vo+ Y > Lthet—th) . (6)

i=1 f

Here, vg is the spontaneous firing rate and the sums run
over all spike arrival times at all synapses. By definition,
the spike generation process (6) is independent of previ-
ous output spikes. In particular, this Poisson model does
not include refractoriness.

In the context of (4), we are interested in ensemble
averages over both the input and the output. Since (6) is
a linear equation, the average can be performed directly
and yields

N . ‘
(8™)0) = v+ Y i) /0 dse(s) Nn(t—s) . (7)

In deriving (7) we have replaced J; (tf ) by J;(t) because
efficacies are assumed to change adiabatically with re-
spect to the width of e. The ensemble-averaged output
rate in (7) depends on the convolution of € with the input
rates. In what follows we denote

AR(t) = /0 " dse(s) Nt — 5) (8)

Equation (7) may suggest that input and output spikes
are statistically independent — which is not the case.
To show this explicitly, we determine the ensemble av-
eraged correlation (Si"(t + s)S°U*(¢)) in (3). Since
(Sin(t + s) S°U(t)) corresponds to a joint probability, it
equals the probability density Al"(¢+s) for an input spike
at synapse i at time ¢ + s times the conditional probabil-
ity density of observing an output spike at time ¢ given
the above input spike at t + s,

(S (t+5) S (1)) 9)
N
= \n(t + 5) [,,0 + i) e(=s) + > T;(t) A;."(t)] .

j=1

The first term inside the square brackets is the sponta-
neous output rate, the second term is the specific con-
tribution caused by the input spike at time ¢ + s, which
vanishes for s > 0. We are allowed to write J;(¢) instead
of the “correct” weight J;(t + s); cf. the remark after (7).
To understand the meaning of the second term, we recall
that an input spike arriving before an output spike (i.e.,
s < 0) raises the output firing rate by an amount propor-
tional to €(—s); cf. Fig.5. The sum in (9) contains the
mean contributions of all synapses to an output spike at
time ¢. For the proof of (9), we refer to App. A.
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FIG. 5. Spike-spike correlations. To understand the mean-
ing of Eq.(9) we have sketched (S(#') S (¢))/A"(t') as a
function of time ¢ (full line). The dot-dashed line at the bot-
tom of the graph is the contribution J;(#') e(t —t') of an input
spike occuring at time #'. Adding this contribution to the
mean rate contribution, vo + 3, J; (¢) A} (t) (dashed line), we
obtain the rate inside the square brackets of (9) (full line). At
time t” > t the input spike at time #' enhances the output
firing rate by an amount J;(¢') e(t” —t') (arrows). Note that
in the main text we have taken t'' —t = —s.

Inserting (9) in (3) we obtain
N -
Ci(sit) =Y Ji(t) N(t + s) A" ()
+An (¢ + 5) [1/0 + Ji(t) e(—s)] , (10)

where we have assumed the weights J; to be constant
in the time interval [t,t + T]. Temporal averages are

denoted by a bar; cf. Sec. ILC. Note that A" () = vi®(¢).

B. Learning Equation

Before inserting the correlation function (10) into the
learning rule (4) we define the covariance matrix

gij(s;t) == [XR(E+ ) — vin(t + )] [AIR(2) — vin(t)]
(11)

and its convolution with the learning window W,
o0
Qi (t) == / ds W (s) gi;(s;t) . (12)
Using (7), (10) and (12) in (4) we obtain
ji: win U;n + wOut [VO + Z le/j] + W(O) z/in Vo (13)
J
o0
+Z J; [Qij + W(0) i 1/}n + di; i / ds W(s)e(—s)] .
i —o0

For the sake of brevity, we have omitted the dependence
upon time.

The assumption of identical and constant mean input
rates, vi"(t) = v™™ for all 4, reduces the number of free
parameters in (13) considerably and eliminates all effects
coming from rate coding. We define

ki = [w(’“t + W(0) yi“] vy + wm v,
ky = [w"“t + W(0) Ui“] v, and (14)
ks = ™" / ds W (s) e(—s)

in (13) and arrive at

Ji=ki+ > (Qij +ky + ks i) J; . (15)
J

Equation (15) describes the ensemble averaged dynamics
of synaptic weights for a spike-based Hebbian learning
rule (1) under the assumption of a linear inhomogeneous
Poissonian model neuron.

C. Relation to Linsker’s Equation

Linsker [3] has derived a mathematically equivalent
equation starting from (5) and a linear graded-response
neuron, a rate-based model. The difference between
Linsker’s equation and (15) is, apart from a slightly dif-
ferent notation, the term ks d;;.

Equation (15) without the k3 term has been analyzed
extensively by MacKay and Miller [5] in terms of eigen-
vectors and eigenfunctions of the matrix Q;; + k2. In
principle, there is no difficulty in incorporating the k3
term in their analysis, because ();; + k2 + d;; k3 contains
ks times the unit matrix and thus has the same eigen-
vectors as (;; + k». All eigenvalues are simply shifted by
ks.

The k3 term can be neglected, if the number N of
synapses is large. More specifically, the influence of the
k3 term as compared to the ks and @);; term is negligible,
if for all 4

> 1Qij + kel J; > |ks| Ji . (16)
i

This holds, for instance, if (i) we have many synapses,
(ii) |ks| is smaller than or at most of the same order
of magnitude as |k» + @;;| for all ¢ and j, and (iii) each
synapse is weak as compared to the total synaptic weight,
Ji < 32; Jj. The assumptions (i)-(iii) are often reason-
able neurobiological conditions, in particular, when the
pattern of synaptic weights is still unstructured. The
analysis of (15) presented in Sec. V and focusing on nor-
malization and structure formation is therefore based on
these assumptions. In particular, we neglect k3.
Nevertheless, our approach even without the k3 term is
far more comprehensive than Linsker’s rate-based ansatz
(5) because we have derived (15) from a spike-based



learning rule (1). Therefore correlations between spikes
on time scales down to milliseconds or below can enter the
driving term @;; so as to account for structure formation.
Correlations on time scales of milliseconds or below may
be essential for information processing in neuronal sys-
tems; cf. Sec. IITC. In contrast to that, Linsker’s ansatz
is based on a firing-rate description where the term @;;
contains correlations between mean firing rates only. If
we use a standard interpretation of rate coding, a mean
firing rate corresponds to a temporally averaged quantity
which varies on a time scale of the order of hundreds of
milliseconds. The temporal structure of spike trains is
neglected completely.

Finally, our ansatz (1) allows the analysis of the influ-
ence of noise on learning. Learning results from stepwise
weight changes. Each weight performs a random walk
whose expectation value is described by the ensemble av-
eraged equation (15). Analysis of noise as a deviation
from the mean is deferred to Sec. VI.

