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Abstract

We consider networks of a large number of neurons (or units, processors, ...), whose dynamics are
fully asynchronous with overlapping updating. We suppose that the neurons take a finite number of
states (discrete states) and that the updating scheme is discrete in time. We make no hypotheses
on the activation function of the neurons, the networks may have multiple cycles and basins and we
derive conditions on the initialization of the networks which ensures convergence to fixed points only.
Application to a fully asynchronous Hopfield neural network allows us to validate our study.
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1 Introduction

Consider a n-neuron network such that each neuron i takes a finite number of values xi, i ∈ {1, ..., n}.
Decompose it into α blocks, every one containing ni neurons. Let Xi be the value of the block i and
X = (X1, ..., Xα) be the value of global network. Suppose that the dynamic of the network is described by
an activation function F :

F (X) = (F1 (X1, ..., Xα) , ..., Fα (X1, ..., Xα)) .

The global state of the network at the discrete time t is denoted by

Xt =
(
Xt

1, ..., X
t
α

)
.

The activation functions we consider are general so we are not restricted to threshold networks. We suppose
that the network is fully asynchronous with overlapping communications in the sense of [20], that is

• the block neurons of the network may be updated in a random order and moreover it is possible that
some neurons are not updated at some times.

• at a time t, if a neuron doesn’t have the state at the time t− 1 of a connected neuron, then it updates
its own state using the last received information from this element rather than waiting for its (t− 1)th

state.

The result of this paper is of theoretical nature but it is directly related to a question of practical interest.
The goal is not to built a network ensuring the global convergence to a stable state. Indeed, even if a network
converges to a stable state, for example in fully parallel or block sequential modes, fully asynchronous with
overlapping dynamics often destroy this convergence. So, we consider general networks which may have
multiple cycles and multiple stable states, and then we give sufficient conditions on their initialization to
ensure their convergence to stable states only, thus the potential cycles are avoided whatever the kind of
their dynamics.

Fully asynchronous networks including overlapping updating were characterized by Herz and Marcus in
[20], they are described by the following algorithm
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Algorithm 1

Given an initial state X0 =
(
X0

1 , ..., X0
α

)

At each time t, for each element i :
either i doesn’t update its state: X t+1

i = Xt
i

or i updates its state using the available received states
of connected elements.

In the sequel we denote by J(t) the set of neurons updated at the time t and by X
si

j(t)

j the state of the

group j of neurons available for the group i at the time t : si
j(t) = t − ri

j(t) ≤ t, ri
j(t) denotes the delay of

the group of neurons j with respect the group i. Some groups of neurons may be reduced to single neurons.
Herz and Marcus studied the global dynamics of neural networks with distributed dynamics. They considered
only non overlapping updating and they pointed out that the evolution of the neural network is strongly
influenced by the communication delays between the individual neurons, and that the global stability analysis
in the overlapping updating case remains an open problem. Indeed, the behavior of fully asynchronous
networks is more complex and depends on the delays and on the activated neurons
In [29], the authors consider a discrete-time symmetric neural networks, they give sufficient conditions to
have cycle-free dynamics of such networks. The distributed dynamics they study also corresponds to the
non overlapping updating case.
The term asynchronous algorithm was used by several authors to refer to non synchronous algorithms.
A. Bhaya et al. [18] studied the stability of continuous-valued discrete-time asynchronous Hopfield neural
networks under the assumption of D-stability of the interconnection matrix and the standard assumptions
on the activation functions. V.S. Kozyakin et al. [21] studied, in a more general context, global stability of
a class of total asynchronous discrete-time continuous-valued nonlinear systems. In these last two papers,
the model of asynchronism were introduced by Takeda and Goodman [27], asynchronous networks are also
called by the authors desynchronized networks and are obtained as a particular case of fully asynchronous
networks with overlapping by taking ri

j(t) = 0.

Fully asynchronous networks with overlapping updating incorporate, as special cases, all the above networks
and particularly, sequential, parallel and block-sequential networks (see e.g. [19, 16, 17, 26] in the case of
threshold networks).

