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Abstract.  Synchronization in feed-forward subnetworks of the brain has been
proposed to explain the precisely timed spike patterns observed in experiments.
While the attractor dynamics of these networks is now well understood, the
underlying single neuron mechanisms remain unexplained. Previous attempts
have captured the effects of the highly fluctuating membrane potential by relating
spike intensityf (U) to the instantaneous voltagegenerated by the input. This
article shows thaff is high during the rise and low during the decaylbft),
demonstrating that the-dependence of, not refractoriness, is essential for
synchronization. Moreover, the bifurcation scenario is quantitatively described
by a simple f (U, U) relationship. These findings suggettU, U) as the
relevant model class for the investigation of neural synchronization phenomena
in a noisy environment.
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1. Introduction

Synchronization of spike timing is an important concept in neuroscience and has been
experimentally observed in many neural systems. The noisy environment of cortical neural
networks counteracts synchronization. Thus, it is essential to understand the interplay
between noise and synchronizing mechanisms in these systems. The phenomenology can
be successfully investigated by integrate-and-fire (IAF) type models, often by simulation.
However, to uncover the mechanisms underlying the observed effects it is helpful to investigate
analytically tractable stochastic models. Specific systems in this context are the feed-forward
subnetworks of the cortex (figurga)) which have been proposed (‘synfire chaiAbeles

(1991) as the generators of spatio-temporal spike patterns occurring with millisecond precision
(e.g.Grunet al(2002) Prutet al (1998). These networks are both a neurobiologically plausible
substrate and structurally simple. Figur@) shows an example of network activity where a
packet of spikes successfully propagates, reaching a spike precision in the millisecond range.
The dynamics of an individual neuron is described by the IAF modetKwell 198§ with the
membrane potentidl governed by

- 1 1
V=—-V-Vy)+—I, (1)
Tm C
where 1, is the time constant an@ the capacity of the membrané(t) is the sum of all
the input currents to the neuron. Whaft(t) reaches a threshol@, a spike is emitted, the
membrane potential is resetWy, and clamped to this value for an absolute refractory period
The current elicited by a synapse upon the arrival of a presynaptic spike is represented by an
a-function Rotter and Diesmann 1998e/1s - te"'/%, wheree is the amplitude ands the time
constant. The neurons in the subnetwork are assumed to receive balanced Poisson spike input
from a large embedding networBiunel 2000. The resulting large fluctuations & cause
threshold crossings at a low rate consistent with the input rate at a single synapse.

In a mean field approach to network dynamics, the spiking activity of a groupnefurons
is replaced by its expectation value (t), wherep(t) is the spike density (figurg(a)) of a
single neuron. The approach assumes identical units receiving common input and independent
realizations of the fluctuations in the system. The synchronization dynamics in feed-forward
networks and its bifurcation scenarios are now well understBegs(mannet al 1999, based
on the single neuron response, characterized(by, to synchronous activity. For this analysis,
p(t) was obtained by simulations. In this paper, an analytical expression(tpris derived,
revealing the mechanisms of synchronization.
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Figure 1. Synchronization dynamics in cortical feed-forward subnetworks.
(a) IAF model neurons (gray disks, = 10ms C = 250 pF, Vo = —70mV, 6 =
—55mV and r; =2ms) are arranged into successive groups (enclosed by
dashed boundaries) and receive input (arrawynction current,e = 46 pA,
7s=0.3ms and delay 2ms) from all the = 100 neurons in the preceding
group. This structure is considered as a part of the large network of the cortex
supplying each neuron with excitatorye(=¢ and Ag = 2Hz) and inhibitory

(6 = —€ and), = 12.61 Hz) independent Poisson processes@at 17500 and

K, = 2400 synapses, respectively. (b) Dots in boxes 1 to 10 represent spike times
of all neurons. In every box (labeled by group number) one vertical position is
reserved for each neuron of the group. The first group (1) is stimulated by a
packet of 100 spikes shown in box 0 drawn from a Gaussian distribution (center
att = —2ms ando = 3 ms). Activity synchronizes under an intermediate loss

in the number of spikes in the packet. The neurons are spontaneously active
(A = Ag, dots occurring before the arrival of the packet) because of the voltage
fluctuations induced by background.