D. Stabilization of Learning

We now discuss the influence of the k3 term in (15). It
gives rise to an exponential growth or decay of weights,
depending on the sign of k3. Since firing rates v are al-
ways positive and k3 = v'™ [ ds W (s)e(—s), the sign of
the integral [dsW(s)e(—s) is crucial. Hebb’s princi-
ple suggests that for excitatory synapses, the integral is
always positive. To understand why, let us recall that
s is defined as the time difference between input and
output spikes. The response kernel e vanishes for neg-
ative arguments. Thus the integral effectively runs only
over negative s. According to our definition, s < 0 im-
plies that presynaptic spikes precede postsynaptic firing.
These are the spikes that may have participated in firing
the postsynaptic neuron. Hebb’s principle [1] suggests
that these synapses are strengthened, hence W(s) > 0
for s < 0; cf. Fig.6. This idea is also in agreement
with recent neurobiological results [25,26,33]: Only those
synapses are potentiated where presynaptic spikes arrive
occurs a few milliseconds before a postsynaptic spike oc-
curs so that the former arrive “in time”. We conclude
that [ dsW(s)e(—s) > 0 and, hence, the k3 term is pos-
itive.

With k3 > 0 every weight and thus every structure in
the distribution of weights is enhanced. This may con-
tribute to the stability of structured weight distributions
at the end of learning, in particular, when the synapses
are few and strong [22,54]. In this case, (16) may be not
fulfilled and the k3 term in (15) has an important influ-
ence. Thus spike-based learning is different from simple
rate-based learning rules. Spike-spike correlations on a
millisecond time scale play an important role and tend
to stabilize existing strong synapses.
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FIG. 6. The learning window W in units of the learning
parameter 7 as a function of the delay s = ¢/ — " between
presynaptic spike arrival at synapse ¢ at time tf and post-
synaptic firing at time ¢". If W (s) is positive (negative) for
some s, the synaptic efficacy J; is increased (decreased). The
increase of J; is most efficient, if a presynaptic spike arrives
a few milliseconds before the postsynaptic neuron starts fir-
ing (vertical dashed line at s = s). For |s| — oo we have
W(s) = 0. The form of the learning window and parameter
values are as described in App.B1.

V. LEARNING DYNAMICS

In order to get a better understanding of the principal
features of the learning dynamics, we discuss (15) with
ks = 0 for a particularly simple configuration: a model
with two groups of synapses. Input rates are homoge-
neous within each group but different between one group
and the other. Our discussion focuses on intrinsic nor-
malization of output rates and structure formation. We
take lower and upper bounds for the J values into ac-
count explicitly and consider the limiting case of weak
correlations in the input. We will see that for a realis-
tic scenario we need to require w™ > 0 and w°"t < 0
and that we can formulate theoretical predictions of the
relative magnitude of the learning parameters w'™, w°ut
and the form of the learning window W. The theoretical
considerations are illustrated by numerical simulations
whose parameters are justified in App.B and summa-
rized in Table I.

A. Models of Synaptic Input

We divide the N statistically independent synapses, all
converging onto the very same neuron, into two groups,
My and My. The number of synapses are M; and Mo,
respectively, where My + My = N and M;, My > 1.
Since each group contains many synapses we may assume
that M; and My are of the same order of magnitude. The
spike input at synapses i in group Mj is generated by
a Poisson process with a constant intensity A" (¢) = v,
which is independent of ¢. We therefore have Q;;(t) =0
for i or j € Mjy; cf. Egs. (11) and (12). The synapses i
in group M, are driven by an arbitrary time-dependent
input, Ai"(#) = Ai"(¢), with the same mean input rate



v'" = \in(t) as in group M;. Without going into de-
tails about the dependence of A" () upon the time ¢ we
assume A"(t) to be such that the covariance g;;(s;t) in
(11) is independent of ¢. In this case it follows from (12)
that @Q;;(t) = Q for i,j € My, whatever t. For the sake
of simplicity we require in addition that @ > 0. In sum-
mary, we suppose in the following

Q>0 fori,je M,
Qij(t) = { 0 otherwise.

We recall that (;; is a measure of the correlations in
the input arriving at synapses i and j; cf. (11) and (12).
Equation (17) states that at least some of the synapses
receive positively correlated input, a rather natural as-
sumption. Three different realizations of (17) are now
discussed in turn.

(17)

1. White-Noise Input

For all synapses in group Mo, let us consider the case
of stochastic white noise input with intensity A'*(¢) and

mean firing rate Ain(¢) = v (¢) > 0. The fluctuations are
[Ain(t 4 s) — vin(t + s)] [N2(t) — vin(t)] = 60d(s). Due
to the convolution (8) with €, (11) yields g;;(s;t) =
oo €(—s), independently of ¢, i and j. We use (12) and
find Q;;(t) = Q = oo [dsW(s) e(—s). We want Q > 0
and therefore arrive at [ W(s)e(—s) = k3/v'™ > 0. We
have seen before in Sec.IV D that k3 > 0 is a natural
assumption and in agreement with experiments.

2. Colored-Noise Input

Let us now consider the case of an instantaneous and
memoryless excitation, €(s) = §(s). We assume that A" —
v'" obeys a stationary Ornstein-Uhlenbeck process [62]
with correlation time 7.. The fluctuations are therefore
¢ij(s;t) x exp(—|s|/7), independently of the synaptic in-
dices i and j. @ > 0 implies [ dsW (s)exp(—|s|/7.) > 0.

3. Periodic Input

Motivated by oscillatory neuronal activity in the au-
ditory system and in the cortex (cf. Sec.IIIC), we
now consider the scenario of periodically modulated
rates [Ai"(t) — v'"] = 61" cos(wt), where w > 27/T.
Let us first study the case e(s) = d(s). We find
Q = (0v'™)2/2 [dsW(s) cos(ws). Positive @ hence re-
quires the real part of the Fourier transform W(w) :
[ds W (s)exp(iws) to be positive, i.e., R[W (w)] >
For a general interaction kernel €(s), we find g¢;;(s;t)
(6v™)%/2 [ ds'€(s") cos[w (s + s')] and hence

Q = (8v")%/2-RW () éw)] (18)
whatever of £. Then Q > 0 requires R[IW (w) &(w)] > 0.

<

B. Normalization

Normalization is a very desirable property for any
learning rule. It is a natural requirement that the av-
erage weight and the mean output rate do not blow up
during learning but are stabilized at a reasonable value in
an acceptable amount of time. Standard rate-based Heb-
bian learning can lead to unlimited growth of the average
weight. Several methods have been designed to control
this unlimited growth; for instance, subtractive or multi-
plicative rescaling of the weights after each learning step
so as to impose either 3 J; = const. or else ), J? =
const. cf., e.g., [2,7,55]. Tt is hard to see, however, where
this should come from. Furthermore, a J dependence of
the parameters aq, ... ,as in the learning equation (5) is
often assumed. Higher-order terms in the expansion (5)
may also be used to control unlimited growth.

