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Abstract. Synchronization in feed-forward subnetworks of the brain has been
proposed to explain the precisely timed spike patterns observed in experiments.
While the attractor dynamics of these networks is now well understood, the
underlying single neuron mechanisms remain unexplained. Previous attempts
have captured the effects of the highly fluctuating membrane potential by relating
spike intensityf (U ) to the instantaneous voltageU generated by the input. This
article shows thatf is high during the rise and low during the decay ofU (t),
demonstrating that thėU -dependence off , not refractoriness, is essential for
synchronization. Moreover, the bifurcation scenario is quantitatively described
by a simple f (U, U̇ ) relationship. These findings suggestf (U, U̇ ) as the
relevant model class for the investigation of neural synchronization phenomena
in a noisy environment.
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1. Introduction

Synchronization of spike timing is an important concept in neuroscience and has been
experimentally observed in many neural systems. The noisy environment of cortical neural
networks counteracts synchronization. Thus, it is essential to understand the interplay
between noise and synchronizing mechanisms in these systems. The phenomenology can
be successfully investigated by integrate-and-fire (IAF) type models, often by simulation.
However, to uncover the mechanisms underlying the observed effects it is helpful to investigate
analytically tractable stochastic models. Specific systems in this context are the feed-forward
subnetworks of the cortex (figure1(a)) which have been proposed (‘synfire chain’,Abeles
(1991)) as the generators of spatio-temporal spike patterns occurring with millisecond precision
(e.g.Grünet al(2002); Prutet al(1998)). These networks are both a neurobiologically plausible
substrate and structurally simple. Figure1(b) shows an example of network activity where a
packet of spikes successfully propagates, reaching a spike precision in the millisecond range.
The dynamics of an individual neuron is described by the IAF model (Tuckwell 1988) with the
membrane potentialV governed by

V̇ = −
1

τm
(V − V0) +

1

C
I , (1)

whereτm is the time constant andC the capacity of the membrane.I (t) is the sum of all
the input currents to the neuron. WhenV(t) reaches a thresholdθ , a spike is emitted, the
membrane potential is reset toV0, and clamped to this value for an absolute refractory periodτr.
The current elicited by a synapse upon the arrival of a presynaptic spike is represented by an
α-function (Rotter and Diesmann 1999) ε̂e/τs · te−t/τs, whereε̂ is the amplitude andτs the time
constant. The neurons in the subnetwork are assumed to receive balanced Poisson spike input
from a large embedding network (Brunel 2000). The resulting large fluctuations ofV cause
threshold crossings at a low rate consistent with the input rate at a single synapse.

In a mean field approach to network dynamics, the spiking activity of a group ofw neurons
is replaced by its expectation valuewρ(t), whereρ(t) is the spike density (figure2(a)) of a
single neuron. The approach assumes identical units receiving common input and independent
realizations of the fluctuations in the system. The synchronization dynamics in feed-forward
networks and its bifurcation scenarios are now well understood (Diesmannet al 1999), based
on the single neuron response, characterized byρ(t), to synchronous activity. For this analysis,
ρ(t) was obtained by simulations. In this paper, an analytical expression forρ(t) is derived,
revealing the mechanisms of synchronization.
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Figure 1. Synchronization dynamics in cortical feed-forward subnetworks.
(a) IAF model neurons (gray disks;τm = 10 ms, C = 250 pF, V0 = −70 mV, θ =

−55 mV and τr = 2 ms) are arranged into successive groups (enclosed by
dashed boundaries) and receive input (arrows;α-function current,ε̂ = 46 pA,
τs = 0.3 ms and delay 2 ms) from all thew = 100 neurons in the preceding
group. This structure is considered as a part of the large network of the cortex
supplying each neuron with excitatory (ε̂E = ε̂ and λE = 2 Hz) and inhibitory
(ε̂I = −ε̂ andλI = 12.61 Hz) independent Poisson processes atKE = 17500 and
K I = 2400 synapses, respectively. (b) Dots in boxes 1 to 10 represent spike times
of all neurons. In every box (labeled by group number) one vertical position is
reserved for each neuron of the group. The first group (1) is stimulated by a
packet of 100 spikes shown in box 0 drawn from a Gaussian distribution (center
at t = −2 ms andσ = 3 ms). Activity synchronizes under an intermediate loss
in the number of spikes in the packet. The neurons are spontaneously active
(λ = λE, dots occurring before the arrival of the packet) because of the voltage
fluctuations induced by background.

