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Abstract 

A generalization of neural networks, boolean neiworks have attracted much attention in the 
past few years. Random (n,h)-networks consist of n processors, each connected randomly to k 
others, computing random h-input boolean functions. The dynamic behaviour of these networks 
has been studied extensively. We examine the asynchronous dynamics of these networks, and 
prove a basic result: Convergence to fixpoints is assured for almost all random (n, t)-networks, 
at the limit n - 00, provided h > logn. The proof of this result lies in random graph theory. 
We believe it is the first time this branch of mathematics has been used to analyze dynamic 
behaviour of networks. 

1 Introduction 

Consider a network of n processors where each processor is connected to  exactly k others. Each pro- 
cessor has an internal binary state and is capable of computing a specific k-input boolean function. 
Temporal dynamics of these networks can be observed by initializing the processor’s internal states 
t o  binary values, and updating them by applying each processor’s function to the IC values of its 
neighbors. Dynamics regimes can be either synchronous or asynchronous. In a synchronous regime, 
the values of all the processors are updated simultaneously, as a function of the previous state of 
the system. In an asynchronous regime, each processor updates its internal value independently 
of the others, subject to the single constraint that all processors update at the same average rate. 
Obviously, any dynamics in system lacking a central clocking mechanism must be asynchronous. 
Synchronous dynamics define a deterministic mapping of the finite state space ( O , l } n  into it- 
self. Dynamic trajectories in the state space are characterized by transient and cycle sequences, 
not necessarily short. The dynamic properties of synchronous boolean networks have been stud- 
ied extensively ([lo], [7], [4], [5]). Asynchronous dynamics differ fundamentaly from synchronous 
dynamics, since the associated mapping of the state space is one to many, and the dynamics proba- 
bilistic. In this paper we prove a basic result on the dynamic behaviour of asynclironous networks. 
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2 The Model 

2.1 Network Structure 

Let n and k be two natural numbers such that k 5 n. Let G =< V,E > be an random directed 
graph such that IVl = n and V u  E V , in - degree(u) = k. V is a random k - regular digraph. 
Denote V = {ul, .., w,}. The graph G defines the topology of the boolean network; vertices corre- 
spond to processors and edges to wired connections. (Vi, V j )  is a directed edge of G iff vi is an input 
of vi .  From now on, tlie graph will be called the network topology and the vertices processors. Let 
L : V + {0,1} be a binary labelling of the processors. These are the internal values of the proces- 
sors. The current state of the network is defined as the vector s = (51, ..,s,) = (L(ul ) , . . ,  L(v,)) .  
The set of 2" possible states is called the state space. In general, the variables 51, .., z, will denote 
the arbitrary position of the network in the state space. 
Associate with each processor ui a random k - input boolean function fi : (0, l}k -+ (0,l). The 
k inputs to fi are s i l ,  . . ,x ic ,  determined by the network topology. Call the resulting network a 
random (n, L) - network. A random (n, n)-network will be abbreviated to a random n - network. 
Denote by Gn,k (9,) the class of all random (n,k)-networks (n-networks), and by Gn,k (G,) an 
element of On,& (9,). 
Given n and k, a Gn,k may be constructed by connecting each one of n processors to I; randomly cho- 
sen processors and initializing the processor's truth tables with random h-input boolean functions. 

2.2 Network Dynamics 

Given Gn,k, define the transition table of the network F : {O,l}, - {O,l}, by Fi(sl,..,sn) = 
fi(zil, .., sik) where zil, .., xik represent the internal values of the neighbors of U;. If b = n, the 
transition table is just the concatenation of the truth tables of the individual processors, i.e. a 
random n x 2" binary matrix and F is just a random mapping from (0,l)" into itself. If k < n, 
the transition table is obtained by duplicating the truth tables of the individual processors 2n-k 
times, once for each combination of binary states for the processors which are not its neighbors. 
The individual columns of F are still independent, but within each column dependencies exist. 
Therefore, F is no longer a random mapping. 
The transition table defines a unique successor F ( z )  for each vector x in state space. This is 
a possible synchronous transition of the network. Synchronous dynamics of the network is the 
trajectory in state space z(O),z(l),z(2), ... traversed by the system in time. It is obtained by 
initiating at some state s(0) and iterating through the transition table indefinitely (~(1) = F(z(O)), 
x(2) = F(z(1) )  etc.). Since there are a finite number (2n) of possible states, network dynamics 
from any initial state must reduce to a cycle in state space after long enough. The sequence of 
states traversed before entering the cycle is called the transient sequence, and the sequence traversed 
in the cycle the cycle sequence or limit cycle. If the cycle is of length 1 (consists of one solitary 
state), the system has converged to a fixpoint. In network dynamics, the interesting phenomena, 
for obvious reasons, are the cycle sequences, especially the fixpoints. 
In asynchronous dynamics, only one randomly chosen processor updates its value a t  each time step. 
The effect of this mode is that dynamics trajectories are now random walks in state space. 
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3 State Space 