In this subsection we show that under some mild con-
ditions there is no need whatsoever to invoke the .J de-
pendence of the learning parameters, rescaling of weights,
or higher-order correlations to get normalization, which
means here that the average weight

1 N
J :N;Jl (19)

approaches a stable fixed point during learning. More-
over, in this case the mean output rate v°" is also stabi-
lized since v°U* = vy + N J&V '8 cf. (7).

As long as the learning parameters do not depend on
the J values, the rate of change of the average weight is
obtained from (15), (19), and k3 = 0 (Sec.IV C),

TV =k + Nk JY+N Y QyJ;i.  (20)
i,J

In the following we consider the situation at the begin-
ning of the learning procedure where the set of weights
{J;} have not picked up any correlations with the set
of Poisson intensities {Ai"} yet and therefore are in-
dependent. We may then replace J; and @;; on the
right-hand side of (20) by their average values J* and
Q¥ = N2 Zf\; Qij, respectively. The specific input
(17) described in the previous section yields Q*¥ =
(M3y/N)2Q > 0. We rewrite (20) in the standard form
Ja = [Ja&V — J&] /1% where

S = =k /[N (k2 + Q)] (21)
is the fixed point for the average weight and
= I k=N (@) (22)

is the time constant of normalization. The fixed point in
(21) is stable, if and only if 72V > 0.

During learning, weights {J;} and rates {\i"} may be-
come correlated. In App. C we demonstrate that the in-
fluence of any interdependence between weights and rates



on normalization can be neglected in the case of weak
correlations in the input,

0<@Q <K —ks. (23)

The fixed point J2¥ in (21) and the time constant 72V in
(22) are, then, almost independent of the average corre-
lation Q*¥, which is always of the same order as Q.

In Figs.7 and 8 we show numerical simulations with
parameters as given in App.B. The average weight J2¥
always approaches J2V, independently of any initial con-
ditions in the distribution of weights.

i =y 200"
‘Ji
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FIG. 7. Numerical simulation of weight normalization with
parameters as given in App.B. The four graphs show the
temporal evolution of synaptic weights J;, 1 < i < 50, be-
fore (¢t = 0) and during learning (¢ = 200, 500, and 1000
seconds). Before learning, all weights are initialized at the
upper bound ¢ = 0.1. During learning, weights decrease to-
wards the fixed point of the average weight, J» = 2.0-10"2;
cf. also Fig.8, topmost full line. The time constant of nor-
malization is 7" = 2.0-10% s, which is much smaller than the
time constant of structure formation; cf. Sec. VC and Fig. 9.
For times ¢t < 1000s we therefore can neglect effects coming
from structure formation.
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FIG. 8. Development of the average weight J*' as a func-
tion of time ¢ in units of 10® seconds. The simulations
we started at t = 0 with five different average weights,
J* € {0,0.01,0.02 = J,0.05,0.1 = J}. Full lines indicate
homogeneous initial weight distributions, where J; = J*V at
t = 0 for all 7; cf. also Fig. 7, upper left panel. In all five cases,
J* decays with the time constant 7" = 2.0 - 10% s describing
the rate of normalization to the fixed point J2¥ = 2.0 - 107 2.
Our theoretical prediction according to Sec. VB (crosses on
the uppermost full line) is in good agreement with the nu-
merical results. The dashed line indicates the development of
J® starting from an inhomogeneous initial weight distribu-
tion JJ; =0for1 <i<25and J; =9 for25 <i<50=N.In
the inhomogeneous case, 7 is enlarged as compared to the
homogeneous case by a factor of 2 because only half of the
synapses are able to contribute to normalization; cf. App.D.
The insets (signatures as in Fig.7) show the inhomogeneous
weight distributions (arrows) at times ¢ = 0, 200, 500, and
1000s; the dotted line indicates the fixed point J2¥ = 0.249.
We note that here the distribution remains inhomogeneous.

Weight Constraints Lead to
Further Conditions on Learning Parameters

We have seen that normalization is possible without
a J dependence of the learning parameters. Even if the
average weight J& approaches a fixed point J2V, there
is no restriction for the size of individual weights, apart
from J; > 0 for excitatory synapses and J; < N .J2v.
This means that a single weight at most comprises the
total (normalized) weight of all N synapses. The lat-
ter case is, however, unphysiological, since almost every
neuron holds many synapses with nonvanishing efficacies
(weights) and efficacies of biological synapses seem to be
limited. We take this into account in our learning rule
by introducing a hard upper bound ¥ for each individual
weight. As we will demonstrate, a reasonable value of
¥ does not influence normalization in that J2V remains
unchanged. However, an upper bound ¢ > 0, whatever
its value, leads to further constraints on the learning pa-
rameters.

To incorporate the restricted range of individual
weights into our learning rule (1), we assume that we
can treat the learning parameters w'™, w°"*, and the am-
plitude of W to be constant in the range 0 < J; < 4.
For J; < 0 or J; > ¥, we take w'™ = w°" =W = 0. In
other words, we use (15) only between the lower bound
0 and the upper bound ¢ and set dJ;/dt = 0, if J; < 0
or J; > 1.

Because of lower and upper bounds for each synaptic
weight, 0 < J; < @ for all ¢, a realizable fixed point
J2 has to be within these limits. Otherwise all weights
saturate either at the lower or at the upper bound. To
avoid this, we first of all need J2V > 0. Since T =
J2 [ky in (22) must be positive for stable fixed points,
we also need k; > 0. The meaning becomes transparent
from (14) in the case of vanishing spontaneous activity



in the output, vg = 0. Then k; > 0 reduces to

w™ >0, (24)
which corresponds to neurobiological reality [28,56,31].
A second condition for a realizable fixed point arises
from the upper bound ¢ > J2V. This requirement leads
to ko < —k1 /(N 9)—Q*. Exploiting only k2 < 0, we find
from (14) that w°"* + W (0)»'™ < 0, which means that
postsynaptic spikes on average reduce the total weight
of synapses. This is one of our predictions that can be
tested experimentally. Assuming W (0) > 0, which seems
reasonable — with the benefit of hindsight — in terms of
rate-coded learning & la Hebb (Sec.IIT), we predict

w™ <0, (25)
which has not been verified by experiments yet.

Weight constraints do not influence the position of the
fixed point J2¥ (as long as it remains realizable) but may
enlarge the value of the time constant 7" of normal-
ization (see details in App.D). The time constant 72V
changes because weights saturated at the lower (upper)
bound cannot contribute to a decrease (increase) of J2v.
If fewer than the total number of weights add to our
(subtractive) normalization, then the fixed point is ap-
proached more slowly; cf. Fig. 8, dashed line and insets.
The factor, however, by which 7 may be enlarged is of
order 1, if we take the upper bound to be ¥ = (1+d) J2',
where d > 0 is of order 1, which will be assumed through-
out what follows; cf. App.D.

C. Structure Formation

In our simple model with two groups of input, struc-
ture formation can be measured by the difference J5%*
between the average synaptic strength in groups M and
Ma; cf. Sec. VA. We derive conditions under which this
difference increases during learning. In the course of the
argument we also show that structure formation takes
place on a time scale 75" considerably slower than the
time scale 7®¥ of normalization.