To study the stability of such asynchronous systems we define a distance between two states x and y of
the network as follows

d (x, y) = (δ1 (x1, y1) , ..., δn (xn, yn)) (1)

where

δi (xi, yi) =

{
1 if xi 6= yi

0 if xi = yi.

This so-called vectorial distance was introduced by F. Robert [11, 12] in the context of component-wise
chaotic discrete boolean iterations, which is a particular case of blocks asynchronous iterations on finite sets.
In the numerical analysis community, asynchronous algorithms have been addressed [8, 5, 9, 6, 23], however
these algorithms do not apply to discrete-state neural networks where multiple basins of attraction are vital,
because of the strong hypotheses the continuous-state model requires. Indeed, convergence results are based
on contraction hypotheses with respect to the “maximum” scalar distance

δ (x, y) = max
1≤i≤n

(δi (xi, yi)) ,

and it is easy to see that in the discrete finite context, only constant functions satisfy this hypothesis.
In [2, 3], we only study global stability of boolean networks (i.e. when there exists only one stable state),
the result of [4, 7] becomes a particular case of the present results: we generalize the study to finite-state
networks and mainly, under less restrictive hypotheses, we include new initial configurations of the network
leading to its stabilization.
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Furthermore, in order to give a practical use of our main result, we wrote a code based on it which
test the convergence of finite discrete-time discrete-state fully asynchronous networks and we applied it to a
special case of a Hopfield network. This is discussed in the second part of the paper.

The following of the article is organized as follows. In order to be more comprehensible, this article is
self-contained and then preliminary results concerning boolean matrices and basic properties of the distance
d are presented in section 2. The asynchronous discrete model is formulated in section 3. The next section
is devoted to our main result and its application in the form of a testing code applied on a Hopfield neural
network. The contribution of this result in the context of Hopfield networks is given in section 5. Finally, to
evaluate the efficiency of our testing code, its results are confronted to a simulation code in section 6. The
conclusion over this study is given in section 7 and the last section is devoted to the detailed and rigorous
proofs of technical lemmas and our main result.

2 Preliminary tools

2.1 Specific results

Definition 2.1 Consider a n-neuron network whose activation function is denoted by f. The boolean matrix
B = B (f) associated with this network is defined by its general term bij , i, j ∈ {1, ..., n}, such that

bij =

{
1 if the neuron xj informs the neuron xi

0 otherwise.

As B (f) is a boolean matrix, its only possible eigenvalues are 0 or 1. B (f) is not necessary symmetric since
the graph of the network is not necessary undirected.

Example 1 Consider a network with three neurons 1, 2 and 3. Assume that the notation 1 → 2, means
that neuron 1 informs neuron 2. If these neurons are connected as in the figure 1

2

3

1

Figure 1: Connection graph

then its associated matrix is

B =




0 1 1
1 0 1
0 1 0


 .

Definition 2.2 A function f is a contraction if the associated matrix B (f) has all eigenvalues equal to 0,
i.e. if the spectral radius ρ (B) of B is equal to 0. B (f) is then called a contraction matrix.

Proposition 2.3 [11, 12] A square boolean matrix B with n rows and n columns is a contraction matrix
if and only if Bn = 0. This is equivalent to the existence of a permutation matrix P such that P T BP is a
strictly lower triangular matrix where P T is the transpose of P .
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Remark 1 An activation function f describing the dynamic of the system is a contraction if and only if
its connection graph has no cycles. Note that there are an infinity of activation functions associated with a
given connection graph.

2.2 Decomposition of the discrete system

Consider n neurons i, i ∈ {1, ..., n} , decompose them into α groups j ∈ {1, ..., α}, each of them containing
nj neurons. So

∑α

j=1 nj = n.

Suppose that each state xi of a neuron i takes its states in a finite set Ei, then the n-network takes its global
state in the product set E =

∏n

i=1 Ei.

