High Marangoni number convection in a square cavity
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The steady thermocapillary motion in a square cavity with a top free surface in the absence of
gravitational forces is considered. The cavity is heated from the side with the vertical boundaries
isothermal while the horizontal boundaries are adiabatic. The relative change in the surface
tension is very small, i.e., an appropriate capillary number tends to zero, so that the free surface is
assumed to remain flat at leading order. A finite-difference method is employed to compute the
flow field. Numerically accurate solutions are obtained for a range of Prandtl numbers and for
Reynolds numbers Re as high as 5x 10%, Surface deflections are computed as a domain
perturbation for small capillary number. In addition, asymptotic methods are used to infer the
boundary layer structure in the cavity, in the limit of large values of the Reynolds and Marangoni
numbers. For a fixed Prandtl number Pr, it is shown that the Nusselt number, liquid circulation,
and maximum vorticity are asymptotic to Re'/3, Re~'/?, and Re?/3, respectively. These results are
in agreement with the computed solutions. The leading-order solution for the free-surface
deformation is sensitive to the value of Pr. With Pr> 1, the depression near the hot corner may
exceed the elevation near the cold corner, while a secondary elevation may be induced near the hot

corner when Pr < 1.

I. INTRODUCTION

Convective motions driven by a temperature gradient
along the interface between two immiscible fluids caused by
the variation of surface tension with temperature are of con-
siderable interest and play an important role in small-scale
and/or low-gravity hydrodynamics (Schwabe' and Os-
trach?). Because these thermocapillary flows occur in crystal
growth melts and dominate the convective flows in the mi-
crogravity environment of space, there have been a number
of recent studies of simplified two-dimensional models with
negligible gravitational effects.

Sen and Davis® consider steady thermocapillary convec-
tion in a differentially heated rectangular slot with a top free
surface. They present results valid for vanishingly small as-
pect ratio 4 (height/width) with the Reynolds number
Re~ 0 {4 ),theMarangoninumberMa ~ O (4 ),and thecapil-
lary number Ca~ O (4 *). The same problemis also studied by
Strani, Piva, and Graziani* for 4 — 0 with Ca~O (4 %) but
with milder restrictions on Re and Ma. These studies are
instructive in giving the flow field and surface deflection in a
conduction-dominated regime, but- give little information
about strongly convective flows.

Strani ez al.* also numerically compute the thermocapil-
lary motions in a rectangular cavity with 4 =0.2, 1, and 5
and with the Prandtl number Pr = 1 (i.e., Ma = Re). They
allow for free-surface deformation and conclude, as expect-
ed, that for Ca = 0.1, surface deformations have a negligible
influence on the flow field. Because they use a coarse mesh
for their finite-difference computations, their results are ac-
curate only for low Re and Ma. Since vigorous motion oc-
curs in float zones at high values of Ma and Re, there is a
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need for further study of this model problem. Axisymmetric
modeling of a half-floating zone cofiguration has been con-
sidered by Fu and Ostrach® where they compute the flow
field at different values of Re, Ma, and Pr. Many of the fea-
tures of their solutions are common to ours, especially at
high Ma, Re, for which a boundary layer regime develops.

The stability of such flows is of great interest. As the
experiments of Preisser, Schwabe and Scharmann,® and Ka-
motani, Ostrach and Vargas’ have shown, steady convection
is stable only below certain values of the Marangoni
numbers. Above the critical values, the flow is typically an
oscillatory one, with commensurate changes in the transport
properties and important implications in material process-
ing applications. The only stability analysis of this class of
flows is that of Smith and Davis,®® who restricted their at-
tention to plane-parallel flow profiles appropriate to conduc-
tion-dominated situations. It is not known how relevant the
stability limits calculated by these authors are to strongly
convective situations. We will see below that instabilities in
cavities are more likely to be connected with the strong cor-
ner flows than with profiles of the type considered by Smith
and Davis.?®

In this paper we compute steady thermocapillary flows
in a square cavity (4 = 1) by a finite-difference procedure.
Our objective is to obtain accurate numerical solutions to the
stated problem for as high a Reynolds number as possible, in
order to characterize the nature of strongly convective flows
of this general class. Only the case Ca — 0 is considered, so
that the free surface is assumed flat at leading order. Surface
deflections are computed by domain perturbation. Bound-
ary layer formation at different values of Pr is observed at
large values of Ma and Re. We use the numerical results to
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infer the relevant scalings of a consistent boundary layer pic-
ture of the flow, valid asymptotically as Re — «. We do not
attempt to present a complete boundary layer theory since
solving the boundary layer problem seems to be as difficult
as solving the full equations of motion.