We start from (15) with k3 = 0 and randomly dis-
tributed weights. For the moment we assume that nor-
malization has already taken place. Furthermore, we as-
sume small correlations as in (23), which assures that
the fixed point J2V &~ —k; /(Nk2) is almost constant dur-
ing learning; cf. (21) and (C1). If the formation of any
structure in {J;} is slow as compared to normalization,
we are allowed to use J* = J2¥ during learning. The
consistency of this ansatz is checked at the end of this
section.

The average weight in each of the two groups M; and

Mz is

1

el E ) (2) —

- J; and J'Y =
iEM1

1
(1) —_— [ .
JW = A E Ji . (26)

iEMao
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If lower and upper bounds do not influence the dynamics
of each weight, the corresponding rates of change are

JO =k + M IV ky Mk,
J® =k + My (ky + Q)+ M J Wk, .

(27)

One expects the difference J*** = J2) — J() hetween
those average weights to grow during learning because
group Moy receives a stronger reinforcement than M;.
Differentiating J*% with respect to time, using (27) and
the constraint J*¥ = J&¥ = N~1 (M JM) + M,J®), we
find the rate of growth

T = QI + My QI . (28)

My M,
N
The first term on the right-hand side gives rise to an
exponential increase (@ > 0) while the second term gives
rise to a linear growth of J%. Equation (28) has an
unstable fixed point at JS = —N/M; J2. Note that

J is always negative and independent of Q.

We associate the time constant 75 of structure for-
mation with the time that is necessary for an increase
of J* from a typical initial value to its maximum.
The maximum of J5 is of order J2V, if M;/Ms is
of order 1 (Sec. VA) and if 9 = (1 + d) J2¥, where
d > 0 is of order 1 (Sec. VB). At the beginning
of learning (¢ 0) we may take J*'(0) = 0. Us-
ing this initial condition, an integration of (28) leads
to JSU(t) = (N/My) J&¥[exp(t M1 M>Q/N) — 1]. With
t = 7% and JSUT(rS%) J2 we obtain 75
N/(M,M>Q) log(M;/N + 1). Since we only need an es-
timate of 75" we drop the logarithm, which is of order 1.
Finally, approximating N/(M;Ms) by 1/N we arrive at
the estimate

™= (NQ) . (29)
We could adopt a refined analysis similar to the one we
have used for J?V to discuss the effects of the upper and
lower bounds for individual weights. We will not do so,
however, since the result (29) suffices for our purpose:
the comparison of time constants.

A comparison of 77V in (22) with 75" in (29) shows that
we have a separation of the fast time scale of normaliza-
tion from the slow time scale of structure formation, if
(23) holds.

A numerical example confirming the above theoretical
considerations is presented in Fig.9. Simulation param-
eters are as given in App. B.
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FIG. 9. Temporal evolution of average weights J*', J1),
and J® as a function of the learning time # in units of 10* sec-
onds. The quantity J*' is the average weight of all synapses,
JD and J® are average weights in groups M; and Ma,
respectively. Synapses i in group M, where 1 < ¢ < 25,
receive incoherent input whereas synapses ¢ in group Mo,
where 26 < ¢ < 50, are driven by a coherently modulated
input intensity. Parameters are as given in App.B. Sim-
ulations started at time ¢ = 0 with a homogeneous weight
distribution J; = ¢ = 0.1 for all 2. The normalization of the
average weights takes place within a time of order O(100s);
see also the uppermost full line in Fig.8. On the time scale
of 75" =2.93-10"s a structure in the distribution of weights
emerges in that J® grows at the expense of J® . The aver-
age weight J*' remains almost unaffected near J&" =2.1072
(dashed line). The slight enlargement of J®¥ between ¢t = 10*s
and t = 7-10*s can be explained by using (C1) and taking
also the ks term into account. The insets (signatures as in
Figs. 7 and 8) show the weight distributions at times t = 103,
10, 2.93 - 10*, and 7 - 10*s (arrows).

D. Stabilization of Learning

Up to this point we have neglected the influence of
the k3 term in (15), which may lead to a stabilization
of weight distributions, in particular, when synapses are
few and strong [22,54]; cf. Sec.IVD. This is the case,
for example, in the scenario of Fig. 10, which is the final
result of the simulations described in Fig.9. The shown
weight distribution is stable so that learning has termi-
nated apart from minor rapid fluctuations due to noise.

B 5
t=10"s
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FIG. 10. The asymptotic distribution of weights {J;} at
time ¢ = 10° s; signatures are as in Fig. 7. This distribution is
the final result of the numerical simulation shown in Fig. 9 and
remains stable thereafter apart from minor rapid fluctuations.
All but one of the synapses are saturated either at the lower
or at the upper bound.

In stable weight distributions, it is now shown that
all synapses but one are saturated either at the lower
or the upper bound. In the scenario of Fig.10, the
ks term keeps a single weight .J,,,, in group M; at the
upper bound ¥, even though there is a non-saturated
one Jp,, in Msy. Group My (in contrast to M;) com-
prises most of the total weight and is driven by positively
correlated input. Why does J,,, not decrease in favor
of Jn,? The answer comes from (15). Weight J,,,, re-
ceives a stronger reinforcement than J,,,, if jm1 > jm2
holds. Using (15) we find Jm, > Q/k3 > cpn, Jj + Jmo-
Approximating Y ..\, J; = NJY = —ki/k2 we ob-
tain Jy, > —Qki/(kaks) + Jm,. This condition is ful-
filled because Jp,, ~ 0.1, Jp, =~ 0.04 (cf. Fig.10), and
—Q k1 /(k2 k3) = 0.01 (cf. Table I); here k;y > 0, k2 < 0,
and k3 > 0.

VI. NOISE

In this section we discuss the influence of noise on the
evolution of each weight. Noise may be due to jitter
of input and output spikes and the fact that we deal
with spikes per se (Sec.IIB). This gives rise to a ran-
dom walk of each weight around the mean trajectory de-
scribed by (15). The variance Var J;(t) of this random
walk increases linearly with time as it does in free diffu-
sion. From the speed of the variance increase we derive
a time scale 7"°%¢, A comparison with the time constant
75 of structure formation leads to further constraints on
our learning parameters and shows that, in principle, any
correlation in the input, however weak, can be learnt, if
there is enough time available for learning.