3.1 The Hypercube 

The state space of Gn,k is the set of n-bit binary vectors, which are the vertices of the n-dimensional 
hypercube Q" (or n - cube, for short). The directed n-cube @ may be constructed from the n- 
cube by connecting vertices to their n possible neighbors with directed edges. Altogether there are 
n2n directed edges. Since, in asynchronous dynamics, only one processor is updated at any given 
time, dynamic trajectories are random walks on a subgraph of @'. The edges of the subgraph are 
determined from the transition function F, by the following rule: 

(21, a., xi, a., 2,) - (21, a., Zi, s.9 zn) i f f  Fi(z1, e., zi, e., z") = Z i  (1) 

In general z will have d ( z , F ( z ) )  out-edges, where d ( z , y )  is the Hamming distance between z 
and y. During the random walk, all possible transitions (out-edges) from a state (vertex) z are 
equiprobable (i), and there is a probability (1 - w) of staying in place. 
Denote by Q; the class of random subgraphs of Q", where each edge is chosen independently with 
probability p. Similarly, denote by @ the class of random directed subgraphs of @', where each 
directed edge is chosen independently with probability p. We say that almost all graphs in Q; (e) 
have property P if the probability that any graph in Q; (@) has P tends to  1 as n 
In this model, it is easily seen that there is a one-to-one correspondence between On and &. For 
the case k < n, the edges of gn are not chosen independently. Because of the dependencies in the 
columns of the transition table, the edges of @ are partitioned into groups of 2"-k edges. All edges 
in each group appear (or disappear) together in the resulting subgraph. Examples of subgraphs of 
@ corresponding to specific networks appear in Figs. 1-3. 

00. 
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3.2 N o  Self-Connections 

Consider the subset of Gn,k where the topology of Gn,k is simple (has no loops). This can occur 
only if k 5 n - 1. In this case, each fi is not directly dependent on the variable 2 ; s  yielding: 

F i ( X 1 ,  .e, x i ,  e., 2,) = Fi(z1, e., ~ i ,  .a, 2,) i = 1,2,..,n (2) 

The random subgraphs of @ formed by these G n , k  have an interesting structure; between any 
pair of neighbors there exists one and only one directed edge. These graphs are analogous to 
tournaments on general directed graphs. 

3.3 Fixpoiiits 

In state space, fixpoints are points x for which x = F(z) .  These fixpoints are also attractors of the 
network dynamics (synchronous and asynchronous), in the sense that many dynamic trajectories 
terminate in these states. For large n,  the number of fixpoints of networks in Gn is approximately 
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Poisson distributed with X = 1, (see [GI for a detailed proof), therefore 

1 
lim Prob( G ,  has at  least one f ixpoint ) = 1 - - 

n-w e (3) 

For &,k, k < n, we can prove that the expected number of fixpoints is still exactly 1, but the 
distribution is no longer Poisson. However, approximate calculations and simulation results suggest 
that for k > logn, the distribution is not much different from that of I; = n. When the network 
topology is sparse (k < logn), the distribution changes drastically, reaching a probability of 1 for 
exactly one fixpoint in the extreme case of k = 0, i.e. all processors have constant values. 
In the hypercube formulation, a fixpoint is a vertex with no outgoing edges. 

4 The Convergence Theorem 

We are now ready to state the central theorem of this paper. Let us begin with a definition: 

Definition 1 Let Gn,k be an element of Gn,k. call Gn,k convergent if for all initial states x E Q", 
all asynchronous dynamics tmjectories initiating at x terminate at a &point with probability 1. 

The probabilistic part of the definition takes into account the fact that trajectories may wander in 
cycles endlessly, even though there is a positive transition probability to a fixpoint. However, this 
occurs with probability 0. 

Theorem 1 Define 

then 

This theorem implies that for almost all large Gn,k with fixpoints, asynchronous dynamics conver- 
gence to a fixpoint is guaranteed for any initial state. 

