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Many prototypical models of spatially extended systems that are capable of complex spatiotemporal dynamics 
impose a finite discretization window of space and time. For such models, it is important  to determine to what 
extent the specific procedure which is used to update local states affects the overall regimes, as the latter might 
turn out to be artifacts due to an unrealistic digitalization of the world. The chances of generating spatiotemporal 
patterns with no counterparts in the physical world are particularly high with granular space-time models that rely 
on a synchronous evolution of distributed states, as such synchronous evolution is found in nature most typically 
in systems governed by evolution laws in the form of partial differential equations. We show this possibility to be 
the case for the regimes produced in coupled map lattices, as markedly different dynamics arise when the standard 
synchronous model is made asynchronous. By quantifying the degree of mutual asynchrony in the system, signatures of 
asynchronous spatiotemporal dynamics are unraveled and further characterized in terms of simple stability measures. 

1. Introduction 

The complexity of the dynamics of many spatially distributed systems has long hindered the devel- 
opment of systematic quantitative studies. Recent advances, however, have opened the door to de- 
tailed probings into the regimes exhibited by a variety of spatially extended systems, from turbulent 
fluids, to reaction-diffusion processes in chemical reactors, to collective social and biological systems. 
These advances originate in part from the development of prototypical models of complex systems, 
which lend themselves to elaborate computer simulations, and for which theories pertaining to low- 
dimensional dynamics offer the prospect of  being extended so as to account for space. 

While the relevance of a generic model to the study of a particular phenomenon must be addressed 
specifically, it is worth considering in broader terms the way in which a model of complex spatiotem- 
poral regimes deals with the continuous space-time structure (at least at the level of  a macroscopic 
approach) of their embedding physical world. Indeed, a common modelling procedure to achieve 
tractable analysis and efficient computer simulations consists in discretizing some or all of the spatial, 
temporal, and state variables. For instance, this procedure characterizes the widely used cellular and 
lattice-gas automata [ 1,2 ], in which spatial dimensions are reduced to locations on a cellular grid, and 
digitalized states are updated at discrete time steps. Likewise, the modelling of spatiotemporal chaos 
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based on the so-called coupled map lattices relies on a granular space and time, while each site of  the 
lattice is a dynamical system with state variables taking on continuous values [3-5].  

One might be tempted to look at such models as discretized versions of the continuous partial dif- 
ferential equations governing the evolution of the underlying system. This view is, in general, unjus- 
tified. A discretization of a continuous law - a standard procedure followed in computer simulations 
- provides a satisfactory picture of  the original system only if the time and spatial steps, respectively 
~t and ~r, are sufficiently small. Now, in most cases, interesting behavior in prototype discretized 
systems is found when &t and/or  6r are finite. The question then arises whether such systems can 
still be regarded as a representation of a certain physical situation, or rather as useful toy models for 
exploring complicated behavioral patterns in nonlinear dynamics. 

When only &t is discrete, the answer is clear: Discrete time dynamics is obtained from a continuous 
one on a Poincar6 surface of  section cutting transversally the (continuous) phase-space trajectories 
[6]. Besides, in the biological arena, it is by now known that discrete time dynamics may describe the 
relevant part of the evolution of  synchronously growing population systems, the step &t representing 
in this case the generation time. The situation may be quite different when a finite space discretization 
step 6r is in addition imposed in a spatially distributed system. The way in which a discrete time 
is represented at different spatial locations becomes an issue, for a strong dependence of  dynamical 
regimes on the specific model of time being used has been noticed in a number of  studies, whether 
in relation with Monte Carlo simulations of  physical and chemical systems [7,8], or in automata-like 
abstractions of social and biological processes [9,10,12]. These observations seem to imply that at 
least some of the oberved regimes must be mere artifacts of a digital model, with no correspondence in 
a physical world. In particular, a serious problem might arise from the ubiquitous use of  synchronous 
updating procedures for cellular systems [ 1,2 ], in which all the local states get updated in concert, since 
this procedure which is now applied in physical space can no longer be related to the use of Poincar~ 
surface of section applicable in phase space. Therefore, it is important to determine to what extent 
and why asynchronous models of  spatiotemporal dynamics are likely to differ from their synchronous 
counterparts. 

