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Abstract 
The synchrony / asynchrony dichotomy prevalent in models 
of genetic regulatory networks can be replaced by a 
parameter, s, which is the probability of a node being 
updated in a single time step. Here we apply the idea of such 
parameterized synchrony to study the dynamics of the 
genetic regulatory network extracted from an artificial 
genome model. We find that the relationship between 
degree of synchrony and the number of limit cycles is not 
linear. The number and length of limit cycles peaks at 
intermediate values of s. The proportion of state space 
explored and the length of transient trajectories also follows 
this pattern. The richer behavior found at intermediate 
values of the synchrony parameter is much more 
characteristic of biological systems than either full 
synchrony or complete asynchrony.  

Introduction 

A characteristic property of biological systems is the 
robustness of their dynamic behaviors despite the inherent 
stochasticity of the underlying molecular interactions. A 
current issue in the design of genetic regulatory networks is 
how such characteristic dynamics can best be modeled 
while acknowledging the underlying stochasticity of the 
network components. 
 Genetic regulatory networks developed using Reil’s 
Artificial Genome (AG) model (Reil, 1999) reflect the 
behavior of real genetic regulatory networks, implementing 
and extending random boolean networks by grounding their 
design in sequence-level models of DNA. They exhibit 
complex dynamic behavior, ranging from rapid “freezing” 
at a point attractor in state space, through limit cycles of 
varying length and complexity, to apparently chaotic 
dynamics, depending on the connectivity and degree of 
inhibition of the network. However, these models suffer 
from several important deviations from biological 
plausibility. Perhaps the most important of these deviations 
pertains to the gene update rules.  

In the standard AG, as in the classical Random Boolean 
Network (RBN), all genes are updated simultaneously, on 
the basis of their inputs from the previous time step. While 
computationally convenient, such synchronous updating 
does not occur in biological GRNs; factors such as mRNA 
and protein synthesis, degradation and transport times mean 
that the system is replete with delays of varying amounts, 
and genes are activated or inhibited in a fundamentally 

asynchronous manner. Unfortunately, with Boolean GRN 
models, the implementation of asynchronous gene update, 
whether deterministic or not deterministic, completely 
alters the network dynamics. Unless connectivity and 
inhibition levels are very high, most networks quickly move 
to a point attractor in state space and remain frozen there. 
The synchrony simplification is therefore widely accepted, 
largely because synchronous Boolean networks do exhibit 
dynamic behavior similar to that of biological cells. 
 The existence of complex dynamic behavior in network 
models is of interest because biological cells are assumed 
to function on the “edge of chaos”, in the regime between 
totally frozen and chaotic dynamics. This region is 
characterized by the presence of limit cycle attractors with 
wide basins of attraction. Such attractors are widely 
assumed, following Kauffman (1993), to be models of cell 
types—each cell type is an attractor in gene expression 
phase space. 
 The biological implausibility of synchronous updating is 
widely recognized, and the effects of synchrony have been 
examined in a variety of models, including globally 
coupled logistic maps (Abramson & Zamette, 1998), 
Conway’s Game of Life (Blok & Bergersen, 1999), cellular 
automata (Schönfisch & de Roos, 1999) and random 
Boolean networks (Harvey & Bossomaier, 1997; Di Paolo, 
2001). 
 Limit cycles per se do not generally exist in an 
asynchronously updated networks, although networks with 
such properties can be specifically handcrafted (Nehaniv, 
2002). However, several authors have demonstrated the 
existence of pseudo-periodic “loose” attractors in 
asynchronously updated networks (Harvey & Bossomaier, 
1997; Di Paolo, 2001). Hallinan and Wiles (2004) have 
demonstrated that networks based upon the AG model can 
be evolved to exhibit such loose attractors, even when 
asynchronously updated. 
 Synchrony / asynchrony is often thought of as a binary 
condition. An alternative is to consider degree of synchrony 
as a tunable parameter, implemented as the probability of 
each node being updated at each time step. Under such an 
update scheme a network with synchrony 1.0 is the 
standard synchronous network, while one with synchrony 
1/n, where n is the number of nodes in the network, is 
equivalent to the usual conception of an asynchronous 
network. 



 In this study we examine the effects of modifying the 
degree of synchrony upon the dynamics of AG-generated 
networks. 