Il. MATHEMATICAL MODEL

The physical model consists of a rectangular cavity of
average height d and width w containing an incompressible,
Newtonian liquid. The top horizontal boundary is a free sur-
face open to a passive gas. The vertical rigid, isothermal
walls are differentially heated and are kept at temperature

+ T,/2 relative to an arbitrary reference temperature. The
bottom boundary is rigid and adiabatic. In the absence of
gravity, the nondimensional equations for the liquid motion
are

V.-V=0, (1)
ReV:(VV)= — Vp+ V%, ()
MaV.(VT)=VT. (3)

Here length, velocity, temperature, and pressure are dimen-
sionless with respect tod, yT /i, T,, and yTo/d, respective-
ly, where u is the viscosity and surface tension is assumed to
decrease with temperature increase at a constant rate y. The
Reynolds number and the Marangoni numbers are defined
in the usual way by

Re =dyTy/(pv), (4)
Ma=RePr, ()

where v is the kinematic viscosity, the Prandtl number
Pr = v/, and « is the thermal diffusivity.

The motion is referred to a Cartesian coordinate system
with the origin at the middle of the bottom boundary with
the y axis parallel to the side walls. The boundary conditions
on the fixed surfaces are

V(£ 1/(24)y) =0, (6a)
V(x,0)=0, (6b)
T(x1/24))=F } (7a)
T,(x,0 =0, (o)

where subscripts denote partial differentiation and the as-
pect ratio, 4 = d /w, which we set to unity in the remainder
of this paper. The x and y components of V will be denoted as
usual by ¥ and v, respectively.

In addition to Re, Ma, and Pr, there is an additional
dimensionless parameter which is a measure of the free sur-
face deformation. This is the capillary number Ca and is
given by

Ca = yTy/o,, (8)

where o, is an average value for the surface tension. We see
that Ca~A40/0,, and in experiments is generally a small
quantity (Kamotani et al.”). We thus consider the case
Ca — 0, i.e., only small variations in ¢ and in surface defor-
mation are allowed. If, in addition to small Ca, we assume
the contact angle is 7/2, the surface is initially located at a
height y = 1. Thus, to leading order in Ca, we assume a flat
free surface with the boundary conditions
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u,(x,1) = — T, (x,1), (9a)
T,(x,1)=0. (9b)

Corrections to the surface are computed as follows. If we
denote the departure of the free surface from y = 1 by & (x),
then in the limit Ca — « we find from the normal stress
balance,

h, = —Cap, (10a)
h(£3)=0. (10b)

Equation (10b) assumes a fixed contact line. Other boundary
conditions are possible (Sen and Davis®). Because the pres-
sure field p(x,y) is determined only to an additive constant, an
additional constraint on 4 (x) from global continuity is

1/2
J. hdx=0. (11)
-172

Thus A (x) can be determined to O (Ca) by solving (10)and (11)
once p has been found. We note for future reference that the
surface vorticity o, = — 4, (x,1) is simply the surface tem-
perature gradient.

{li. NUMERICAL PROCEDURE

Solutions to the system of equations (1}—3),(6), (7), and
(9) must be constructed by some numerical method. At a first
glance it would seem that a spectral method with an infinite-
order convergence (Gottleib and Orszag'®) may be suited to
the problem. However, the hot and cold cornersony = 1 are
singular. The vorticity,

=0, —Uu,, (12)

is discontinuous at these corners, and will assume different
values as a corner is approached on different paths. Indeed,
following the local viscous analysis of Moffatt,'! it can be
shown that in the immediate vicinity of the hot corner, the
vorticity is given by

o= —T(—1/2,1)(1 — 46 /), (13)

wheretheangle @isQonx = — Jand7/2ony = 1. It should
be noted that the flow field corresponding to (13)is valid only
very close to the corner so that the flow is locally a Stokes
flow. A similar expression holds for @ near the cold corner.
It is thus expected that » will vanish on the diagonals as the
corners are approached.