In the present paper, we address this issue in the context of coupled map lattices. These models have 
been extensively studied in their synchronous form as prototypes of  complex spatiotemporal dynamics. 
In the following section, we extend a standard version of coupled map lattices [3,5] to allow for the 
asynchronous updating of  local states. As shown in section 3, the regimes observed in the asynchronous 
case are markedly different from their synchronous counterparts. The origin of these differences is 
investigated numerically by tuning the degree of  (a)synchrony in the system. In particular, we observe 
that asynchrony leads to the splitting of  extended coherent domains, and, under some circumstances, 
to the stabilization of a uniform state accross the entire lattice. Stability measures are developed in 
section 4 to provide further insight on the effects of  asynchrony on spatiotemporal dynamics. Finally, 
we close this paper with a brief discussion of  our results in a broader context than coupled map lattices. 

2. Coup led  m a p  lat t ices  

2.1. Synchronous dynamics 

Synchronous coupled map lattices are dynamical systems made of  identical iterated maps interacting 
locally in space. One of  the most common versions found in the literature is the diffusive model 
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Fig. 1. Space -ampl i tude  plots  in a s y n c h r o n o u s  coup led  m a p  lattice. A m p l i t u d e s  xi ( t )  are p lot ted  for  50 successive t ime  
s teps  fol lowing the  first  1000 i terat ions.  The  lattice con ta in s  100 nodes.  (a)  a = 1.2, e = 0.3. The  m o t i o n  is per iod-2 in 
every doma in .  (b)  a = 1.75, e -- 0.5. N a r r o w  chaot ic  d o m a i n s  coexist  wi th  large chaot ic  s t ruc tures  dr i f t ing in space. 

x i ( t  + 1) = (1 - e ) f ( x i ( t ) )  + l a { f ( x i _ l ( t ) )  + f ( x i + l ( t ) ) } ,  (1) 

where xi is a real-valued state variable, t is a discrete time, and i designates a point  in a one-dimensional  
lattice with N sites (i = 1 . . . . .  N ) .  Throughout  this paper, periodic boundary  condit ions are used. 
The mapping funct ion f (x )  implements  the local dynamics  in the absence of  diffusion, i.e. for a null 
value o f  the coupling constant  e. A c o m m o n  choice for the mapping funct ion is the well-known logistic 
equat ion  

f ( x )  = 1 - ax  2 (2) 

which exhibits a series of  bifurcat ions leading into chaos as the parameter  a is increased in the range 
{0, 2}. Kaneko  has studied in detail the spat iotemporal  regimes that appear  in a coupled map lattice 
for a wide range of  values of  the parameters  a and a [5].  For  small nonlinearit ies (i.e. a < 1 .5 . . . ) ,  
the lattice can be d iv ided in domains  of  nearly uni form ampli tude that have stable boundaries.  In 
this case, the tempora l  mot ion  within a domain  is either periodic or chaotic, with larger domains  
being more  unstable. For  high values o f  the nonl inear i ty  and a stronger diffusive coupling, the domain  
structure is replaced by a mixture  of  small chaotic regions and extended nonsta t ionary chaotic bursts. 
The  two types o f  regimes that  we just  described are illustrated in the space-ampli tude plots of  Figure 
1. A detailed investigation of  the regimes obta ined for in termediate  values of  the parameters  a and 
can be found in ref. [5]. 