Methods 

Our model is based on the Artificial Genome model (AG) 
developed by Reil (1999). A genome is generated at 
random, using equal proportions of b “bases”. There are 
four bases in real DNA – adenine (A), thymine (T), guanine 
(G) and cytosine (C), so we used four bases, designated 0, 
1, 2 and 3. The genome is then searched for instances of a 
gene marker string of length l (we used 0101) analogous to 
the TATA box to which biological transcription factors 
bind. The following g bases are then designated a gene. 
The region between the end of a gene and the beginning of 
the next 0101 marker string becomes the promoter region 
for the downstream gene. 
 Each gene is “translated” into a gene product by 
incrementing each base by 1. A gene with the sequence 
012130 will therefore result in a product with the sequence 
123201. All of the promoter regions in the genome are 
searched for matches with each gene product; if a match to 
the product of gene A is found in the promoter region of 
gene B, we say that gene A controls gene B. This control 
may be either excitatory—A promotes the transcription of 
B—or inhibitory. In this way a genetic regulatory network 
is constructed from the randomly generated genome (Figure 
1). 
 

 

Figure 1. Reil’s artificial genome model of a genetic regulatory 
network. 

Ten random genomes and their corresponding networks 
were generated, with the parameters shown in Table 1. 
These parameter values were selected because previous 
experiments indicated that they produce networks which, 
when updated synchronously, show limit cycle dynamics, 
but when updated asynchronously rapidly collapse to a 
point attractor (Hallinan & Wiles, 2004). 

Table 1. Parameters used for network generation 

Parameter Value 
Chromosome length 14000 
Number of bases 4 
Gene Marker 0101 
Gene length 6 
Proportion of inhibitory links 0.4 
Maximum number of timesteps 1000 

 
The resulting networks had an average of 57.9 nodes and 

172.3 links, giving an average connectivity of 2.97. 
Our model differs from that of Reil (1999) in two major 

ways. One is the manner in which inhibitory links are 
implemented. In the original model a link was deemed 
inhibitory if its last base has a particular value. Using this 
approach a network can have a degree of inhibition of 0, 
0.25, 0.50 or 1.0, and the links emanating from a given 
gene will always be either inhibitory or excitatory, no 
matter which to gene it links. We designate individual links 
as inhibitory with a specific probability as they are formed. 
This scheme allows much finer-grained inhibition, and is 
more biologically plausible in that it allows a single gene 
product to participate in some reactions as an inhibitor and 
in others as an activator. 

The other difference, as discussed above, is our update 
scheme. Instead of synchronous updating we use a 
synchrony parameter, s, which represents the probability of 
a node being updated at any time step. This approach has 
been applied to the Game of Life, which shows 
characteristic phase transitions (Blok and Bergerson, 
1999). 
 Each network was run n times, where n is the number of 
nodes in the network, each time with a different initial node 
activated, for synchrony values ranging from 0.1 to 1.0. 
With a synchrony value of 1.0 each node has a chance of 
1.0 of being updated at each timestep, making it a 
synchronous updating scheme. In this way much of the state 
space of each network is explored in a systematic manner, 
although the stochastic element in the update scheme means 
that the entire state space is almost certainly not fully 
explored. 
 Each network was run for 1000 timesteps and a record 
kept of the states visited. This state list was then used to 
construct a state transition diagram for each network run, 
from which statistics pertaining to the number and length of 
limit cycles encountered could be compiled. 

Results 

Typical state transition graphs for networks with low 
synchrony (0.3) and high synchrony (0.9) are shown in 
Figure 2. 
 



 

 
 

Figure 2. State transition diagrams. a. Network with 
synchrony 0.3 has two basins of attraction, each leading to a 

single point attractor and the longest transient in the network 
is 3. b. Same network with synchrony 0.9 has four basins of 
attraction, three of which have limit cycle attractors and the 

longest transient is >15. 

The networks with high synchrony visit many more 
states, and settle to longer attractors than the networks with 
lower synchrony. This pattern is common to all of the 
networks; the network dynamics change with the degree of 
synchrony. 

Despite the higher number of basins of attraction in the 
more synchronous networks, the proportion of all genes in 
the largest basin of attraction decreases relatively slowly 
with increasing synchrony (from 0.95 to 0.61), whereas the 
proportion of genes actually active in each time step 
increases sharply. In networks with very low synchrony 
very few genes are active per time step (Figure 3). 
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Figure 3. Change in network dynamics with synchrony as 
evidenced by the proportion of genes active per time step and 

proportion of states in the largest basin of attraction. 