2. Spike intensity in response to synchronous input

If spikes are generated by an inhomogeneous Poisson process, the neuron’s instantaneous rate or
intensity f (t) equalsρ(t). Arbitrarily short time intervals between spikes are allowed and occur
with high probability. However, it has been indicated that refractoriness can have a strong effect
on ρ(t), thereby benefiting neural precision (Berry and Meister 1998). Thus, it is a proposed
synchronization mechanism in cortical feed-forward subnetworks (Gewaltig 2000; Kistler and
Gerstner 2002). Here, we show that synchronization does not originate from refractoriness.

A simple way of including refractory effects is to define an inhomogeneous renewal
process (Berry and Meister 1998; Cox 1962; Gerstner and Kistler 2002) by a hazard function or
conditional intensity

h(t, t ′) =

{
f (t), t 6 t1,
f (t)r (t − t ′), else,

(2)

wheret1 denotes the time of the first spike,f (t) is the intensity (Gerstner and Kistler 2002;
Plesser and Gerstner 2000; Rotter 1994) when the neuron is not refractory, andr (t − t ′) is a
recovery function describing the reduced spike probability following the last spike at timet ′. In
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Figure 2. Analysis of the free intensity during fast input transients. (a) Spike
densityρ(t) (gray area) and free intensityf (t) (solid curve) of the IAF model in
response to packets ofA = 80 input spikes with temporal dispersionσ = 2 ms.
ρ(t) is obtained from a histogram of spike times over 104 simulation trials. The
dashed curve shows the membrane potentialU (t) generated by the probability
density of the input spikes. (b) Recovery functionr (t − t ′) modeling neuronal
refractoriness following a spike at timet ′ (τa = 4 ms andσr = 4 ms). A specific
function of r (t − t ′) enables the estimation off (t) (see (a)). (c)f (t) versus
U (t) (clockwise progression of time) for two different pairs(A, σ ) of input
parameters. (d) Division off by U̇ removes ambiguity during the rise time
(U̇ > 0) of U (t). Gray curves in (c) and (d) show analytical predictions (9) for f
assuming infinite refractoriness.

this context, we callf (t) the free intensity, it replaces the fluctuations of the membrane potential
and the threshold in the IAF model by a point process with time-dependent intensity (‘escape
noise’).

The expected membrane potentialU (t) generated by a packet of synchronous input spikes
with a Gaussian probability densityφ(t; σ) is

U (t) = Au(t) ∗ φ(t; σ), (3)

whereσ is the standard deviation ofφ(t; σ), A is the number of spikes,u(t) is the voltage
response to a single input spike (post-synaptic potential, PSP), and∗ denotes convolution
(figure2(a)). The task is to study the influence of refractoriness on the neuronal response to such
synchronous activity and simultaneously find a suitable model forf . Therefore, we investigated
the shape off (t) in simulations of the IAF model. It has been shown (Bi 1989; Joneset al1985)
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that the spike densityρ(t) of the process (2) is given by

ρ(t) = f (t) {1− R [ρ, f ] (t)} , (4)

where

R [ρ, f ] (t) =

∫ t

0
dt ′ ρ(t ′)

[
1− r (t − t ′)

]
exp

(
−

∫ t

t ′
ds f(s)r (s− t ′)