2.2. Asynchronous dynamics 

In order  to de termine  what happens when asynchrony is progressively in t roduced in the lattice, we 
modify  Eqs. ( 1 ) as follows. Consider  a unit  of  t ime in the synchronous model  - we refer to this interval 
in what follows as the unit  of  t ime of  the original dynamics  - and let us divide it into K subintervals. 
Taking a subinterval  as the new t ime step, we then rewrite the lattice dynamics as 
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xi(k + 1) = P(k,K,i){(I - e)f(xi(k)) + ½e{f(xi-1 (k) + f(xi+l(k))}} 
+ ( 1 - P ( k , K , i ) ) x i ( k ) ,  (3) 

where k is the rescaled time. P (.) is a boolean function defined so that each site has its state updated 
once every K successive subintervals. In other words, P (k, K, i) must verify for all i 

( t+l )xK--1  

Z P(k,K,i) = 1, (4) 
k = t x K  

where t is the original time used in Eqs. (1). The above constraint is introduced to allow for a 
comparison with the synchronous system of Eqs. (1). Clearly, P(k, K, i) defines a model of time 
accross the lattice, as different functional forms implement different procedures for updating local 
states. In what follows, we consider three such procedures, defined as 

p(k ,K , i )=f  1 if ( k m o d K )  -- O, 

0 otherwise, 
(5) 

P(k,K,i) = { 1 if ( k m o d K )  -- rand(i)  

( 0 otherwise, 
(6) 

1 if ( k m o d K )  = rand(i, kdivK) 
P(k,K,i) = (7) 

0 otherwise, 

where mod indicates the modulo operator and div the integer division. The expression rand(. , .)  
designates a random number in the range {0, K - 1 }, which depends only on the lattice site in the 
procedure Eq. (6), while it is also a function of  the original time t = k d ivK in Eq. (7). 

In the first procedure (i.e. Eq. (5)) ,  all the sites in the lattice are updated synchronously, and 
thus Eqs. (3) are dynamically equivalent to Eqs. (1). The second procedure, defined by Eq. (6), 
corresponds to a phase-locked updating: each site is assigned randomly an initial time slice during 
which its state gets updated, and from there on, it is updated every K iterations of  Eqs. (3). In the 
third scheme, the updating of  a local state occurs once and with a uniform probability in a K-subcycle 
comprised between two succesive time steps of  the original time scale. Notice that by varying the 
parameter K, we can control explicitly the overall degree of asynchrony in the system. Indeed, for K = 
1, the three procedures described above reduce trivially to the synchronous model of  Eqs. ( 1 ). In the 
other limit of  K much larger than the number of  sites N, the probability of having more than one state 
updated in any given subcycle is negligible and the second and third procedures become analogous 
to what are known as the sequential and random updating schemes in Monte Carlo simulations, 
respectively [ 11 ]. In what follows, we will use this terminology when refering to the asynchronous 
updating schemes of  Eqs. (6) and (7). 

3. Domain breaking and temporal stabilization via asynchrony 

This section summarizes the results of numerical simulations carried out in asynchronous coupled 
map lattices, and draws a comparison with the regimes that we described earlier in relation with a 
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Fig. 2. Space-ampl i tude  plots in a synch ronous  coupled m a p  lattices. Ampl i tudes  xi (t) are plot ted for 50 successive t ime  
steps following the first 1000 t ime  steps (original un i t s  o f  t ime) .  The  lattice conta ins  100 nodes.  (a) a = 1.2, e = 0.3, and  
a sequent ia l  upda t ing  with K = 2 is used.  Notice the  spli t t ing o f  large domains .  (b) As in Figure 2a but  with K = 20. 
Ampl i t udes  o f  oscil lat ions are reduced in this  case. (c) As in Figure 2a, bu t  with a r a n d o m  updat ing  and  K = 2. (d)  As in 
Figure 2c, with  K = 20. Not ice  the  s tabi l izat ion o f  a spatially un i fo rm  mode  in this  case. 

synchronous model. The system, composed of N = 100 nodes, is first run with a parameter a = 
1.2, a diffusive coupling coefficient e = 0.3, and different degrees of asynchrony. Except for the 
asynchronous updating of local states, all other characteristics of the system match the synchronous 
model associated with Figure 1 a. 