2. Spike intensity in response to synchronous input

If spikes are generated by an inhomogeneous Poisson process, the neuron’s instantaneous rate or
intensity f (t) equalsp (t). Arbitrarily short time intervals between spikes are allowed and occur
with high probability. However, it has been indicated that refractoriness can have a strong effect
on p(t), thereby benefiting neural precisioBdrry and Meister 1998 Thus, it is a proposed
synchronization mechanism in cortical feed-forward subnetwddesv@ltig 2000 Kistler and
Gerstner 200R Here, we show that synchronization does not originate from refractoriness.

A simple way of including refractory effects is to define an inhomogeneous renewal
processBerry and Meister 1998 0x 1962 Gerstner and Kistler 2002y a hazard function or
conditional intensity

AN f(t)’ tgtl,
h(t’t)_{f(t)r(t—t’), else @

wheret; denotes the time of the first spiké(t) is the intensity Gerstner and Kistler 2002
Plesser and Gerstner 2Q@Rotter 1994 when the neuron is not refractory, an@ —t’) is a
recovery function describing the reduced spike probability following the last spike at'tilme
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Figure 2. Analysis of the free intensity during fast input transients. (a) Spike
densityp(t) (gray area) and free intensify(t) (solid curve) of the IAF model in
response to packets &f= 80 input spikes with temporal dispersien= 2 ms.

p (1) is obtained from a histogram of spike times ovef $@nulation trials. The
dashed curve shows the membrane potehtid) generated by the probability
density of the input spikes. (b) Recovery functiogh —t’) modeling neuronal
refractoriness following a spike at timie(z, = 4 ms ando, = 4 ms). A specific
function of r (t —t") enables the estimation df(t) (see (a)). (c)f (t) versus
U (t) (clockwise progression of time) for two different paifé, o) of input
parameters. (d) Division of by U removes ambiguity during the rise time
(U > 0) of U (t). Gray curves in (c) and (d) show analytical predictiodisfor f
assuming infinite refractoriness.

this context, we calf (t) the free intensity, it replaces the fluctuations of the membrane potential
and the threshold in the IAF model by a point process with time-dependent intensity (‘escape
noise’).

The expected membrane potentiiit) generated by a packet of synchronous input spikes
with a Gaussian probability densig(t; o) is

U(t) = Au(®) *¢(t; o), 3)

whereo is the standard deviation @f(t; o), A is the number of spikesy(t) is the voltage
response to a single input spike (post-synaptic potential, PSP)x atehotes convolution
(figure2(a)). The task is to study the influence of refractoriness on the neuronal response to such
synchronous activity and simultaneously find a suitable model fGherefore, we investigated

the shape of (t) in simulations of the IAF model. It has been show&n 1989 Jonest al 1985
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that the spike density(t) of the process?) is given by

p®)=fM{1-R[p, f1 1)}, (4)
where

t t
Rlp, f](t):f dt’ p(t) [1—r(t —t)] exp(—/ ds f(s)r(s—t’)) (5)
0 t

is the probability of finding the neuron refractory. This implicit equation can be iteratively
solved for f (t) enabling the removal of refractory effects fropit). The procedure starts
with fo(t) = p(t) as an initial value and then calculatés.,(t) from f,(t) using f .1 (t) =
o)+ fo(OR[p, fa](t). The recovery functiorr (s) = ©(s— {1l —exp[— (s— 12)%/207]}
illustrated in figure2(b) is consistent with the interval distribution of the IAF model subject
to dc input (not shown@(-) is the Heaviside step function). In order not to underestiniate
refractoriness is maximized (largg ando;) under the constraint of convergence for all input
packetq A, o). f (1) is robust with respect to variationsofs) mainly depending on the area of
1—-r(s).

Figure 2(a) illustrates a typical time course df(t). Neuron models wherd (t) only
depends on the instantaneous state of the neuron provide a successful mathematical framework
for the analysis of network dynamic&éwaltig 2000 Kistler and Gerstner 2002However,
figure 2(c) demonstrates that is not a unique function otU. The firing intensity is high
while U (t) is rising and low otherwise. Note that this cannot be explained by hysteresis
since the effects caused by the spike history have already been accounted for by the recovery
function ). Moreover, different input packets result in considerably different valuek af
the same voltag® . Taking the IAF neuron model as a biologically plausible reference, these
findings rule outf (U)-models Gewaltig 2000 Kistler and Gerstner 20Q0Zor the analysis
of synchronization. Can we find an appropriate modef adind, if so, what are its essential
ingredients? A hint is provided by figur(d): during the rise olJ the ratio of f and the
temporal derivativé) constitutes a unique function of.