)
(5)

is the probability of finding the neuron refractory. This implicit equation can be iteratively
solved for f (t) enabling the removal of refractory effects fromρ(t). The procedure starts
with f0(t) = ρ(t) as an initial value and then calculatesfn+1(t) from fn(t) using fn+1(t) =

ρ(t) + fn(t)R[ρ, fn](t). The recovery functionr (s) = 2(s− τa){1− exp [− (s− τa)
2/2σ 2

r ]}
illustrated in figure2(b) is consistent with the interval distribution of the IAF model subject
to dc input (not shown,2(·) is the Heaviside step function). In order not to underestimatef ,
refractoriness is maximized (largeτa andσr) under the constraint of convergence for all input
packets(A, σ ). f (t) is robust with respect to variations ofr (s) mainly depending on the area of
1− r (s).

Figure 2(a) illustrates a typical time course off (t). Neuron models wheref (t) only
depends on the instantaneous state of the neuron provide a successful mathematical framework
for the analysis of network dynamics (Gewaltig 2000; Kistler and Gerstner 2002). However,
figure 2(c) demonstrates thatf is not a unique function ofU . The firing intensity is high
while U (t) is rising and low otherwise. Note that this cannot be explained by hysteresis
since the effects caused by the spike history have already been accounted for by the recovery
function (2). Moreover, different input packets result in considerably different values off at
the same voltageU . Taking the IAF neuron model as a biologically plausible reference, these
findings rule out f (U )-models (Gewaltig 2000; Kistler and Gerstner 2002) for the analysis
of synchronization. Can we find an appropriate model off and, if so, what are its essential
ingredients? A hint is provided by figure2(d): during the rise ofU the ratio of f and the
temporal derivativėU constitutes a unique function ofU .

3. Dependence on the voltage derivative

Consider the probability density of the membrane potentialp(V, t) in the presence of a strong
voltage transientU (t) as in (3). Neglecting the spike threshold and using linearity of the
membrane potential dynamics, we have

p(V, t) = pst [V −U (t)] , (6)

where pst(V) is the stationary density. The spike densityρ(t) equals the probability current
at the thresholdV = θ which acts as an absorbing boundary (Tuckwell 1988). The rise time
of U (t) is short compared to the membrane time constant. Thus, we assume that the shape of
p(V, t) for V < θ is not changed by the interaction with the absorbing boundary. We further
assume that an individual trajectory reaches the threshold at most once during the excursion
described byU (t) effectively considering infinite refractoriness. Then, the spike density equals
the negative rate of change of the survival probabilityS(t) = Pr[V(t) < θ ] =

∫ θ

−∞
dV p(V, t)
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and we find:

ρ(t) = −
d

dt
S(t)

= −
d

dt

∫ θ−U (t)

−∞

dV ′ pst(V
′)

= −
d

dt
[θ −U (t)]

d

d[θ −U (t)]

∫ θ−U (t)

−∞

dV ′ pst(V
′)

=
d

dt
U (t) pst [θ −U (t)] . (7)

The fact that a drift probability current of the form (7) contributes to the first passage time
density was also found by Plesser and Gerstner (2000). Considering infinite refractoriness in (4),
the spike densityρ(t) is just the instantaneous ratef (t) provided that the neuron has stayed
below threshold before:ρ(t) = f (t)S(t). Solving for f and inserting (7) we obtain:

f (t) =
ρ(t)

S(t)
(8)

=
d

dt
U (t)

pst [θ −U (t)]∫ θ−U (t)
−∞

dV ′ pst(V ′)
. (9)