Since this discontinuity will limit the convergence of any
spectral method, we opt for a finite difference approach. The
method and the iteration procedure we use to solve the finite
difference equations are described in detail by Patankar.?
Briefly, the computational region is divided into rectangular
control volumes with the grid points located at the geometric
centers of these cells. Additional boundary grid points are
included where the boundary conditions (6), {7), and (9) are
imposed. The finite-difference equations are obtained by in-
tegrating the governing equations (1}~{3) over the control
volumes with assumed local linear variations in any of the
primitive variables. The convection and diffusion fluxes are
approximated by a power-law scheme. Such a scheme accur-
ately captures the nature of solutions to convective diffusion
problems when diffusion is both strong and weak. Although
any numerical scheme will have some diffusive errors be-
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TABLE I. Influence of finite-difference grid on the solution.

Pr Re MXN Nu_ Nu, — Pmax X 10 — Opax
0.5 5%10* 62 %54 2.120 2.131 0.174 14.37
70X 60 2.161 2.151 0.180 14.44
0.1 $X10* 62X 54 2.937 2.957 0.168 29.04
70X 60 2.980 2.981 0.175 28.95
1 5x10° 65X 65 3.459 3.448 0.370 28.72
80 80 3.454 3.447 0.373 31.20
62%54 3.420 3.412 0.366 38.37
70X 60 3428 3.425 0.369 38.35
1 5% 10? 6254 4.895 4.898 0.155 139.4
70x 60 4.894 4.896 0.155 139.7

*Here M and N are the number of grid points in the x and y directions, respectively. The 65X 65 and 80 80 grids are uniform while the 62 X 54 and the

70 60 grids are graded.

cause of the discretization, the one used here minimized this
effect. The staggered location for the velocity components is
adopted and the velocity-pressure coupling treatment (to en-
force incompressibility) follows Patankar’s revised proce-
dure. A line-by-line iteration to solve the discretized equa-
tions is used with one completed iteration comprising five
double sweeps of the field. Under-relaxation in solving for u,
v, and T was required; a relaxation factor of 0.85 was used
throughout. All computations were performed on a VAX
11/780. A converged solution requires from 250 to 450 itera-
tions, with each iteration completed in less than 25 CPU
seconds. Convergence was assumed when the largest vari-
ation in any of u, v, p, and T was less than some convergence
tolerance which we set to 10~>.

The accuracy of the results was assessed by mesh refine-
ment studies. A number of solutions were computed on uni-
form grids with 65 X 65 and 80 X 80 mesh points. These solu-
tions clearly indicated that at high Ma, Re, the dynamically
significant boundary layers occur along the top surface and
especially near the stagnation point at the cold boundary.
We then refined the solutions using nonuniform grids, the
first of which had 62 points in the x direction and 54 points in
the y direction, with the finest mesh near the cold corner.
The smallest volume at the cold corner is a square with mesh
size 0.005. The rectangular cell at the hot corner is an x
extent of 0.01. The mesh spacing was gradually increased
away from the cold and hot corners in both the x and y
directions. The largest mesh spacing near the middle of the
bottom boundary is less than 0.05. We then used a nonuni-
form mesh with the same smallest elements, but with 70< 60
points.

At high Re, it is clearly important to resolve all the
length scales which are dynamically significant. We will see
from the following that the smallest of these is O (Re~2/3),
with a leading constant which we cannot evaluate. With the
62 X 54 mesh, however, we do not expect much accuracy
above Re~ 10°~10°,

Table I shows the results of these mesh refinement stud-
ies. We show both local quantities such as the value of the
circulation of the primary vortex ¥,,,, (here ¢ is the stream
function), and the maximum vorticity ,,,,, as well as the
more common global quantities, the Nusselt number (de-
fined below in the usual way) for the hot and cold boundaries
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Nu_ and Nu_, respectively.

We first consider the results for Pr = 1. As can be seen
from Table I, Nu_, = Nu_ to within a fraction of a percent,
as must be because of the insulating conditions on the top
and bottom walls. This agreement is an indication of the
degree to which the numerical scheme is conservative. The
error in the local quantities ¢,,,,, and @,,,,, is estimated to be
approximately 3%. A similar study of velocity and tempera-
ture profiles in the horizontal thermal layer along the top
surface shows them to be spatially resolved to the same accu-
racy as the other local quantities. Similar considerations ap-
ply to the other cases shown in Table I. In particular, com-
parisons between the two graded meshes show the results for
the 62 X 54 mesh to be essentially correct.