Denote by Xj the value of the group j of neurons, and by (X1, ..., Xα) ∈ E the global value of the network.

Definition 2.4 We define the block vectorial distance as follows

d (X, Y ) = (δ1 (X1, Y1) , ..., δα (Xα, Yα)) , (2)

where

δi (Xi, Yi) =

{
1 if Xi 6= Yi

0 if Xi = Yi.

Definition 2.5 Let X = (X1, ..., Xα) and X̃j = (X1, ..., Xj−1, Yj , Xj+1, ..., Xα) with Yj 6= Xj . Let’s Define
the first neighborhood of X as the set

V1(X) =
{
X, X̃j , j = 1, .., α

}

Example 2 This example gives an illustration of the above definition in {0, 1}3. Consider a discrete system
with 3 components. Therefore, there are 23 possible states as shown in figure 2: A = (0, 0, 0) , B = (0, 0, 1) ,

C = (0, 1, 0) , D = (0, 1, 1) , E = (1, 0, 0) , F = (1, 0, 1) , G = (1, 1, 0) , H = (1, 1, 1)

B

G

HF

E

D

CA

Figure 2: States of a discrete system with 3 components

then V1(D) = {B, C, D, H} .

Definition 2.6 A chain C = [X, U1, ..., Ur−1, Y ] = [X, ..., Y ] of length l(C) = r is a sequence of elements of
E, such that

U1 ∈ V1(X), Y ∈ V1(Ur−1), Ui+1 ∈ V1(Ui), i ∈ {1, ..., r − 2} .

Definition 2.7 Denote D, the set of all possible chains C = [X, ..., Y ] for given X, Y ∈ E. A minimal chain
is a chain of length m such that

m = min
C∈D

l(C).

A minimal chain always exists because E is a finite set.

Proposition 2.8 [11, 12]. For a minimal chain [X, U1, ..., Ur−1, Y ],

d(X, U1) + ... + d(Ur−1, Y ) = d (X, Y ) .

4



2.3 The discrete derivative of an activation function

We define the discrete derivative of F as follows

Definition 2.9 The discrete derivative of F on X is defined by the matrix

F ′(X) =
(
(F ′(X))ij

)

1≤i,j≤α
,

such that {
(F ′(X))ij = 1 if ∃j ∈ {1, ..., α} such that Fi(X) 6= Fi(X̃

j)

(F ′(X))ij = 0 if ∀j ∈ {1, ..., α} , Fi(X) = Fi(X̃
j)

Remark 2 F ′(X) = 0 if and only if F is a constant function on V1(X).

The two following results will be used in the proof of the main result of this paper.

Proposition 2.10 [11, 12]. ∀X ∈ E, ∀Y ∈ V1(X),

d(F (X), F (Y )) ≤ F ′(X)d(X, Y )

Proposition 2.11 [11, 12]. Consider a minimal chain [X, U1...Ur−1, Y ], then

d(F (X), F (Y )) ≤ sup
Z∈{X,U1...Ur−1}

(F ′(Z)) d(X, Y )

where the sup is defined element by element.

3 Fully asynchronous networks with overlapping

Definition 3.1 Consider a n-neuron network decomposed into α block-neurons. Let the strategy J =
{J(t)}t∈N

be a sequence of non-empty subsets of the block-neurons set {1, ..., α}.

For i ∈ {1, ..., α} , let Si =
{
si
1 (t) , ..., si

α (t)
}

t∈N
, be a sequence of N

α, such that

(c1) si
j (t) = t − ri

j(t) with 0 ≤ ri
j(t) ≤ t, ri

j(t) being the delay of the block j compared to the block i at the
discrete time t.

(c2) ∀i, j ∈ {1, ..., α}, limt→∞ si
j (t) = ∞, i.e. the delays associated with the block i are unbounded but

follow the evolutions of the system.

(c3) No block-neurons may be neglected on average by the updating rule. This condition is called fair
sampling condition and is equivalent to:
∀i ∈ {1, ..., α} , Card ({t, i ∈ J(t)}) = ∞.