Figures 2a,b depict the space-amplitude plots for 50 consecutive time steps of the original time scale, 
after a transient of 1000 time steps. (Each time step entails K iterations of Eqs. (3), with the amplitudes 
being displayed at the iterations k such that k mod K = 0). In these runs, a sequential updating was 
used, with a number K of subcycles equal to 2 and 20, respectively. When comparing these plots with 
the spatiotemporal patterns of Figure la, we observe drastic differences in the dynamical regimes. 
First, the introduction of asynchrony leads to a splitting of the large domains that were present in the 
synchronous case. This property is shown already on Figure 2a where K = 2. Increasing the degree 
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Fig. 3. Space-amplitude plots in asynchronous coupled lattices. Amplitudes xi(t) are plotted for 50 successive time steps 
following the first 1000 time steps (original units of  time). The lattice contains 100 nodes. ( a )  a = 1.75, e = 0.5,  and 
a sequential updating with K = 2 is used. ( b )  As  in Figure 3a but with K = 2 0 .  ( c )  As  in Figure 3a, but with a random 
updating and K = 2. ( d )  Random updating with K = 20. 

of asynchrony from K = 2 to K = 20 produces a contraction of the local amplitudes of oscillations, 
as illustrated in Figure 2b. Similar remarks can be made when observing the regimes derived from a 
random updating of states, as shown in Figures 2c,d. Notice that the complex dynamics associated 
with random updatings leads to a localization of  local states around the fixed point of  the logistic map. 
This trend is reinforced with further increases of K. 

The above runs were repeated for the values of  a and e used in the synchronous simulation of 
Figure lb, namely a = 1.75 and e = 0.5. Again, introducing asynchrony produces the breaking of 
large spatiotemporal patterns into smaller structures (Figures 3a and c). When more temporal slices in 
which states may be updated are introduced (i.e. for K =  20), we observe a dramatic simplification of  
the local temporal dynamics with respect to the synchronous case. While sequential updatings lead to a 
quasi-periodic motion of  period-2 (cf. Figure 3b), random updatings produce a complete stabilization 
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Fig. 4. Space-amplitude plots for a two-dimensional coupled lattice. Amplitudes xi(t) are plotted after 1000 time steps 
(original units of time). The lattice contains 2 0  × 2 0  n o d e s .  ( a )  a = 1.75,  e = 0 .5 ,  a n d  a synchronous updating is used. 
( b )  A s  in Figure 4a but using a random updating with K = 2. (c )  Random updating with K -- 20.  

of the system, as shown in Figure 3d. The very same qualitative characteristics are also found in a 
two-dimensional lattice with diffusive coupling to nearest neighbors, as shown in Figures 4. The model 
comprises a 20 x 20 lattice, with a = 1.75 and ~ = 0.5. Figure 4a displays a space-amplitude plot 
after 1000 iterations of the synchronous model. Similar plots are given in Figure 4b,c, for a model 
based on random updatings, and a number of subcycles K equal to 2 and 20, respectively. 

In conclusion, asynchronous spatiotemporal regimes in coupled map lattices are markedly different 
from their corresponding synchronous regimes. When asynchrony is fully developed, these differences 
translate into an enhanced stability of the local dynamics. A precursor of the enhanced stabily seems to 
be the breakup of large spatial domains into smaller structures, thus suppressing long-range coherence 
in the lattice. These signatures of  asynchrony are found both with sequential and a random updating 
schemes, despite the different nature of the associated dynamical systems: one (i.e. the sequential 
model) is deterministic while the other is stochastic. Notice also that the signatures of asynchrony 
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Fig. 5. Space-ampl i tude  plots  in latt ices with l inear coupling.  Ampl i tudes  xi( t)  are plot ted for 50 successive t ime  steps 
following the first 1000 t ime  steps (original uni ts  o f  t ime) .  The  lattice conta ins  100 nodes.  (a) a = 1.75, e = 0.5, and  
synch ronous  updat ing .  (b)  As in Figure 5a bu t  us ing a sequent ia l  upda t ing  instead, with K = 2. (c) R a n d o m  upda t ing  with 