The calculation of VarJ; is based on four approxi-
mations. First, we neglect upper and lower bounds of
the learning dynamics as we have done for the calcu-
lation of the time constants of normalization (Sec.V B)
and structure formation (Sec.V C). Second, we neglect
spike-spike correlations between input and output and
work directly with ensemble-averaged rates. As we have
seen, spike-spike correlations show up in the term k3 in
(15) and have little influence on learning, given many,
weak synapses and an appropriate scenario for our learn-
ing parameters; cf. Sec. IV C. Third, we assume constant
input rates A\i"(¢) = »I" for all i. A temporal structure
in the input rates is expected to play a minor role here.
Fourth, as a consequence of constant input rates we as-
sume a constant output rate A°Ut(t) = pout,

Despite such a simplified approach we can study some
interesting effects caused by neuronal spiking. Within
the limits of our approximations, input and output spikes



are generated by independent Poisson processes with con-
stant intensities. The variance Var J;(t) increases basi-
cally because of shot noise at the synapses. We now turn
to the details.

A. Calculation of the Variance

We start with some weight J;(to) at time to and calcu-
late the variance Var J;(t) := (J2)(t) — (Ji;)?(t) as a func-
tion of ¢ for ¢ > tg. Angular brackets (...) again denote
an ensemble average; cf. Sec. IIB. A detailed analysis is
outlined in App. E. The result is

Var J;(t) = (t —to) D for t — to > W | (30)
where W is the width of the learning window W (cf.
Sec.IIC) and

D

Vin(win)Q + Vout(wout)Q + Vinyout/dSW(s)Q (31)
+0 P (0) [Q(wi“ + w®) + W(0) (™ + 1/0'“)] .

Thus because of Poisson spike arrival and stochastic out-
put firing with disjoint intervals being independent, each
weight J; undergoes a diffusion process with diffusion
constant D.

To discuss the dependence of D upon the learning pa-
rameters, we restrict our attention to the case '™ = p°ut
n (31). Since mean input and output rates in biolog-
ical neurons typically are not too different, this makes
sense. Moreover, we do not expect that the ratio v'" /v°ut
is a critical parameter. We recall from Sec.V B that
pout = —k1 [ko V" once the weights are already normal-
ized and if vy = Q¥ = 0. With v'™ = v°" this is equiva-
lent to k1 = —ko. Using the definition of ky and ks in (14)
we find w™ 4+ w°™ = —W(0) »'*. If we insert this into
(31), the final term vanishes. In what remains of (31) we
identify the contributions due to input spikes, v (w'™)?,
and output spikes, U (w°u*)2, Weight changes because
of correlations between input and output spikes enter
(31) via vi"vout [ds W (s)?

Equation (30) describes the time course of the vari-
ance of a single weight. Estimating Var J; is numerically
expensive because we have to simulate many indepen-
dent learning trials. It is much cheaper to compute the
variance of the distribution {J;} of weights in a single
learning trial. For the sake of a comparison of theory
and numerics in Fig. 11, we plot

Var {J;}(t) jg:[J —J¥()]?, (32)
which obeys a diffusion process with
Var {J;}(t) = (t —to) D', (33)
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in a way similar to (30). The diffusion constant D’ is,
however, different from D because weights of single neu-
rons do not develop independently of each other. Each
output spike triggers the change of all N weights by
an amount w°"*. Therefore, output spikes do not con-
tribute to a change of Var {.J;}(¢) as long as upper and
lower bounds have not been reached. Furthermore, all
synapses ‘see’ the same spike train of the postsynap-
tic neuron they belong to. In contrast to that, input
spikes at different synapses are independent. Again we
assume that input and output spikes are independent;
cf. the second paragraph at the beginning of Sec.VI.
Combining the above arguments we obtain the diffu-
sion constant D' by simply setting w®"* = 0 and dis-
regarding the term [v™™ W (0)]?v°" in (31), which leads
to D' = v (wi™)? + v vt [ ds W (s)2 + 2w'™ W(0) +

W (0)2 v°"*]. The boundaries of validity of (33) are illus-
trated in Fig. 12.
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FIG. 11. Influence of noise. We compare numerical results
for the evolution of the variance Var {.J; }(¢) defined in Eq. (32)
(full lines) with our theoretical prediction (dashed line) based

n (33) with D' = 1.47-107°s™!. Learning starts at time
t = 0 with a homogeneous distribution, J; = J2' = 0.02 for
all . The thin line corresponds to the simulation of Fig. 8 with
initial condition J* = 0.02, viz., two groups of 25 synapses
each. The thick line has been obtained with incoherent input
for all 50 synapses, A\i"(t) = ™ for all i (all other parameters
in App.B being equal). Because the number of synapses is
finite (N = 50) deviations from the dashed straight line are
due to fluctuations. The overall agreement between theory
and simulation is good.



1 t=10"s 2x10's 5x10's 10%s
2x10°
":';:
= 3
g 1x10" A
0 = — — — 1
0 2x10 4x10 6x10 8x10 10
t[s]

FIG. 12. The variance Var {J;}(t) as in Fig.11 but on a
longer time scale. Thick line: all 50 synapses receive incoher-
ent input. Thin line: two groups of synapses that are treated
differently, as in Figs. 8, 9, and 10. The four insets (signatures
as in Fig.7) correspond to the thick line scenario and show
the evolution of the distribution of synaptic weights. As in
Fig. 11, full lines are numerical results and the dashed line is
our theoretical prediction. Both differ significantly for times
t > 10%s. The reason is that (33) does not include the in-
fluence of correlations between input and output. Spike-spike
correlations due to the k3 term increase weights with a veloc-
ity proportional to their weight; cf. (15). Large weights, which
are already present at times ¢ > 2-10% s (see inset), therefore
grow at the expense of the smaller ones. This gives rise to an
enlarged variance (thick full line). In the thin-line scenario,
we also have the Q;; term in (15), which contributes to an
additional increase of Var {J;}. Finally, at t =~ 10°s, Var {J;}
saturates because most of the weights are either at the lower
or at the upper bound.

B. Time Scale of Diffusion

The effects of shot noise in input and output show up
on a time scale 77°%¢ which may be defined as the time
interval necessary for an increase of the variance (30)
from Var J;(tg) = 0 to Var J;(to + 72°5¢) = (J&)2. We
chose J2V as a reference value because it represents the
available range for each weight. From (30) we obtain
rhoise — (Jav)2 /D We use J& = —k; /(N ko) from (21)
and @* = 0. This yields

_ L (R
N2D \ky )

C. Comparison of Time Scales

noise
T

(34)

We now compare 77°¢ in (34) with the time constant
" = 1/(N @) of structure formation as it appears in

(29). The ratio
b 2
ko

noise
T

7-str

Q

ND (35)
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should exceed 1 so as to enable structure formation (in
the sense of Sec. VC). Otherwise weight diffusion due
to noise spreads the weights between the lower bound 0
and the upper bound ¢ and, consequently, destroys any
structure.

We note that D in (35) is quadratic in w'™™, w°"t, and
W, whereas ki, k2, and @ are linear; cf. (12), (14), (17),
and (31). As a consequence, scaling w'®, w°"*, and W (s)
[or the learning parameter 7] in (1) by a common fac-
tor « changes the ratio of time constants in (35) by 1/v
without affecting the (normalized) mean output rate and
the fixed points J2 and J8 = —J2 N/M;; cf. (21).
Hence it is always possible to achieve 7701 /75" > 1 by
tuning . This means that any covariance matrix (11)
that gives rise to @ > 0, however small, can be learnt.
More precisely, it can be learnt, if there is enough time
for learning.