Then, the fully asynchronous dynamic of the n-neuron network according to the activation function F

and to the strategy J and with initial configuration X0 =
(
X0

1 , ..., X0
α

)
is described by the algorithm

Algorithm 2

Given an initial state X0 =
(
X0

1 , ..., X0
α

)

at each time-step t = 0, 1, ...

For each block-components i = 1, ..., α

if i ∈ J(t) then

Xt+1
i = Fi

(
X

si
1
(t)

1 , ..., X
si

α(t)
α

)

else
Xt+1

i = Xt
i
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If the block i at the time t belongs to the strategy J(t) then its state X t+1
i is updated by Fi at the time

t + 1. Xt+1
i depends on the states X

si
j(t)

j of blocks j available at the time t (si
j(t) ≤ t). If the block i does

not belong to the strategy J(t) then the block i is not updated.
The following definition is useful in the proof of the convergence theorem 4.1.

Definition 3.2 Consider the strictly increasing sequence of integers {pl}l∈N
defined as follows:

- p0 = 0,

- p1 is the minimum integer such that all the components are updated at least one time,

- for all integer l, pl is the minimum integer such that all the components are updated at least l times

This sequence {pl} is well defined thanks to conditions (c2) and (c3) of definition 3.1.

4 Convergence result and its applications

4.1 The main result

The following result is proved in [1].

Theorem 4.1 Let a discrete-time discrete-state dynamic n-neuron network be partitioned into α block of
neurons and denote by F = (F1, ..., Fα) its activation function defined on a finite product set E =

∏α

i=1Ei.
Let X∗ be a fixed point of F and V =

∏α

i=1Vi where Vi ⊆ Ei be a neighborhood of X∗.

Suppose that

(h1) F (V ) ⊂ V .

(h2) the following boolean matrix is a contraction

M = sup
z∈V

{F ′(z)} .

Let i1, i2, ...., iq denote the null columns indexes of M. (Hypothesis (h2) ensures the existence of at least one
null column).
Denote by

W l = V1 × ... × Vil−1 × Eil
× Vil+1 × ... × Vα,

then any fully asynchronous dynamic with overlapping updating of the network reaches the stable state X ∗

within at most p1 + pα steps if its initial state X0 ∈ W l with l ∈ {1, ..., q}.

4.2 An arbitrary network example

Let a discrete dynamic network with n = 3 components on E = {0, 1, 2}
3

(three possible states for each
neuron) described by the function G given in table 4.2.

The fully parallel graph of the network is given below
Denote by

V = {0, 1} × {0, 2} × {0, 1} ,

then
V = {(0, 0, 0), (0, 0, 1), (0, 2, 0), (0, 2, 1), (1, 0, 0), (1, 0, 1), (1, 2, 0), (1, 2, 1)} ,

and

M = sup
z∈V

{F ′(z)} =




0 0 0
1 0 0
1 1 0


 .
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i x G(x) i x G(x) i x G(x)

0 000 000 9 100 021 18 200 012
1 001 000 10 101 021 19 201 012
2 002 000 11 102 021 20 202 210
3 010 001 12 110 022 21 210 211
4 011 002 13 111 021 22 211 012
5 012 202 14 112 222 23 212 212
6 020 001 15 120 020 24 220 012
7 021 001 16 121 020 25 221 012
8 022 001 17 122 020 26 222 112

Table 1: Function G

12 16 1715

1

3 7 68 4

9 1310 11 18 19 24 25

5

2 20 22

210

26

14

23

Figure 3: Parallel dynamic

The last column is null so
W = {0, 1} × {0, 2} × {0, 1, 2} .

Even if F ′(0, 0, 2), F ′(0, 2, 2), F ′(1, 0, 2), F ′(1, 2, 2) are not contractions, indeed

F ′(0, 0, 2) = F ′(0, 2, 2) = F ′(1, 0, 2) = F ′(1, 2, 2) =




1 1 0
1 0 0
1 1 0


 .