K = 2. (d)  Sequent ial  or  r a n d o m  upda t ing  with K = 20 

are robust to changes in the functional form of the diffusive coupling term in Eqs. (1) and (3). For 
instance, similar characteristic patterns are found when a linear coupling among local state variables 
replaces the nonlinear f (x )-coupling form, as demonstrated in Figures 5a-d. In the following section, 
we rely on simple notions of  stability to explain qualitatively these dynamical signatures ofasynchrony. 

A final point is in order. Asynchronous coupled map lattices are expected to exhibit a rich set of  
complex spatiotemporal patterns just as their synchronous counterparts do, as the model parameters a, 
e, and K are varied. A detailed investigation of these regimes and their location in a continuous phase 
diagram is beyond the scope of  this paper. Such a study will be developed elsewhere. For now, suffice 
it to note that the typical domain sizes tend to decrease as the degree of asynchrony K is increased 
in the regions of  phase-space probed by Figures 2 and 3. The coherent domains are fixed in time in 
these cases. Notice also the coexistence for these parameter values of a large number of  attractors 
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corresponding to different domain structures, which are reached from different initial conditions. For 
intermediary coupling strengths, say e = 0.3, and a nonlinearity a = 1.75, the dependency of domain 
sizes on the value of K is preserved, but the domain boundaries move slowly accross the lattice. 
Finally, remarkable regimes observed with synchronous models [5], such as the motion of localized 
chaotic deflects through quasiperiodic zigzag regions, are found in asynchronous models, for instance 
with parammeters a = 1.8, e = 0.1, K = 2, and a sequential updating scheme. However, the mixing 
of iterates of different order induced by the sequential procedure - this is a fundamental consequence 
of asynchrony and thus, of spatial extension, as we will show below - translates into the invasion of 
zigzag regions by large chaotic deflects. 

4. Asynchronous mixing of states 

Numerical simulations of asynchronous coupled map lattices revealed a characteristic breakup of 
large spatial domains, and, for high degrees of asynchrony, the enhanced stability of simple spatiotem- 
poral regimes. Let us first consider here the splitting of extended domains. To this end, we suppose 
that the system is started in a spatially uniform state, so that xi (0 )  = x ° at all the sites i in the lattice. 
Note that one could consider instead a spatial domain that is large enough so that boundary effects 
can be neglected. As can be readily seen from Eqs. ( 1 ), a synchronous evolution of states will maintain 
a spatial uniformity ad infinitum. Thus, the system reduces to a single degree of freedom, namely the 
uniform state x ( t ) ,  which evolves in time according to the nonlinear mapping x ( t  + 1 ) = f ( x ( t )  ). 

This locked evolution accepts the following pictorial representation: 

xl (0)  = x  ° ~ xl(1)  = f ( x  °) . . . .  

X N ( O )  = X 0 ~ X N ( 1 )  ---- f ( x  O) ---+ "'" 

which we contrast with a fully sequential updating of states such that the sequence of updates follows 
the numbering of sites in the lattice. Assuming for simplicity that each site is only coupled to its left 
neighbor, the sequential dynamics unfolds in space and time as: 

Xl(O ) -~- X 0 ~ XI(1 ) = (1 - - e , ) f ( x  O) + e f ( x u ( O ) )  = f ( x  O) -~ "" 

X 2 ( 0  ) ---- X 0 --+ X 2 ( 1  ) ---- (1  - e ) f ( x  °)  + c f ( x x ( 1 ) )  -~ " 