A reduction of v also increases the time constant
7 = 1/(N Q) of structure formation; cf. (29). If the
learning time is limited, which may be the case in biolog-
ical systems, only input with @ larger than some minimal
value can be learnt. Considering the learning parameters
as fixed, we see that increasing the number of synapses,
on the one hand, helps reducing the time 75" necessary
for learning but, on the other hand, decreases the ratio
rnoise /st in (35), possibly below 1.

With parameters as given in App.B the ratio (35) is
5.5. Therefore the desired structure in Fig.9 can emerge
before noise spreads the weights at random.

VII. DISCUSSION

Changes of synaptic efficacies are triggered by the
relative timing of presynaptic and postsynaptic spikes
[25,26]. The learning rule (1) discussed in this paper
is a first step towards a description and analysis of the
effects of synaptic changes with single-spike resolution.
Our learning rule can be motivated by elementary dy-
namic processes at the level of the synapse [54,57] and
can also be implemented in hardware; cf. [40]. A phe-
nomenological model of the experimental effects which
is close to the model studied in the present paper has
been introduced [42]. A compartmental model of the bio-
physics and ion dynamics underlying spike-based learning
along the lines of [58] has not been attempted yet. As
an alternative to changing synaptic weights, spike-based
learning rules which act directly on the delays may also
be considered [59-61].

The learning rule (1) discussed in the present paper is
rather simple and contains only terms that are linear and
quadratic in the pre- and postsynaptic spikes (‘Hebbian’
learning). This simple mathematical structure, which is
based on experiment [25,26,30], has allowed us to derive
analytical results and identify some key quantities.

First of all, if the input signal contains no correlations
with the output at the spike level, and if we use a linear



Poissonian neuron model, the spike-based learning rule
reduces to (15), which is closely reminiscent of Linsker’s
linear learning equation for rate coding [3]. The only dif-
ference is an additional term k3, which is not accounted
for by pure rate models. It is caused by precise temporal
correlations between an output spike and an input spike
that has triggered the pulse. This additional term rein-
forces synapses that are already strong and hence helps
to stabilize existing synapse configurations.

In the limit of rate coding, the form of the learn-
ing window W is not important but only the integral
[ dsW (s) counts: [dsW(s) > 0 would be called “Heb-
bian”, [ds W(s) < 0 is sometimes called “anti-Hebbian”
learning. In general, however, input rates may be mod-
ulated on a fast time scale or contain correlations at the
spike level. In this case, the shape of the learning win-
dow does matter. A learning window with a maximum at
s* < 0 (thus maximal increase of the synaptic strength
for a presynaptic spike preceding a postsynaptic spike; cf.
Fig. 6) picks up the correlations in the input. In this case
a structured distribution of synaptic weights may evolve
[22].

The mathematical approach developed in this paper
leads to a clear distinction between different time scales.
First, the fastest time scale is set by the time course of
the postsynaptic potential € and the learning window W.
Correlations in the input may occur on the same fast time
scale, but can also be slower or faster, there is no restric-
tion. Second, learning occurs on a much slower time scale
and in two phases: (i) an intrinsic normalization of total
synaptic weight and the output firing rate followed by (ii)
structure formation. Third, if the learning rate is small
enough, then diffusion of the weights due to noise is slow
as compared to structure formation. In this limit, the
learning process is described by the differential equation
(4) for the expected weights.

Normalization is possible, if at least w'™ > 0 and
w < 0 for [dsW(s) > 01in (1) (“Hebbian” learning).
In this case, the average weight may decay exponentially
to a fixed point, though there is no decay term for indi-
vidual weights. In other words, normalization is an in-
trinsic property since we do not invoke multiplicative or
subtractive rescaling of weights after each learning step
[2,7,55].

The fluctuations due to noise have been treated rather
crudely in the present paper. In principle, it should be
possible to include the effects of noise directly at the level
of the differential equation, as is standard in statistics
[62]. Such an approach would then lead to a Fokker-
Planck equation for the evolution of weights as discussed
n [63]. All this is in principle straightforward but in
practice very cumbersome.

Finally, we emphasize that we have used a crudely
oversimplified neuron model, viz., a linear stochastic unit.
In particular, there is no spike emission threshold nor re-
set or spike afterpotential. Poisson firing is not as unre-
alistic as it may at first seem, though. Large networks
of integrate-and-fire neurons with stochastic connectivity
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exhibit Poisson-like firing [64]. Experimental spike inter-
val distributions are also consistent with Poisson firing
[65]. In the present paper, the simple Poisson model has
been chosen so as to grasp the mathematics and get an
explicit expression for the correlation between input and
output spikes. The formulation of the learning rule and
the derivation of the learning equation (4) is general and
holds for any neuron model. The calculation of the corre-
lations which enter in the definition of the parameter @;;
n (15) are, however, much more difficult, if a nonlinear
neuron model is used.

Spike-based Hebbian learning has important implica-
tions for the question of neural coding since it allows to
pick up and stabilize fast temporal correlations [38,22,41].
A better understanding of spike-triggered learning may
thus also contribute to a resolution of the problem of
neural coding [17,19,65-67].
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APPENDIX A: PROOF OF EQUATION (9)

In proving Eq. (9) there is no harm in putting vy = 0.
We then have to compute the average

(S (¢ + 5) S ()
- <S§n<t ) {fim n

(A1)

where f;(t) = J;(t) >, e(t - t!) with the upper index f
ranging over the firing times t{ < t of neuron ¢, that
has an axonal connection to synapse i; here 1 < i < N.
Since € is causal, i.e., €(s) = 0 for s < 0, we can drop
the restriction tf < t. The synapses being independent
of each other, the sum over j(# i) is independent of Si"
and thus we obtain

<S‘“t+s [;)f, ]> (A2)
— s+ ) | (Z)<fj>(t)]
J(#i
=\t 4 5) ng O/dt’e AR —¢)].



The term (Si"(t+s) fi(t)) in (A1) has to be handled with
more care as it describes the influence of synapse ¢ on the
firing behavior of the postsynaptic neuron,

(Si(t + 5) filt))
= < {Z&(t—}—s —tlf’)] [Ji(t)Ze(t—t{)] > )
I f

The first term on the right in (A3) samples spike events
at time t + s. To be mathematical precise, we sample all
spikes in a small interval of size At around ¢+ s, average,
and divide by At. We replace the first sum in (A3) by
the (approximate) identity (At)_lll{spike in [t4s,t+5+A8)}
where 1¢ y is the indicator function of the set {...};
i.e., it equals 1 when its argument is in the set {...} and
0 elsewhere. Because the postsynaptic potential € is a
continuous function we approximate the second sum by
>k Lispike in [ty +At)} €(E—tk), where {[ty, tp + At), k €
Z} is a decomposition of the real axis. Since it is under-
stood that At — 0, all events with two or more spikes
in an interval [t,t; + At) have a probability o(At) and,
hence, can be neglected. It is exactly this property that
is typical to a Poisson process — and to any biological
neuron.