Theorem 4.1 claims that any asynchronous evolution started from any X0 ∈ W reaches the stable state 0.

For the practical use of the theorem, the following subsection shows how to verify the hypotheses in the
case of Hopfield networks.

4.3 Particularization to Hopfield Networks

To construct the network, we have chosen the Hebb rule since it is the most common but we could have
chosen any other way to construct the network and then any kind of interconnection matrix.
Let X1∗, ...., Xk∗ ∈ {0, 1}n, the patterns to be memorized by a Hopfield neural network of n boolean neurons.
A symmetric matrix of dimensions n × n and real coefficients is then computed by W = XXT where
X = (X1∗, ...., Xk∗). This matrix informs us about the way the neurons are connected at each others. The
activation function of the network composed of the n neurons is then

y = F (x) = Sgn(Wx − T ), x = (x1, ..., xn) ∈ {0, 1}n

so

yi = sgn(
n∑

k=1

wikxk − Ti)
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where Sgn(x) = (sgn(x1), ..., sgn(xn))T and sgn(a) is the sign function defined by

sgn(a) =

{
+1 if a ≥ 0
0 if a < 0

• How to get fully parallel Hopfield networks ?
- by taking J(t) = {1, ...α} and si

j(t) = t in algorithm (2). To obtain single neurons dynamics then
take α = n, (ni = 1).

• How to get block-sequential Hopfield networks ?
- By taking J(t) = {t + 1(mod n)} and si

j(t) = t in (2).

• Can theorem generalizes Hopfield’s results [13, 14] or Golès et al. [19] results ?
- No, theorem 4.1 gives all the initial iterates which make the neural network globally convergent
whatever its dynamic, so initial states which leads to the global convergence in the fully parallel or
block-sequential cases and not in fully asynchronous case will not be obtained.

• How to know that the fully asynchronous network with overlapping updating initialized with X 0 =(
x0

0, ..., x
0
n

)
leads to global convergence to an associative memory X∗ = (x∗

0, ..., x
∗
n)?

- by verifying the hypotheses of theorem 4.1:

1) Compute a cartesian product V which contains X∗ and X0 :

1.a. for all i compare x∗
i to x0

i , then

· if x∗
i = x0

i , then Vi = {x0
i }

· if x∗
i 6= x0

i , then Vi = {0, 1}

1.b. so V = V1 × V2 × .... × Vn

2) Verify that for all X being in V, F (X) ∈ V

3) For all X = (x1, ..., xj , ..., xn) in V, compute F ′(X) (the derivative of F on X) :

3.a. for all j in {1, ...n} compare F (x1, ...xj , ..., xn) to

F (X̃j) = F (x1, ...xj , ..., xn), then:

3.b. the jth column of MX = F ′(X) is equal to the column-vector F (X) − F (X̃j).

4) Compute sup MX and denote by i1, i2, ...., iq the null columns indexes of MX then:

4.a. if (MX)n is a null matrix (i.e. sup MX is a contraction), then the fully asynchronous Hopfield
network converges to X∗ whatever its initialization in V and particularly from X0.

5) Theorem 4.1 claims moreover that if the Hopfield network is initialized by any initial state in the
form

Y 0 =
(
x0

0, ..., yij
, ..., x0

n

)
with j ∈ {1, ..., q}

is globally convergent to X∗ whatever the values of yij
and whatever its dynamics.