Thus, f , as already observed forρ in (7), directly depends on the speed at which the membrane
potential distribution is pushed towards threshold.f does not explicitly depend ont and can be
expressed as a function ofU and its temporal derivativėU = dU/dt . The function factorizes
into U - andU̇ -dependent terms:

f (U, U̇ ) =
[
U̇

]
+

g(U ), (10)

with [x]+ := (x + |x|)/2. Neglecting the threshold again,pst(V) can be approximated by a
Gaussian (Tuckwell 1988). Figure3 compares our theory with simulations of the IAF neuron
model. The free intensityf (t) resulting from (9) is in excellent agreement with the simulation
results. The absorbing boundary at the threshold does not distort the Gaussian shape of the
membrane potential density. Additional intensity is observed at the peak and during the descent
of U (t). This can be attributed to a diffusive probability current not captured by the theory
because even if the membrane potential distribution remains stationary (e.g.U (t) = 0) threshold
crossings occur due to the fluctuating nature ofV(t). WhenU̇ is small or negative, fluctuations
are the only cause of spiking. Note that in the example shown in figure3 the rise time ofU (t)
is not much shorter than the membrane time constant. We derived an accurate model of the free
intensity and related the expansive shape of theU -dependent term (cf figure2(d)) to the shape
of the stationary membrane potential densitypst(V). The drift probability current captured by a
f (U, U̇ )-model as in equation (10) is the main contribution to the observed spike densities
generated by synchronous input. Is such a model sufficient to understand synchronization
dynamics?

4. Synchronization dynamics

In the remainder of the paper, we analytically investigate the network dynamics induced by
equation (10) using

g(U ) = βα [U ]α−1
+ , (11)
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Figure 3. Free intensityf (t) and probability density of the membrane potential
p(V, t) in the presence of a fast voltage transientU (t). (a) f (t) of the IAF
neuron model (solid curve, same data as in figure2(a)). The gray curve shows
an analyticalf (t) based on the drift probability current generated by a Gaussian
membrane potential density. The theory describes the intensity during the rise
time ofU (t) (see (b)). Additional intensity is observed at the peak ofU (t) (dotted
vertical line) and during its descent. (b) Membrane potential densityp(V, t) of
the IAF neuron model (color bar indicates probability density) including reset
to V0 at the spike thresholdθ (white dashed line) and clamping for a refractory
periodτr . U (t) (same data as in figure2(a)) is shown as an offset to the mean
µV (solid curve) of the stationary densitypst(V) and toµV ± 1σV (black dashed
curves), whereσV is the standard deviation ofpst(V). During the rise time of
U (t) the shape ofp(V, t) remains intact forV < θ .

where the membrane potentialU is measured in units of the threshold relative to the mean
θ − µV , the exponentα > 2 introduces a degree of nonlinearity inU , andβ > 0 is a scaling
constant. It is convenient to measure the number of spikesA in units of(θ − µV)/û (amplitude
of the PSP̂u = maxu(t)). This enables us to write (3) as

U (t) = Ax(t; σ),

with the characteristic membrane potential excursionx(t; σ) = φ(t; σ) ∗ u(t)/û . Then the free
intensity reads

f (t) = βαAα ẋ(t; σ)xα−1(t; σ)2(t̂ − t), (12)

where t̂ specifies the location of the maximum ofx(t; σ). We consider the case that
refractoriness is long, allowing each neuron to spike at most once. Thus the spike density
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ρ(t) is given by equation (8). Writing the survival probability asS(t) = exp(−
∫ t

−∞
f (s) ds)

(Cox 1962), the response probabilityaout reads

aout = 1− lim
t→∞

S(t) = 1− exp(−ã) , (13)

with ã =
∫

f (t) dt . From equation (12), we findã = β[ Ax̂(σ )]α with x̂(σ ) = maxt x(t; σ).
Next, we show that synchronizationσout < σ occurs under quite general conditions.