XN(O) = X ° ~ XN(1) = ( 1 - - e ) f ( x  °) + e f ( X N _ l ( 1 ) )  ~ "" 

where the time t is expressed in the units of the synchronous dynamics. It as easy to convince oneself 
from this representation that the asynchronous updating of local states combined with their diffusive 
coupling introduces a mixing of successive iterations of the logistic map. This leads to a progressive 
collapse of the uniform spatial amplitude and thus the splitting of coherent domains. Given the 
particular sequence of updatings which is used in the sequential procedure, there is a natural mapping 
from space (i.e. a position in the lattice) to time (i.e. an iteration number) which allows us to rewrite 
the asynchronous lattice dynamics in terms of a single variable and a higher-order iterated map as 

x ( k )  = ( 1 - a ) f ( x ( k - N ) )  + e f ( x ( k -  1)), k >/ N (8) 
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with the time t = k div N and the position in the lattice i = k mod N + 1. 
In the trivial case of  a lattice with two sites, the above equation reduces to 

x ( k )  = ( 1 - e ) f ( x ( k - 2 ) )  + e f ( x ( k - 1 ) ) , k  >t 2 (9) 

which is an iterated map of the second order. Comparing the dynamical properties of this map with 
those of the simple logistic map is quite enlightening with regard to features of asynchronous dynamics 
exhibited in the previous section. This analysis will be reported elsewhere. 

For now, we will take a more quantitative approach to explain the enhanced stability in asynchronous 
systems with rerspect to their synchronous counterpart, by restricting ourselves to perturbations in 
the vicinity of spatially homogeneous regimes. Consider first the synchronous model of Eqs. ( 1 ). This 
system admits a uniform solution xi = x* for all i, which is stable whenever the Jacobian matrix of 
the system computed around the homogeneous state has all its eigenvalues inferior to 1 in absolute 
value. (x* is the fixed point of the logistic map). For a lattice made of N nodes, the N × N Jacobian 
m a t r i x ,  Jsync is tridiagonal, and reads as 

ffsync ~-~ - 2 a x *  

1 - e  e / 2  0 ..- e/2 

e/2 1 - e  "'. "'. " 

0 "'. "'. "'. 0 
• . • 

• . ". 1 - e e/2 

el2 .-- 0 el2 l - e /  

(lO) 

Let us consider again a partially sequential updating of states (i.e. with K < N). When the sequence 
of updates follows the numbering of sites in the lattice, an equivalent Jacobian matrix, Jseq, may be 
defined as the product of the Jacobians computed from Eqs. (3) for K successive updating cycles. 
Each matrix in this product has a number of rows that are identical to those of the synchronous 
Jacobian, and which correspond to the nodes being updated during the associated iteration• The rest 
of the matrix is diagonal, with the diagonal elements equal to one. Stated more formally, we have 

f 1 0 . . . . . . . . . . . .  0 "~ Jsllnc . . . . . . . . . . . . . . .  JslnNc 

0 1 "'. " " • . . . . . . . . . . . . . .  " 

• " ' .  " .  " ' .  " ' . . . . . . . . . . . . . .  Jsync 
Jseq ~- 0 " ' •  0 1 0 • • '  0 ~ Jsymnl m N  

. . .  0 -.. 0 1 0 ..- 0 . (11) 

m l  m N  " " 
Jsync . . . . . . . . . . . . . . .  Jsync 

. . . . . . . . . . . . . . .  O 

N1 N N  Jsync 0 . . . . . . . . . . . . . . .  Jsync . . . . . . . . . . . .  0 1 

where m verifies the relation N = inK. The above considerations of linear stability do not apply rig- 
orously in the case of random updatings, for one is dealing then with a stochastic model. Neverthe- 
less, it is useful to introduce an equivalent jacobian matrix, Jrana, defined over any given sequence 
of K successive updatings that make for a unit of time of the synchronous dynamics• As for Jseq, the 
matrix Jrana is written as the product of K Jacobians computed from Eqs. (3). Each matrix in this 
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product  has a number  o f  rows that are identical to those o f  the synchronous Jacobian, and which cor- 