Remark that even if condition 4.a. is not satisfied, then the fully asynchronous Hopfield network will be
globally convergent if X0 is in the form of Y 0. The convergence procedure test introduced below, include
the verification of this last point and then, gives us all the initial iterates which make the network globally
convergent to one of its memories. This convergence procedure is applicable to any type of Hopfield network
and includes the case where the matrix W is not symmetric.
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4.4 Convergence procedure test

To simplify the study of these networks, the set {−1, +1}n is used rather than {0, 1}n. This is directly
obtained by the following change of variable:
for x ∈ {0, 1}, we note x′ = 2x − 1 their counterparts in {−1, +1}.
Then, we obtain

x = 1 ⇔ x′ = +1
x = 0 ⇔ x′ = −1

A program has been written which, starting from a set of vectors (patterns) to memorize and an initial
vector X0 (noisy pattern) verifies if the conditions of theorem 4.1 are verified and if this is the case, tells
us the stable state where the convergence is achieved. Otherwise, the algorithm can not conclude about the
convergence of the network initialized with X0.

This algorithm is complementary to trivial simulation since in a lot of cases the convergence can be de-
termined in a few steps and not all the iterations are necessary, it is then faster. Moreover, a single execution
gives us the convergence for an initial state which is not the case in a simulation where several tests must
be performed to ensure the convergence. Finally, it also facilitates the study and testing of new convergence
conditions. This program is described in [1].

As a consequence of theorem 4.1, we deduce the result of papers [2, 3]

Proposition 4.2 Let a discrete-time discrete-state dynamic n-neuron network be partitioned into α block-
neurons and denote by F = (F1, ..., Fα) its activation function defined on a finite product set E =

∏α

i=1Ei.
If F is a contraction on the finite Cartesian product set E and if the three conditions of definition 3.1. are
satisfied, then any fully asynchronous dynamic from any initial state X0 =

(
X0

1 , ..., X0
α

)
converges to the

unique stable state X∗ within at most pα steps, i.e.

X∗ = Xt, t = pα, pα + 1, ...

where Xt is defined in algorithm 2 and {pl}l∈N
, in definition 3.2.

The results for boolean networks obtained in [4, 7] are obtained as a particular result of theorem 4.1 by
taking Ei = {0, 1} for all i ∈ {1, ..., n} and by remarking that for all l ∈ {1, ..., q} , V ⊂ W l and that if the
hypotheses in [4, 7] are satisfied then it is also the same for the hypotheses of theorem 4.1.

It should be noted that theorem 4.1. doesn’t require any information neither on the “delays” si
j (t) , none

on the “strategy” J(t) . The delays and the strategy may be generated randomly as long as conditions (c1),
(c2) and (c3) are satisfied.

5 The main result in the Hopfield networks context

Hopfield networks are widely used in pattern recognition. Because of this direct link to applications, nu-
merous authors have addressed the problem of the convergence of neural networks. These studies can be
classified in two main groups : one whose states are real-valued and the other whose states are boolean
values. Our result given in section 4.1 clearly includes the second case.
Most of the studies concerning the convergence of neural networks deal with the synchronous evolution.
Hopfield [13] has shown the convergence to stable state for symmetric neural networks with nonnegative
diagonal operating in serial mode. Golès et al. [19] have extended this result by showing the convergence
to stable state or cycle of length 2 in a fully parallel mode. In their paper [26] Y. Shrivastava et al. gave
necessary and sufficient conditions on the initial iterate for a class of symmetric parallel Hopfield networks
to converge in one step and they applied their results to solve the vertex cover problem. The majority of the
known results shows the existence of a Lyapunov function (or energy function) and prove that this function
converges. Convergence of the energy function doesn’t imply the convergence of the network to a fixed point.
Other interesting studies have used different tools than the energy function to prove these results [16, 29, 24]
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and provided additional results with different constraints like, for example, the convergence to a cycle of
length 4 for antisymmetric networks in a fully parallel mode [17].
As mentioned in the introduction, fully parallel, sequential, block-sequential, desynchronized and asyn-
chronous networks are particular cases of the networks considered in this paper. Nevertheless, the results
of these papers cannot be directly derived from our result and their results are not valid in the case of
fully asynchronous networks with overlapping. Our approach is not based on the energy function, it doesn’t
guarantee the global convergence of the network to fixed points. This is due to the fact that the networks
we consider are fully asynchronous with overlapping updating. Then the convergence is unpredictable, even
if we consider standard hypotheses which guarantee the convergence in some particular dynamics.
Our goal is not to construct a network only having stable states. We do not even try to find the different
kinds of cycles a network will converge to (length 1, 2 or more). Here, we are interested in finding the initial
states from which the network will converge to a given stable state whatever its dynamic. Also, we do not
make any assumptions over the properties of the network and our result is applicable to any kind of networks
beyond the range of Hopfield networks. For example, the W matrix representing the weights of the neurons
can be arbitrary in the scope of our study.
Thus, our study takes place in a quite different context which is more general in the case of discrete time
and discrete state networks, and may contribute to fill the gap existing in the case of fully asynchronous
networks.