Because of refractoriness (σout. σ̃ ), it is sufficient to show that̃σ < σ , whereσ̃ is the standard
deviation of f (t). For the choicex(t) = x̂ exp(−t2/2ζ 2), a Gaussian with amplitudêx = x̂(σ )

and standard deviationζ = ζ(σ ), σ̃ can be found with the help of Gaussian integrals:

σ̃ =

√
2

α

(
1−

π

4

)
ζ(σ )6 0.463ζ(σ ). (14)

Therefore, synchronization only depends on the functionζ(σ ) which is well approximated by
ζ(σ ) = τ0/2

√
2 ln 2 +σ . The synaptic rise timeτ0 cannot destroy synchronization for inputσ

larger than some minimal value. Using a different argument, Abeles (1991) noticed that the
spread ofρ(t) depends on the slope ofU . Herrmannet al (1995) later elegantly extended the
argument to an expression for the equilibrium spread. Marsaleket al (1997) derived a relation
between input and output spread for the noise-free case.

We are now in a position to describe the propagation of synchronous activity in a network
as specified in figure1 by an iterative map of(an, σn). With w neurons in each group, the map
is constructed settingA = wan, σ = σn, an+1 = aout, andσn+1 = σ̃ in equations (13) and (14),
respectively.

Figure4 shows the state space of the iterative map for different values ofw. The bifurcation
scenario in the four panels agrees quantitatively with simulations of the corresponding IAF
neuron model (cfDiesmannet al (1999)). At a given choice ofw the trajectories of the model
reproduce the synchronization dynamics exhibited by feed-forward subnetworks (figure1(b),
see alsoDiesmannet al (1999); Gewaltiget al (2001)). Forw > wc an attractor for synchronous
activity exists. The bifurcation creating this attractor is determined by the mapan+1 =

1− exp(−kaα
n), with k = β[wx̂(σn)]α. For k> kc > 0 an a-isocline with a > 0 exists and

its parabolic shape is provided byα > 2. The interplay of thea-isocline and theσ -isocline
generates a saddle-node bifurcation.α > 2 follows from (10) providing a natural explanation
of bistability in the system: a nonlinear dependence off on U is not required. Theσ -isocline
is determined byζ(σ ) in (14) and does not depend onA. The synaptic rise timeτ0 limits the
precision of synchronization. In simulations theσ -isocline bends towards largerσ for small
A (Diesmannet al 1999), which can be attributed to spikes generated during the descent of
U (t).

5. Conclusions

Taken together, we have shown that in systems with strong input transients,f (U, U̇ )

-models of spike intensity are consistent with IAF dynamics, whereasf (U )-models
(Gewaltig 2000; Kistler and Gerstner 2002) are not. The mechanism of synchronization is
the U̇ -dependence off , not refractoriness. A simple relationship guarantees synchronization
under general conditions. Thus, we have uncovered the single neuron mechanism governing
the attractor dynamics (Diesmannet al 1999) of synchronous spiking activity in feed-forward
subnetworks. ThėU -dependence discussed here is solely induced by the noise and not by a

New Journal of Physics 10 (2008) 015007 (http://www.njp.org/)

http://www.njp.org/


9

0

20

40

60

80

100

0 1 2 3 4 5
0

20

40

60

80

100

0 1 2 3 4 5
σ (ms)σ (ms)

w = 80 w = 90

w = 100 w = 110

A
 (

sp
ik

es
)

A
 (

sp
ik

es
)

Figure 4. State space of the system described in figure1 for four different group
sizesw as labeled in the panels. Points in state space denote packets ofA
spikes (vertical) with temporal dispersionσ (horizontal). Trajectories (arrows)
describe propagation of spike packets from one neuron group to the next and
were computed iteratively using the intensityf (U, U̇ ) = βα[U̇ ]+ [U ]α−1

+ , with
α = 2.8 and β = 0.714 corresponding to the IAF neuron model of figure1.
Intersections of theσ -isocline (vertical dashed line) and theA-isocline (solid
curve, panels forw > 90) are fixed points of the system. The fixed point at large
A is the attractor for synchronous activity (basin of attraction shaded in gray).

U̇ -dependence of the spike generation mechanism as has been reported in experimental
literature. Our findings suggest thatf (U, U̇ )-models should be considered in the investigation
of neural synchronization phenomena in a noisy environment.
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