What we are going to compute is the correlation be-
tween Si%, the input at synapse i, and the output S°ut,
that is governed by all synapses, including synapse ¢.
Here the simplicity of the linear Poissonian neuron model
pays off as S°" is linear in the sum of the synaptic in-
puts and, hence, in each of them. Furthermore, whatever
the model, the synaptic efficacies J;(t) are changing adi-
abatically with respect to the neuronal dynamics so that
they can be taken to be constant and, thus, out of the
average. In the limit At — 0 we can therefore rewrite
the right-hand side of (A3) so as to find

Ti(t) (AT e(t —ty)

k

(A3)

(A4)

X (Lgspike in [t+5,+5+A8)} Lspike in [te,tntAt)})-

Without restriction of generality we can choose our parti-
tion so that t;, = s+t for some k, say k = [. Singling out
k = 1, the rest (k # I) can be averaged directly, since
events in disjoint intervals are independent. Because
(1;.3) = Prob{spike in [t+s,t+s+At)} = AP (t+5) At,
the result is J;(¢) A (t+s) A" (¢), where we have used (8).
As for the term k = [, we plainly have ]1%“.} =1y .y, as
an indicator function assumes only two distinct values, 0
and 1. We obtain J;(t) X" (¢ + s) e(—s).

Collecting terms and incorporating vy # 0 we find (9).

APPENDIX B: PARAMETERS FOR
NUMERICAL SIMULATIONS

We discuss the parameter regime of the simulations as
shown in Secs.V and VI. Numerical values and impor-
tant derived quantities are summarized in Table I.
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1. Learning Window

We use the learning window

exp( 7w ) [A+(1 = £)

T

W(s)=n +A (1 - )] fors <0,
Ay exp(—ﬁ) + A_exp(—-=) fors > 0.
(B1)

Here s is the delay between presynaptic spike arrival
and postsynaptic firing, n is a “small” learning parame-
ter, TV 1, T, o= TV /(7Y™ 4 14), and T
TR /(79" 4 7_) are time constants. The dimensionless
constants A, and A_ determine the strength of synap-
tic potentiation and depression, respectively. Numerical
values are p = 107°, 7" = 5ms, 7, = 1ms, 7 = 20ms,
and AL =1, A = —1,; cf. Table I. The learning win-
dow (cf. Fig. 6) is in accordance with experimental results
[25,26,28,29,33]. A detailed explanation of our choice of
the learning window on a microscopical basis of Hebbian
learning can be found elsewhere [54,57].

For the analysis of the learning process we need the
integrals W(0) := [dsW(s) and [dsW(s)?. The nu-
merical result is listed in TableI. Using ¢4 := 75" /74
and c_ := 7" /7_ we obtain

/ds W(s) =nr" [A, (24c_ +c2) (B2)
+AL (24t + c;l)]
and
772
/ds W(s)* = T {A2 T [cri +4c% +5c- + 2] (B3)
+A3 Ty [ci +4c + 5oy + 2]

+2AL A T {c+c, +2(cq +co)

5+ 4/(cy + c,)] }

2. Postsynaptic Potential

We use the excitatory postsynaptic potential (EPSP)
e(s) = s/73 exp(—s/m0) H(s) , (B4)

where H(.) denotes the Heaviside step function, and
Jdse(s) = 1. For the membrane time constant we
use 79 = 10ms, which is reasonable for cortical neurons
[68,69]. The EPSP has been plotted in Fig. 4. Using (B1)
and (B4) we obtain

/ds W(S) E(—s) =7 (Ts}'n)2/(7_syn + 7'0)3

X [A_ 27 1o /1= + TV 4+ 379)

(B3)

+A+ (2 s 7'0/7'+ + v + 37’0)].



3. Synaptic Input

The total number of synapses is N = 50. For 1 <i <
My = 25 synapses in group M; we use a constant input
intensity Ai"(¢) = v'*. The remaining M> = 25 synapses
receive a periodic intensity, AI*(t) = V" + ' cos(wt)
for i € My; cf. also Sec. V A 3. Numerical parameters are
v'" = 10 Hz, jv'™™ = 10 Hz, and w/(27) = 40 Hz. For the
comparison of theory and simulation we need the value
of @ in (18). We numerically took the Fourier transforms
of € and W at the frequency w. The time constant 75t
is calculated via (29); cf. Table I.

4. Parameters w'®, w°"t, vy, and ¥

out _—

We use the learning parameters w'™ = 5 and w
—1.04757, where n = 107°. The spontaneous output
rate is v = 0 and the upper bound for synaptic weights
is ¥ = 0.1. These values have been chosen in order to
fulfill the following five conditions for learning: First, the
absolute values of w'™ and w°"* are of the same order
as the amplitude of the learning window W; cf. Fig.6.
Furthermore, these absolute values are small as compared
to the normalized average weight (see below). Second,
the constraints on k; and ks for a stable and realizable
fixed point are satisfied; cf. Sec. VB and (14). Third,
the correlations in the input are weak so that 0 < Q <
—ko; cf. (23). This implies that the time scale 7V of
normalization in (22) is orders of magnitude smaller than
the time scale 75 of structure formation in (29); cf. also
Table I. Fourth, the k3 term in (14) can be neglected in
the sense of Sec. IV C. Proving this we note that the fixed
point for the average weight is J2 = 21072 [cf. (21)]
and k3 = 7.04-1075s~!. We now focus on (16). Since
Qij (K |k2| for all 4, j) can be neglected and .J; < ¢ for all
i we find from (16) the even more restrictive condition
N |ks| J2¥ /9 > |ks| which is fulfilled in our parameter
regime. Fifth, input and output rates are identical for
normalized weights, '™ = v for vy = 0; see Sec. V B.

APPENDIX C: NORMALIZATION AND
CORRELATIONS BETWEEN
WEIGHTS AND INPUT RATES

The assumption of independence of the weights {.J;}
and the rates {\I"} used in Sec. V B for the derivation of
a normalization property of (15) is not valid in general.
During learning we expect weights to change according
to their input. For the configuration of the input as in-
troduced in Sec. V A this depends on whether synapses
belong to groups M; or Mj,. To show that even un-
der the condition of interdependence of {.J;} and {\i"}
there is a normalization property of (15) similar to that
derived in Sec. V B we investigate the most extreme case
in which the total mass of synaptic weight is, e.g., in
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M. Taking J; = 0 for i € M; into account we re-
place N='3°,J; Qij in (20) by M, 'N>J™ Q. The
fixed point J2¥ is similar to that in (21) except for a
multiplicative prefactor N/Mj of order 1 preceding Q*¥
in (21),

J¥ =

—ki/[N(k2 + Q* N/Ms)] . (C1)

Since N/Ms > 1, ky > 0, and ks + Q*N/M> < 0, J&
in (C1) is larger than J2V in (21), where we assumed
independence of {J;} and {\i"}. Correlations between
{J;} and {\*} can be neglected, however, if we assume
0 <@ =~ Q¥ K —ko; cf. (23). In this case J2' in (21)
and (C1) are almost identical and independent of Q*".