6 Simulation of a fully asynchronous Hopfield network

In order to confirm the results of theorem 4.1 and of the test procedure, a simulation program of an asyn-
chronous Hopfield network has been written. This program, written in C++, allows to verify the actual
behavior of such a network and avoids an actual implementation of the network on a parallel system. This
approach is widely used in the domain of networks of automata and especially neural networks (see for
example [15]).

To build the Hopfield network, the method given at the beginning of section 4.3 is used. Then, the
network is initialized with a vector chosen by the user. The possible delays are randomly generated by
probabilistic laws increasing with the delay. Hence, the greater is the delay of a component, the greater is
its probability to be updated at the following iteration. This ensures that all the components are actually
updated within a finite time. Finally, for a given initial vector, the simulation of the network is performed
several times in order to obtain a statistical result of the convergence. If two simulations of a same network
with a same initial vector give two different results, then there is a divergence. Also, the number of iterations
is taken into account to detect the cycles. If the maximal number of iterations (given in theorem 4.1) is
achieved and no convergence has been found, then it can be deduced that the network has reached a cycle.

In the following, a Hopfield network is built from a given set of vectors to memorize (see table 6). Then,
with the vectors given in table 6 (noisy patterns), the convergence of the asynchronous network is tested
using the test procedure. Afterwards, the execution of the network initialized with the same vectors is
simulated by our second tool. Both the results of the test of convergence and the simulation are given in
table 6.

Names memorized patterns

1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 1
M0

◦ • • ◦ • • • • ◦ • • ◦ • • ◦
1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 1 -1

M1
◦ • • • ◦ ◦ • • ◦ ◦ ◦ • ◦ ◦ •
1 1 1 -1 -1 -1 -1 1 -1 1 -1 1 -1 1 -1

M2
◦ ◦ ◦ • • • • ◦ • ◦ • ◦ • ◦ •

Table 2: Set of the network memories (◦ ≡ 1 and • ≡ −1).
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N◦ Tested vectors Differences Prediction Simulation

1 ◦◦•◦••••◦••◦••• 2 (M0) M0 M0
2 •••◦••••◦••◦••• 2 (M0) M0 M0
3 ◦•◦•◦◦••◦◦◦•◦•• 2 (M1) M1 M1
4 ◦••••◦••◦◦••◦•• 3 (M1) M1 M1
5 ◦◦◦◦•••••◦•◦•◦• 2 (M2) M2 M2
6 ••••••••••••••• 5, 7 and 8 None M0
7 ◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦ 7, 8 and 10 None Another fixed point
8 ••••◦•••◦•••••• 5, 6 and 9 None divergence

Table 3: Test of the convergence and validation by simulation, for 8vectors (◦ ≡ 1 and • ≡ −1).

Table 6 shows the results of prediction and their validation by simulation. The simulation has been
executed 1000 times for each initial state. The column Differences shows the number of components which
are different between the tested vector and the memorized pattern in brackets, or with each of the memories.