As expected, networks with low synchrony displayed 
fewer and shorter limit cycles that those with high 
synchrony. The relationship between synchrony and limit 
cycle behavior is not, however, linear. For most measures 
of dynamic behavior a peak occurs a synchrony rate of 
about 0.9 (Figure 4). 
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Figure 4. Average length and number of attractors in 
networks with different levels of synchrony. 

 Limit cycle length varied from 1 to 14 states, with most 
limit cycles less than five states long. The longest limit 
cycles were found, once again, at a synchrony of 0.9 
(Figure 5). 
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Figure 5. Average length of limit cycles for networks with 
different levels of synchrony 

Although the number of long limit cycles increases with 
increasing synchrony, all networks have a significant 
proportion of point attractors (Figure 6). 
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Figure 6. Proportion of attractors which are point attractors, 
for different levels of synchrony 

Discussion 

An issue in the design of artificial life simulations is the 
identification of which features of biological systems are 
most significant for robust dynamics and what kinds of 
abstractions provide informative analogues. Computational 
models of genetic regulatory networks are increasingly 
taking into account the role of stochasticity, not as an 
irrelevant detail, but as a core property of the system. 
 The observation that networks updated asynchronously 
display limited dynamic behaviour, collapsing rapidly to a 
stable state, is of concern if these networks are to be used 
as models of genetic regulatory networks. In previous work 
we have shown that networks can be evolved to display rich 
dynamic behaviour under asynchronous updating (Hallinan 
& Wiles, 2004). The current work builds upon this finding 
be exploring in more detail the nature of asynchrony in 
order to make the simplified Boolean model more 
biologically relevant. 
 We implemented the degree of asynchrony as a 
parameter, s. Networks with s of below about 0.5 have very 

limited dynamic behavior, tending to move rapidly to a 
single point attractor from any point in the state space. In 
contrast, networks with s between 0.5 and 1.0 display a 
range of interesting dynamic behaviors, with the number 
and length of fuzzy limit cycles increasing with s to peak at 
about 0.9. Interestingly, fully synchronous networks, with 
an s of 1.0, have fewer and shorter limit cycles, on average, 
than networks with a s of 0.9. We are currently testing 
whether this holds in larger systems, examining factors 
such as the number of active n nodes, and the way in which 
basins of attraction change with changes in parameter 
values. 
 All of the networks in our study were run repeatedly, 
with a single node active at timestep 1, a different node 
each time. This means that each network explored its state 
space n times (where n is the number of nodes in the 
network) per value of s, and the order of exploration was 
the same each time. Although the entire state space of any 
network is not fully explored, because of the stochasticity 
in the update rule, this protocol means that the number of 
trajectories used for state space exploration is equivalent 
each time, and the state transition diagrams reflect the 
different dynamics of the networks under different update 
schemes. As s increases, the state spaces of the networks 
tend to have more basins of attraction and longer limit 
cycles. The basins of attraction are also larger, as reflected 
by the longer transients evident in networks of higher s 
(Figure 2). 
 Although networks with higher s have more long limit 
cycles, all networks have a significant proportion of point 
attractors. Once again, the proportion of attractors that were 
point attractors was lowest at an s of 0.9 (0.5 compared 
with 0.57 for s = 1.0). 
 Genetic regulatory networks are characterized by robust 
temporal dynamics. Kauffman (1993) hypothesizes that an 
attractor in gene expression space represents a cell type. 
Models of genetic regulatory networks such as the artificial 
genome, display limit cycle behavior with large basins of 
attraction. A large basin of attraction for a limit cycle is 
necessary for robustness; it implies that a small 
perturbation in gene expression will leave the network in 
the same basin of attraction, eventually to return to the 
same attractor. Cell type is therefore stable, as observed in 
biological systems. 
 The observation that both limit cycle length and size of 
basin of attraction reach a maximum at an s of less than 1.0 
demonstrates that biologically plausible dynamic behavior 
in a genetic regulatory network is not dependant upon 
synchronous node updating. Although the asynchrony 
parameter, s, is still an extreme simplification of the 
multiplicity of variable temporal delays induced by 
differential rates of transcription, translation, degradation 
and other cellular processes, it illustrates that stochasticity, 
feedback and delay are fundamental to network robustness 
in both biological and computational networks. 
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