3. Dependence on the voltage derivative

Consider the probability density of the membrane potemqt{#, t) in the presence of a strong
voltage transientJ (t) as in @). Neglecting the spike threshold and using linearity of the
membrane potential dynamics, we have

where ps(V) is the stationary density. The spike densitit) equals the probability current

at the threshold/ = 6 which acts as an absorbing boundafuckwell 198§. The rise time

of U (t) is short compared to the membrane time constant. Thus, we assume that the shape of
p(V,t) for V < 6 is not changed by the interaction with the absorbing boundary. We further
assume that an individual trajectory reaches the threshold at most once during the excursion
described byJ (t) effectively considering infinite refractoriness. Then, the spike density equals

the negative rate of change of the survival probabiBty) = Pr[V (t) < 6] = ffoo dVv pVv,t)

New Journal of Physics 10 (2008) 015007 (http://www.njp.org/)
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and we find:

d
p(t) = —as(t)

d 6—U (1)
_ _a/_w V' ps(V")
d d 6—U(t) , ,
= -4 [0-U] mfoo dV’ psi(V')
d
= U Pl —U®]. (7)

The fact that a drift probability current of the forn?)(contributes to the first passage time
density was also found by Plesser and Gerst2@0(). Considering infinite refractoriness i)(
the spike density (t) is just the instantaneous rafgt) provided that the neuron has stayed
below threshold beforea(t) = f (1) S(t). Solving for f and inserting 7) we obtain:

p(t)
f(t)y="20 8
) 0 (8)
_d Pst[0 — U ()]
=ZU® 9)

1720 dvr pgvy”

Thus, f, as already observed fprin (7), directly depends on the speed at which the membrane
potential distribution is pushed towards threshdldioes not explicitly depend drnand can be
expressed as a function bf and its temporal derivativel = dU /dt. The function factorizes
into U- andU -dependent terms:

f(U,U)=[U], gU), (10)

with [x], := (x+|X])/2. Neglecting the threshold agaips(V) can be approximated by a
GaussianTuckwell 1988. Figure3 compares our theory with simulations of the IAF neuron
model. The free intensity (t) resulting from 0) is in excellent agreement with the simulation
results. The absorbing boundary at the threshold does not distort the Gaussian shape of the
membrane potential density. Additional intensity is observed at the peak and during the descent
of U(t). This can be attributed to a diffusive probability current not captured by the theory
because even if the membrane potential distribution remains stationary (e)g= 0) threshold
crossings occur due to the fluctuating natur&/¢f). WhenuU is small or negative, fluctuations

are the only cause of spiking. Note that in the example shown in figthe rise time ol (t)

is not much shorter than the membrane time constant. We derived an accurate model of the free
intensity and related the expansive shape oflthedependent term (cf figurgd)) to the shape

of the stationary membrane potential dengityV). The drift probability current captured by a

f (U, U)-model as in equationl() is the main contribution to the observed spike densities
generated by synchronous input. Is such a model sufficient to understand synchronization
dynamics?

4. Synchronization dynamics

In the remainder of the paper, we analytically investigate the network dynamics induced by
equation 10) using
gU) = Ba [U]SH, (11)
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Figure 3. Free intensityf (t) and probability density of the membrane potential
p(V,t) in the presence of a fast voltage transieéht). (a) f (t) of the IAF
neuron model (solid curve, same data as in fig(e9). The gray curve shows
an analyticalf (t) based on the drift probability current generated by a Gaussian
membrane potential density. The theory describes the intensity during the rise
time ofU (t) (see (b)). Additional intensity is observed at the peald @f) (dotted
vertical line) and during its descent. (b) Membrane potential demqgi4; t) of

the IAF neuron model (color bar indicates probability density) including reset
to Vp at the spike thresholé (white dashed line) and clamping for a refractory
periodz,. U (t) (same data as in figurZa)) is shown as an offset to the mean
wuy (solid curve) of the stationary densipg(V) and touy + 1oy (black dashed
curves), whereyy, is the standard deviation qis(V). During the rise time of

U (t) the shape op(V, t) remains intact fo < 6.

where the membrane potentidl is measured in units of the threshold relative to the mean
6 — v, the exponenix > 2 introduces a degree of nonlinearitylih andg > 0 is a scaling
constant. It is convenient to measure the number of sphkiesunits of (6 — v ) /0 (amplitude

of the PSRI = maxu(t)). This enables us to write3) as

U(t) = Ax(t; o),

with the characteristic membrane potential excursidno) = ¢ (t; o) *u(t) /0. Then the free
intensity reads
f(t) = Ba A%X(t: o)x* L(t; 0)O{ — 1), (12)

where f specifies the location of the maximum of(t; o). We consider the case that
refractoriness is long, allowing each neuron to spike at most once. Thus the spike density