It can be seen that when the test reaches a convergence, it is confirmed by the simulation. The power
of theorem 4.1 can be pointed out by the five first vectors of table 6. Their convergence can be deduced
from another vector. In fact, when the convergence of a vector is predicted in the first step of the test
procedure, its associated matrix M is a contraction including the considered vector. Then, M can give us
some informations allowing to deduce other converging vectors in the first neighborhood of this vector. The
new vectors depends on the null columns of the matrix M . For example, in table 6, the two first vectors
are deduced from another one (closer to M0) which is [◦••◦••••◦••◦•••]. The convergence of this vector is
predicted in the first step of the algorithm. Thus, looking at the null columns of M allows us to build new
vectors whose convergence is the same as this vector. In this example, all the columns of M are null, then
it can be deduced that all its first neighborhood converges to M0. For our two first vectors, the two first
columns of M have been chosen.

On the opposite, for some vectors such as the 6th, nothing can be said by our theorem whereas there is
convergence to one of the memories. This comes from the fact that our convergence conditions are sufficient
but not necessary.

Moreover, for the 7th vector, it can be noted that the convergence may exist but toward another fixed
point which is not in the initial set of memories. This is not directly linked to theorem 4.1 but to Hopfield
networks: Spurious states, which are unexpected mixings of the initial memories, are quite common in the
Hopfield networks. This is one of the open problems of these networks, and no building method of the matrix
W avoiding such false memories is known nowadays. Thus, the rules generally used for the construction of
W often do a trade-off between the number of actually wanted memories and the number of false memories
generated.

Finally, the 8th vector points out the fact that for some initial vectors the asynchronous Hopfield network
may not converge. For each execution of the network initialized by such a vector, the convergence depends on
the random nature of the delays. Thus, there is some indeterminism in this case which leads to a divergence.
This also confirms the good quality of our theorem since it does not predict anything for these difficult cases.

This remark about the divergence implies another one concerning the results of synchronous and asyn-
chronous modes. Starting from a vector X0, a network may converge in synchronous mode toward a fixed
point X∗ but not in asynchronous mode. Moreover, if we suppose that the network converges to X∗ when
initialized with X0 in synchronous mode, then if there is convergence in asynchronous mode starting from
X0, it is necessary toward X∗. This comes from the fact that in our formulation, the synchronous mode is a
particular case of asynchronism where all the delays are always null. This can be very interesting for further
works to enhance the determination of the convergence.

Finally, it is interesting to see the impact of the condition (c2) of definition 3.1. This condition implies
that for the updates of the components of the system, the versions of the components used follow in average
the time of the system. For example, the delays may be randomly chosen in the range [ t

2 , t] which satisfies
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this condition. Nevertheless, it is not satisfied for the range [0, t]. Thus, it is not possible to regularly use the
same version of a component. This is essential for the convergence since in the opposite case, the network
could have cyclic or oscillating behaviors.

7 Conclusion

Sufficient conditions on the initial state which guarantee the convergence on a stable state of fully asyn-
chronous networks with overlapping updating has been presented. The networks considered are arbitrary,
they include, for example threshold networks, they may, for example, have cycles. Application to symmetric
Hopfield neural networks was given. The convergence of such networks are known when their dynamic is
fully parallel, block sequential, but not in the fully asynchronous case. Thanks to a test procedure which
is an application of theorem 4.1, we gave for the first time initial states ensuring the convergence of the
Hopfield network to an associative memory whatever its dynamic. That test procedure can be applied to
arbitrary networks with given stable states, it is, for example, directly applicable to Hopfield networks with
non symmetric matrix W .
Our approach is not based on the energy function but on the discrete derivative on the neighborhood of a
fixed point. Definition 2.9 shows that it is very easy to compute this derivative. Proposition 2.3 shows that
it is very easy to determine if its spectral radius is null.
Asynchronism with overlapping updating seems to be natural in massively neural networks, an open problem
is to built a network which globally converges to stable states when its dynamic is fully asynchronous with
overlapping updating, this is a hard problem since the convergence of such networks depends on the delays
between the neurons.
In further works we will study necessary conditions for the convergence of fully asynchronous networks and
we will characterize the cycles in such networks.
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cation aux réseaux de Hopfield, Calculateurs Parallèles, Hermes science publications, 2001.
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