IV. NUMERICAL RESULTS; Pr =1

Our primary interest is in the character of the motion at
large values of Ma and Re. Equation (3} shows that Ma mea-
sures the strength of temperature (thermal energy) convec-
tion to diffusion. Thus large values of Ma will lead to the
formation of thermal boundary layers. Equations (1) and (2)
can be reduced to the vorticity transport equation

Re V+ (Vo) = Vo, (14)

and hence large Re implies the formation of regions of con-
centrated vorticity, in particular near the free surface. We
first consider the case Pr = 1, i.e., simultaneous formation of
both temperature and vorticity layers with Re = Ma.

With Pr = 1, we compute the thermocapillary motion
for 10 < Re < 10*. As expected, the flow consists of a major
closed circulation, accompanied by corner eddies at the two
lower corners. The temperature is distorted from a linear
conductive field by this circulation, especially at high Ma.
The surface temperature distribution is of key interest, since
it is the gradient of this quantity which, through the thermo-
capillary stress, drives the motion. As an example of these
features, we show in Figs. 1(a}—{c) the streamlines, isotherms,
and isovorticity contours for Re = Ma = 10°. Ascanbe seen
from Fig. 1(c), there is a large concentration of vorticity near
the stagnation point at the cold (right) boundary. This is a
result of the convective crowding of the isotherms into the
stagnation point, as seen in Fig. 1(a). It is further seen that
the stagnation point near the hot (left) boundary exhibits
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FIG. 1. Thermocapillary flow at Pr = 1 and Re = 1000. (a) Streamlines at
equal increments of circulation. The motion is clockwise with
— Ypax = 0.0048. (b) Isotherms at equal increments. (c) Isovorticity con-
tours. Here @ = — 1.0 and — 11.79 at the top hot (left) and cold (right)
corners, respectively. The largest positive value of w is 7.3.
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FIG. 2. Flow properties as a function of Reynolds number. (a) Surface tem-
perature corresponding to Pr=1 and Re = 100, 500, 1000, 5000, and
10 000. (b) Surface velocity. (c) Surface deflection.
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little, if any, boundary layer behavior. The dividing o =0
line is oriented at 45° near both stagnation points, as required
by (13).

In Fig. 2 we show the results of our parametric study in
Reynolds number. We plot surface temperature 7 (x,1), ve-
locity u(x,1), and the surface deflection 4 (x) for five different
values of Re (or Ma). For Re less than about 1000, it is seen
from Fig. 2(b) that the surface temperature gradient at the
hot corner T, { — },1) is greater than the conduction value of

— 1, implying a decreased surface vorticity at the hot bor-
der. Figure 2(b) indicates that at relatively low values of Re,
the surface velocity increases monotonically from zero and
drops back smoothly to zero at the cold corner. The associat-
ed surface deflection plot in Fig. 2(c) shows that there are two
peaks in /4 (x) which decrease in magnitude and move toward
the corners with increasing Re. With Re (or Maj increasing
above 1000, however, T, (— 1,1) is less than — 1 and de-
creases with increasing Re, u(x,1) exhibits two peaks, with
A (x} showing a more less flat depression on an increasing
length of the free surface near the hot (left) boundary. It is
also observed that the surface elevation near the cold corner
increases with Re. From these features it may be concluded
that a boundary layer regime begins to develop for Re (or
Ma) greater than about 1000.

The streamlines, vorticity, and temperature fields corre-
sponding to Re = Ma = 10* are shown in Fig. 3. These re-
sults suggest that the limiting flow field at large values of Re
(or Ma) will consist of an isothermal core of constant vorti-
city, with boundary layers forming on the four boundaries.
Note that the vorticity is again discontinuous near the two
upper corners in accord with Eq. {13). The sharpest gradients
occur near the cold corner as is evident in Fig. 3(c).