Proof: We will prove the theorem for 9,. For Gn,k, the proof is considerably more complex, relying 
on the theory of stochastic processes. The complete proof will be given fully in the final paper. 
The proof for 9, relies on results from random graph theory. In what follows, we assume familiarity 
with the basics of this theory. For a complete exposition, we refer the reader to [2]. 
Call a directed graph strongly connectedif for any two vertices 01, 02 in the graph, there is a directed 
path from u1 to 02 .  Call a vertex v in a directed graph semi-isolated if it has no incoming edges 
(a source) or no outgoing edges (a sink). Following [3], call of type A those graphs in Q!: which 
consist of a strongly connected subgraph of size 2n - m and m semi-isolated points connected to 
the subgraph for some m. 
We now prove the following lemma: 

v 
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Lemma 1 Denote by P ( A , n )  the probability that a directed random graph in 
t y p e d .  Then 

belongs to the 
I 

n-oo lim P(A,n) = 1. (6) 

Proof of the lemma completes the proof of the theorem because, in this model, an asynchronous 
dynamics fixpoint is a sink, and the lemma guarantees that from any other vertex (initial state), 
there is a directed path (a positive transition probability) to all sinks. 
This lemma is analogous to  the one proved in [9] for QY, and in [3] for general directed random 
graphs. 
Note that we have transformed a dynamic problem into a static combinatorial one. The theorem 
says nothing about the rate of convergence or the relative probabilities of convergence between the 
fixpoints. 

Proof: Erdos and Spencer proved ([9]) that almost all random graphs in QY consist only of a 

simply connected component of size at least 2n-' and isolated vertices (vertices with no connecting 
edges). For p > i, almost all graphs in Q: are connected. Since 82 has a simple edge (ignoring 

direction) between two neighboring vertices with probability $, & is almost always simply con- 

nected, eliminating the possibility of graphs with totally isolated vertices (no incoming or outgoing 
edges). 
Identical calculations to those in [9] yield the following similar result for &: 
For almost all graphs in @, any vertex with at least one outgoing edge has an outgoing directed 
path to at least half the other vertices in the graph. Similarily, any vertex with at least one incoming 
edge has an incoming path from at least half the other vertices, 

T 
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Now consider any sink (fixpoint) 2 and any non-sink y of the graph. Since the graph is sim- 
ply connected, x has at least one incoming edge. Therefore z has incoming paths from at least half 
the vertices in the graph. The vertex y has at outgoing edge, therefore there exist outgoing paths 
from y to at least half the other vertices. If this is the case, there must exist a vertex z (in the 
intersection of the two halves), such that there is a directed path from x to  y via z. This completes 
the lemma. 1 

Note 1 W e  conjecture thut analogously l o  the case of the general directed random graph in [3], the 
probability of & being strongly-connected (ut the limit n -+ oo) is precisely e - 2 .  v 

5 Convergence Rates 

Theorem 1 asserts that for large Gn,k with fixpoints, there is a positive transition probability 
between any non-fixed point in the network state space and any fixed point. At this stage, we have 
not calculated these transition probabilities, which would lead to estimates on convergence rates. 
Full simulation and analytic results will be reported in the final paper. 
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Figure 1: h random %network. 
(a) Processor functions. (b) Transition table; fixpoints are (000,010,011). (c) Topology graph. (d) Corre- 
sponding subgraph of e3. 

fl = 2 2  * 23 

f2 = 2 1  -23 
f3 = z 1 - 2 2  

t 101 I 010 1 

Figure 2: A random (3,2)-network. 
(a) Processor functions. (b) Transition table; fixpoints are (000,111). (c) Topology graph with no self- 
connections. (d) Corresponding subgraph of e3. Note that there is one and only onedirected edge between 
any two neighbors. 
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f2 = f l  
f3 = 2 1  
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Figure 3: A random (3, I)-network. 
(a) Processor functions. (b) Transition table; h p o i n t ~  are (010,101). (e) Topology graph. (d) Correspond- 
ing subgraph of 0'". Xote that ed& A and B appear together, as do edges C and D. 
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6 Conclusion 

We have proven that for almost all large random boolean ( n ,  k)-networks, asynchronous dynamics, 
the most realistic, guarantee convergence to fixpoints, which exist for most of these networks. We 
showed this by transforming the dynamic problem to a static one and then applying random-graph 
results. These techniques have proved to  be extremely powerful, enlarging the set of mathematical 
tools now in use in network analysis. 
Can similar results be proved for random neural networks ? We conjecture that similar results hold. 
Simulations carried out by Hopfield ([SI), and by Crisanti and Sompolinsky ([l]) suggest that large 
random fully-connected neural networks are also convergent. As of yet, this lacks formal proof and 
remains an open question. 
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