APPENDIX D: NORMALIZATION AND
WEIGHT CONSTRAINTS

Let us consider the influence of weight constraints
(Sec. VB) on the position of the fixed point J2¥ in (21)
and and the time constant 7V of normalization in (22).
We call Ny and N4 the number of weights at the lower
bound 0 and the upper bound ¢ > 0, respectively. By
construction we have Ny + Ny < N, where N is the num-
ber of synapses.

For example, if the average weight J# approaches J&¥
from below, then only N — N; weights can contribute
to an increase of J*. For the remaining Ny saturated
synapses we have J; = 0. Deriving from (15) an equa-
tion equivalent to (20) we obtain J*¥ = (1 —N;y/N) (ky +
N ko J& + J2¥ Q*¥/N). The fixed point J2¥ remains un-
changed as compared to (21) but the time constant 727
for an approach of J2' from below is increased by a fac-
tor (1 — Nt/N)~! > 1 as compared to (22). Similarly,
7% for an approach of J2¥ from above is increased by a
factor (1 — N /N)~! > 1.

The factor by which 7@V is increased is of order 1, if
we use the upper bound ¢ = (1 + d) J&¥, where d > is of
order 1. If J& = J2¥ at most Ny = N/(1 + d) synapses
can saturate at the upper bound comprising the total
weight. The remaining Ny = N — N/(1+d) synapses are
at the lower bound 0. The time constant 72V is enhanced
by at most 1+ 1/d and 1+d for an approach of the fixed
point from below and above, respectively.

APPENDIX E: RANDOM WALK
OF SYNAPTIC WEIGHTS

We consider the random walk of a synaptic weight J;(#)
for t > tg, where J;(tp) is some starting value. The time
course of J;(t) follows from Eq. (1),



— Ti(to) + / at' [wf™ §3 (1) + w5 ()] (B1)

/dt /dt”W (" —t

For a specific i the spike trains Si*(#) and S°Ut(¢') are
now assumed to be statistically independent and gener-
ated by Poisson processes with constant rates v for all
i and v°", respectively; cf. Secs.IIA and IV A. Here v
can be prescribed whereas v°"* then follows; cf. for in-
stance (7). For large N the independence is an excellent
approximation. The learning parameters w'™ and w°"
can be positive or negative. The learning window W is
some quadratically integrable function with a width W
as defined in Sec.IIC. Finally, it may be well to realize
that spikes are described by ¢ functions.

The weight J;(t) is a stepwise constant function of
time; see Fig.2 (bottom). According to (E1) an input
spike arriving at synapse ¢ at time ¢ changes J; at that
time by a constant amount w'™ and a variable amount
ftto dt' W(t — t') S°u¢(¢'), which depends on the sequence
of output spikes in the interval [ty, t]. Similarly, an output
spike at time ¢ results in a constant weight change w°"t
and a variable one that equals ftto dt" W (" — t) Sin(").
We obtain a random walk with independent steps but
randomly variable step size. Suitable rescaling of this
random walk leads to Brownian motion.

As in Sec.IIB we substitute s = ¢ — ¢’ in the sec-
ond line of (E1) and extend the integration over the new
variable s so as to run from —oo to co. This does not
introduce a big error for ¢t — tg >> W. The second line of
(E1) then reduces to [ds W(s ft dt' Sin(t' + 5) SOt ().

We denote ensemble averages by angular brackets
(...). The variance then reads

CAIORXCHNOR

To simplify the ensuing argument, upper and lower
bounds for each weight are not taken into account.

For the calculation of the variance in (E2) we first of all
consider the term (.J;)(¢). We use the notation (Si")(t)
v'™ and (S°U)(t) = v°" because of constant input and
output intensities. Stochastic independence of input and

Sm( u) Sout(tl) )

Var J;(t) = (E2)

output leads to (SI*(# + s) S°Ut(#')) = vi"v°ut. Using
(E1) and [dsW (s) = W (0) we then obtain
(Ji)(t) = Ji(to) (E3)

+(t _ tO) (wmym + wCutout + VinyoutW(0)> )

Next, we consider the term (J2)(t) in (E2
once again we obtain for ¢t — tg > W

). Using (E1)
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(J3)(t) = =Ji(to)* + 2Ji(to) (

/dt/du

x { (i) Sin@)) ™)? + ($™4 () s ()

+2/dsW(s)
/ds/dvW

Since input and output were assumed to be independent,
we get

<sm(t +5) Sin (!

(S;n S;n Sout Sout> — (S;n S;n> <Sout Sout>,
(Si" Sin 5°) = (S S} (5°), ()
<Sout Sout S;n> — (Sout Sout> <Szm>

out

We note that (Si") = v for all i and (S°Ut) = v

Input spikes at times ¢’ and u' are independent as
long as ' # wu'. In this case we therefore have
(Sin(¢") Sin(u')) = v vI". For arbitrary times ¢ and u’
we find (cf. App. A)

(S S () = v [ 48 — ). (E6)
Similarly, for the correlation between output spike trains
we obtain

<Sout (tl) Sout (ul)> — Vout [Vout + 5(t’ ul)]_

Using (E5), (E6), and (E7) in (E4), performing the in-

tegrations, and inserting the outcome together with (E3)
into (E2) we arrive at

(E7)

Var Ji(t) = (t — to) D (E8)

where

D = Uin(win)Z +U0ut(w0ut)2 +l/inl/0ut/dSW(s)2 (Eg)
+ VORI (0) [2 (" + 0 + W (0) (v 4 0]

as announced.

[<s§n(t') Sin(u + s) §out (u')> .



TABLE I. Values of the parameters used for the numerical
simulations (first part) and derived quantities (second part).

Parameters
Learning n= 10"°
M=
wet = —1.0475 1
Ay = 1
A_=-1
7+ = 1ms
7— = 20ms
V" = 5ms
EPSP 70 = 10ms
Synaptic input N = 50
M, = 25
M, = 25
v = 105!
vt = 10s7!
w/(2r) = 40s7!
Further parameters vo= 0
9= 0.1
Derived quantities
W(0):= [dsW(s) = 4.75:10 ®s
JdsW(s)> = 3.6810 "*s
JdsW(s)e(—s) = 7.04-107°
Q= 68410 "s!
ky = 1-107*s7*
ko = —1.107*s7!
ks = 7.0410 °s*
™ = 2.10%s
7T = 2.93.10*s
noise —  1.62.10% s
J¥ = 2.1077
D= 247107%s7!
D' = 14710 %s!
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