Of interest is the total heat transport, or the Nusselt
number, defined by

1
Nu, =f — T (£} .p)dy. (15)
0
As noted above, Nu_, = Nu_ to within 1%.

V. STRUCTURE OF BOUNDARY LAYERS; Pr = O(1)

We develop a self-consistent picture of the boundary
layer structure which exists asymptotically as Re — oo. We
show that, beginning with the key assumption that the free
surface vorticity becomes independent of Re as Re — oo, all
of the available numerical evidence is in agreement with the
scalings which are implied by such an assumption.

We first give a discussion of the assumption on which
our boundary layer scalings are based. As Re — o, there
are two possibilities for the surface temperature distribution:
either the surface becomes isothermal because of the effects
of strong surface convection, or the surface temperature gra-
dient remains O (1) (equivalently, the surface vorticity ap-
proaches a constant). These two possibilities imply a differ-
ent structure for the flow as Ma — . In the first case, the
surface temperature gradients are confined to small regions
near the stagnation points on the hot and cold boundaries.
Gradients will necessarily occur over a lateral distance of
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FIG. 3. Same as Fig. 1 but with Re =10000. Here — ¢, = 0.003;
@ = — 2.4and — 60.2 at the top hot and cold corners, respectively; and the
largest positive value of w is 10.5.
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O (1/Re), implying that the surface vorticity is a maximum
near the corner, with

@pn ~T, ~O(1/Re). (16)

The circulation would then be driven by this local concentra-
tion of vorticity, and could possibly have enough inertia to
sustain a closed circulation strong enough to cause the sur-
face to remain isothermal. Consistent with (16) is the predic-
tion that the surface velocity

ulx,1)~0(1) (17)

uniformlyin x as Ma — oo. This uniformity is not seen in the
results shown in Fig. 2(b). As we will see below, the scalings
(16) and (17) are not supported by the numerical results.

Consider the second alternative that the surface tem-
perature gradient and surface vorticity remain O (1) over
most of the surface. This is a plausible assumption if we pic-
ture the circulation as being driven by a thermocapillary
stress over most of the surface, as opposed to being driven by
a vorticity source in small regions near the corners. This
second alternative is suggested by the results in Fig. 2(a) and
results in scalings which are rather different from (16) and
(17). We now proceed to develop these scalings, which in-
volves more detailed arguments than those necessary to ar-
rive at (16) and (17), but yields more detailed estimates of the
dependence of properties of the flow upon Re.

A. Free surface layer

The first region of interest is the boundary layer near the
freesurface. Herex ~ O (1). The assumptionw ~ O (1), togeth-
er with the required balance of diffusion and convection,
leads to the free surface scalings:

X=X, (18a)
y=1—Re '3, (18b)
u = Re~ '3 4(x,5), (18¢)
v= — Re " ?’p%,p), (18d)
¥ =Re " ¢i%.3), (18¢)
T=T{%J) (18f)

Equation (18c) implies a surface velocity decreasing with Re
in agreement with Fig. 2(b). We wish to determine the appro-
priate pressure scale for the free surface layer. The usual
boundary layer arguments [see (19¢) below] indicate that this
pressure scale must be consistent with that in the core. The
core scalings are discussed below, but at this point it is possi-
ble to state that if the free surface layer is at all affected by
pressure gradients associated with the core flow we must
have

max( p)~O (Re'/3), (18g)
Thus we set
p=RepiEj). (18h)

The boundary layer equations to leading order become
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u; +9;=0, (19a)
il + by = —Px + U5, (19b)
0=5, (19c)
uly +9T; =Pr~'T;;. (19d)

These are the usual boundary layer equations. The known
boundary conditions are

7=0, =T, =0, (20a)
—a=T;. (200)

Matching conditions for § — o with a core solution (which
is in general a function of x) and initial conditions for
X — — | must be provided.

B. Core region
Formally, the limiting equations in the core are
(VeV)w=0, (21a)
(V.-V)T=0. (21b)

Thus, in principle, @ and T are constants along streamlines,
and if the streamlines are closed in regions removed from
boundaries, 7 and @ must be constant. Figure 2(b) and (c)
suggests that the limiting core flow is isothermal and of con-
stant vorticity. The strength of the circulation may be deter-
mined by observing that the velocity u({x,y) must match
between the core and the free surface layer. Since x,y ~ 0 (1)
in the core, and & ~ O (Re™'/3) in the free surface layer,

¢core ~0 (Re_ ”3) (22)

is the only scaling consistent with the matching condition.
We can also show that this scaling leads to internally consis-
tent pressure scalings. Since the core vorticity is constant,
the Bernoulli relation,

P + Re|q?|/2~const, (23)

must hold, where g is the speed of the core circulation. Since
g~0 (Re™'"3), we find that

p~O(Re'?), (24)

consistent with that allowed by the boundary layer scalings
(18g) and (18c). Thus, p(x) is simply the core pressure field
plx.y) evaluated aty = 1.

