
10.2417/1200907.1659

Brian: a simple and flexible
simulator for spiking neural
networks
Romain Brette and Dan Goodman

New neural-simulation technology makes spiking neuron models more
accessible to systems neuroscience and neuromorphic engineering.

Neurons communicate with stereotypical electrical impulses
called action potentials or spikes. This fact has been known for
about 150 years, but most neural network theories in the 20th

century have described neural activity in terms of firing rates.
Spikes have been seen as simply the biological elements that the
brain used in order to communicate and compute with these
analog rates, in the same way as the intensity of light is en-
coded by the arrival rate of photons. However, over the last 15
years, neurons have been found to be more deterministic than
previously thought and the coordination of spikes now seems
to play a major role in sensory coding and computation. Con-
sequently, many neuroscientists are now interested in modeling
neural computation at the spike level. Unfortunately, simulating
spiking models is much more difficult and time consuming than
standard analog models, which has caused many scientists to
refrain from making this switch.

Several systems have been developed in the past to simulate
neuron models efficiently.1 Some of them have been successful in
the computational neuroscience community, but their complex-
ities and steep learning curves have limited their audience. In
many practical cases, it takes considerably more time to write
the code than to run the simulations. While previous simula-
tors addressed the issue of computational efficiency, we devel-
oped the Brian neural network simulator2 with a different goal
in mind: to minimize the time users spend on writing the code of
neuron models so that they can spend more time on the science.
The motto of the Brian project is ‘a simulator should not only
save the time of processors, but also the time of scientists’. Min-
imizing development time rather than simulation time implies
different choices, putting more emphasis on flexibility, simplic-
ity and readability.

Figure 1. Brian implementation of a model of prey localization in the
sand scorpion.3 See details in the text. A) Architecture of the neural
system. B) Firing rates for the eight command neurons in a polar plot
for a prey at an angle of 45◦ relative to the scorpion. C) Correspond-
ing Brian script, with parameter definitions and graphical commands
omitted.

These goals led us to make two choices: firstly to use a stan-
dard programming language that is both intuitive and well es-
tablished, and secondly to let users define models in a form
that is as close as possible to their mathematical definitions. The
Brian simulator is written in Python, a well-established language

Continued on next page



10.2417/1200907.1659 Page 2/2

that is intuitive, easy to learn and benefits from a large user
community and many extension packages (in particular for sci-
entific computing and visualization). Models are defined di-
rectly by providing their mathematical definition, consisting of
differential equations and discrete events (the effect of spikes).
This original approach has crucial benefits: it makes the code
easy to read and share, it minimises the amount of simulator-
specific syntax that needs to be learned, and makes simulating
custom models as simple as simulating standard models.

A simulation using Brian is a Python program executed either
from a script or interactively from a Python shell. Figure 1 shows
a Brian script that implements a model of prey localization in the
sand scorpion.3 Only the definition of the parameters and plot-
ting commands are not shown. The movement of the prey causes
a surface wave (function wave in the code in panel C) which
is detected by mechanoreceptors (the red points in panel A) at
the ends of each of the scorpion’s legs. The mechanoreceptors
are modelled by noisy leaky integrate-and-fire neurons with an
input current defined by the surface wave displacement at the
ends of the legs (object legs in the code, defined by the equa-
tions eqs legs). These neurons send an excitatory signal (the
object synapses ex) to corresponding command neurons (the
blue points) modeled by leaky integrate-and-fire neurons
(object neurons with equations eqs neuron), which also receive
delayed inhibitory signals (the object synapses inh) from the
three legs on the other side (the for loop). A wave arriving first at
one side of the scorpion will cause an excitatory signal to be sent
to the command neurons on that side causing them to fire, and
an inhibitory signal to the command neurons on the other side,
stopping them from firing when the wave reaches the other side.
The result is that command neurons are associated with the di-
rections of the corresponding legs, firing at a high rate if the prey
is in that direction. This fairly complex model can be simulated
with only about 20 lines of Brian code.

Python is an interpreted language, and although it is very
fast there is an overhead for every Python operation. Brian can
achieve very good performance by using the technique of vec-
torisation, similar to that familiar to Matlab users. The idea is to
replace loops by operations on large vectors, so that the inter-
pretation overhead becomes negligible. Brian uses vectorisation
for both the simulation and the construction of the model (e.g.,
initialisation of synaptic weights), and for large networks it can
achieve speeds comparable to that of code written directly in C.4

To sum up, Brian is a convenient simulation tool for exploring
new spiking neural models, modeling complex neural models at
the systems level, and teaching computational neuroscience. We
are currently working on distributed simulation technologies for

Brian, focusing on using graphics processing units, an inexpen-
sive piece of hardware consisting of a large number of parallel
processing cores. Finally, we would like to mention that Brian is
an open source project and we warmly welcome external contri-
butions.

This work was partially supported by the French ANR, the CNRS
and the Ecole Normale Supérieure. The authors would like to thank
all those who tested early versions of Brian and made suggestions for
improving it.

Author Information

Romain Brette and Dan Goodman
CNRS, Ecole Normale Supérieure
Paris, France

Romain Brette is an assistant professor in computational neuro-
science. His research interests include spike-based neural com-
putation (especially in the auditory system), theory and sim-
ulation of spiking neuron models, and intracellular recording
techniques.

Dan Goodman is a postdoctoral researcher in computational
neuroscience. His research interests include the role of spike-
timing based coding and computation, and neural simulation
technologies.

References

1. R. Brette, M. Rudolph, T. Carnevale, M. Hines, D. Beeman, J. M. Bower,
M. Diesmann, A. Morrison, P. H. Goodman, F. C. Harris Jr., M. Zirpe,
T. Natschläger, D. Pecevski, B. Ermentrout, M. Djurfeldt, A. Lansner, O. Rochel,
T. Vieville, E. Muller, A. P. Davison, S. El Boustani, and A. Destexhe, Simulation
of networks of spiking neurons: a review of tools and strategies, J. Comp. Neurosci. 23
(3), pp. 349–98, 2007.

2. http://www.briansimulator.org
3. W. Stürzl, R. Kempter, and J. L. van Hemmen, Theory of arachnid prey localization,

Phys. Rev. Lett. 84 (24), pp. 5668–5671, 2000.
4. D. Goodman and R. Brette, Brian: a simulator for spiking neural networks in Python,

Frontiers in Neuroinformatics 2 (5), 2008. doi:10.3389/neuro.11.005.2008

c© 2009 Institute of Neuromorphic Engineering