New Journal of Physics 10 (2008) 015007 (http://www.njp.org/)
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p(t) is given by equation8). Writing the survival probability asS(t) = exp(— fioo f(s)ds)
(Cox 1963, the response probabilig, reads

Aout=1— tIim S(t) =1—exp(—a), (13)

with &= [ f(t) dt. From equation¥2), we finda = [ AX(c)]* with X(o) = max Xx(t; o).

Next, we show that synchronizatios,; < o occurs under quite general conditions.
Because of refractorinessq(; < ), it is sufficient to show that < o, wheres is the standard
deviation of f (t). For the choicex(t) = X exp(—t2/2¢?), a Gaussian with amplitude= X(o)
and standard deviation= ¢ (o), 6 can be found with the help of Gaussian integrals:

B 2 T
== (1—Z>§(0) < 0.463% (o). (14)

Therefore, synchronization only depends on the functi@n which is well approximated by
¢(0) =19/2v/2In2+0. The synaptic rise timey cannot destroy synchronization for inpait
larger than some minimal value. Using a different argument, Abdl88J noticed that the
spread ofp(t) depends on the slope tf. Herrmannet al (1999 later elegantly extended the
argument to an expression for the equilibrium spread. Marsatlek(1997) derived a relation
between input and output spread for the noise-free case.

We are now in a position to describe the propagation of synchronous activity in a network
as specified in figuré by an iterative map ofa,, o). With w neurons in each group, the map
is constructed settind = wa,,, o0 = oy, @n+1 = aou, aNdon+1 = & IN equations 13) and (4),
respectively.

Figure4 shows the state space of the iterative map for different values ©he bifurcation
scenario in the four panels agrees quantitatively with simulations of the corresponding I1AF
neuron model (cDiesmannret al (1999). At a given choice ofv the trajectories of the model
reproduce the synchronization dynamics exhibited by feed-forward subnetworks (f{@)re
see als@iesmanret al (1999) Gewaltiget al (2001). Forw > w, an attractor for synchronous
activity exists. The bifurcation creating this attractor is determined by the ejap=
1—exp(—kay), with k= B[wX(on)]*. For k > k. > 0 an a-isocline with a > 0 exists and
its parabolic shape is provided loy> 2. The interplay of the-isocline and thes-isocline
generates a saddle-node bifurcatiar 2 follows from (L0) providing a natural explanation
of bistability in the system: a nonlinear dependencd an U is not required. The -isocline
is determined by (o) in (14) and does not depend dh The synaptic rise timeg limits the
precision of synchronization. In simulations theisocline bends towards larger for small
A (Diesmannet al 1999, which can be attributed to spikes generated during the descent of
U (t).

5. Conclusions

Taken together, we have shown that in systems with strong input transiéfits,U)
-models of spike intensity are consistent with IAF dynamics, wheré&d)-models
(Gewaltig 2000 Kistler and Gerstner 2002are not. The mechanism of synchronization is

the U-dependence of, not refractoriness. A simple relationship guarantees synchronization
under general conditions. Thus, we have uncovered the single neuron mechanism governing
the attractor dynamicdD{esmannret al 1999 of synchronous spiking activity in feed-forward
subnetworks. Th&J-dependence discussed here is solely induced by the noise and not by a

New Journal of Physics 10 (2008) 015007 (http://www.njp.org/)
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Figure 4. State space of the system described in fidui@ four different group
sizesw as labeled in the panels. Points in state space denote packéts of
spikes (vertical) with temporal dispersien(horizontal). Trajectories (arrows)
describe propagation of spike packets from one neuron group to the next and
were computed iteratively using the intensityU, U) = Ba[U]. [U]2~, with

a =2.8 and 8 =0.714 corresponding to the IAF neuron model of figure
Intersections of the -isocline (vertical dashed line) and theisocline (solid
curve, panels fow > 90) are fixed points of the system. The fixed point at large
A is the attractor for synchronous activity (basin of attraction shaded in gray).

U-dependence of the spike generation mechanism as has been reported in experimental
literature. Our findings suggest thatU, U)-models should be considered in the investigation
of neural synchronization phenomena in a noisy environment.
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