respond to the nodes being updated  during the associated iteration. The remaining rows are diagonal, 
with the diagonal elements equal to one. Given the stochastic sequencing of  updates in the random 
scheme, each series o f  K successive updates produces a different matrix Jrand- Thus, in what follows, 
we consider average properties over  ensembles of  such matrices. 
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In order to compare the stability of the synchronous and asynchronous models, we have computed 
numerically the largest eigenvalue in absolute value in the matrices Jsync, Jseq, and Jrand #1 as a function 
of the parameter a, in a system with N -- 50 sites. As shown in Figure 6a, the spatially uniform 
mode becomes unstable for values of the parameter a that are larger in the asynchronous systems than 
in the synchronous lattice. Furthermore, Figure 6b shows that this trend is accentuated for stronger 
diffusive couplings. Notice also that stability is strongest in asynchronous models using a random 
updating scheme. Finally, Figure 7 shows that the threshold of instability increases with the degree 
of asynchrony, as defined by the parameter K. Thus, the linear stability analysis in the vicinity of 
a spatially uniform mode confirms that asynchrony tends to stabilize this regime. By extrapolation, 
the analysis also suggests that higher-order spatiotemporal modes that are unstable in a synchronous 
model might be stable in the corresponding asynchronous model. These results are consistent with the 
empirical findings of the previous section, even though the size of the lattice used in this section was 
reduced by half for practical reasons. (Compare for instance the period-2 oscillations in Figure 3b 
with the complex synchronous dynamics of Figure 1 b. In addition, the fixed point regime in Figure 3d 
can be related to the unstable crossover of the corresponding Lyapunov exponent in Figure 6b). To 
close, let us emphasize that we have only considered here the temporal stability of a uniform mode. 
However, earlier studies have shown that its spatial stability will typically be lost as well when one is 
at a sufficient distance above the critical threshold of temporal instability [ 14 ], due to the nonlinear 
coupling with modes of higher spatial frequency. 

5. Conclusion 

The idea of reducing the study of continuous time systems to that of an associated discrete time sys- 
tem was first proposed by Poincar6. While applicable to low-order dynamical systems (i.e. represented 
by a finite set of  ordinary differential equations), the discretization of time raises new questions in the 
case of extended systems in which, in addition, a finite discretization in space has been performed. 
In this paper, we have illustrated this problem by unraveling the striking disparities existing between 
synchronous and asynchronous spatiotemporal dynamics in coupled map lattices. Given these dis- 
parities, it is not clear to what extent synchronous models of spatiotemporal chaos provide reliable 
descriptions of real phenomena. The signatures of asynchrony in coupled map lattices, namely the 
splitting of extended homogeneous domains mediated by the mixing of successive iterates of neighbor 
state variables, and in some circumstances, the stabilization of a uniform state accross the entire lat- 
tice, might be found in other spatially distributed systems. For instance, simulations of evolutionary 
games taking place on a two-dimensional grid of the kind first studied in [ 13 ] exhibited very similar 
patterns when updatings of states were made asynchronously [12]. More work is clearly needed in 
the future in order to better characterize the spatiotemporal regimes produced by asynchronous mod- 
els of extended systems such as those considered in this paper, in particular under parametric con- 
ditions that do not translate into a global fixed point. Ultimately, this effort might lead to a deeper 
understanding of complex dynamics in spatially distributed systems. 

#1 For the  largest e igenvalue o f  Jrand, averages are taken over  5 sample  Jacobian matrices.  Devia t ions  f rom the m e a n  are 
verified to be wi thin  a 1-2 percent  range. The  proper ty  o f  a m a x i m u m  absolute  eigenvalue being ei ther inferior  or  
super ior  to 1 is verif ied to hold  for Jacobians  def ined over  several  t ime  units.  
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