C. Cold corner region

This stagnation point flow region is where most of the
heat transfer on the cold boundary occurs and where the
largest vorticity is generated [Figs. 2(a) and 3(c}]. The hori-
zontal free surface flow turns in this region as u(x,1) drops
sharply to zero [Fig. 2(b)]. The y extent and the flux of fluid in
this region are determined by the corresponding quantities
in the free surface region. Thus, this turning flow is assumed
to take place over a vertical extent of O (Re™!/3), with a fluid
flux of (Re~2/3). In addition, the required convection-diffu-
sion balance leads to the cold corner scalings
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y=1—Re 3y, (25a)
x =} —Re %3, (25b)
u= —Re 3 ix,p), (25c¢)
v= — %), (25d)
¥ =Re "’ ¢{%,5), (25e)
o = Re?’? &(%,p), (256)
p=Re'” p(z,3), (25g)
T=T(%p) (25h)

The leading-order equations, boundary, and matching con-
ditions become

it + 0, =0, (26a)
ity + ity = — Py + flgy (26b)
s, + 005 = Uss (26¢)
aly +0T, =P~ ' Ty, (26d)
¥=0, #=0=0, {26e)
T=—4, (26f)
X— ow; 0—0, (26g)
(% — o0,J)~ — (% — 1,3). (26h)

These quantities cannot satisfy initial conditions on § =0
since #; ~ O (1) while T; ~ O (Re*’*). Thus, there will be cor-
ner subregions in which effects of viscosity and conduction
will be included as one moves to smaller and smaller scales.
The key dynamic behavior in this region is captured, how-
ever, by scales which allow the x-directed flow #(%,7) to meet
the stagnation region and turn to a y-directed flow, &(X,p).
The requirement that this turning flow be viscous in the x
direction and carry the same volume flux as the top layer
then sets the scales for ¥ and @. Thus the corner subregions
mentioned above have little dynamic significance. This situ-
ation is similar to problems in rotating flows and buoyancy-
driven convection in which small corner regions having vis-
cous scales exist, but do not participate in a key way in the
transport; see e.g., Hunter,'> Homsy and Hudson,'* Walker
and Homsy.'’ It is easy to show that dropping the require-
ment that the turning flow is viscous, i.e., considering a pure-
ly inertial, convective flow, leads to a scaling X¥~0O(1),
@~ 0 (1) that obviously contradicts the assumed boundary
layer nature of the flow.

D. Rigid wall scalings

Solutions to the core equations will not, of course, sa-
tisfy the boundary conditions on the rigid walls, thus necessi-
tating the occurrence of conventional O (Re~!/2) layers. We
argue that these too are of secondary importance in deter-
mining the transport. Since the entire flow is driven by the
nonisothermal surface, as we have shown, large velocities
are confined to the free surface layer and the cold corner
region, respectively. These in turn drive a core circulation,
the scaled strength of which decreases as Re increases [cf.
Eq. (22)]. Thus, these O (Re™'/2) boundary layers can be de-
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TABLE II. Numerical results for Pr = 1.

Rex 1073 Nu, Nu_ Yoax X 107 — @pax
1 1.93 1.92 0.479 11.8
2 247 2.47 0.424 20.2
3 2.86 2.85 0.404 26.8
4 3.17 316 0.384 32.8
5 3.42 341 0.366 384
6 3.65 3.63 0.350 43.5
7 3.85 3.83 0.337 48.2
8 4.03 4.01 0.326 52.5
9 4.19 4.17 0.315 56.5

10 4.34 432 0.305 60.2

termined, in principle, as an a posteriori correction to the
core flow.

E. Comparison with numerical results

The asymptotic scalings we have inferred make certain
predictions which can be compared against our numerical
results at large but finite Re. The first pertains to the mean
heat transport, or the Nusselt number. From the scalings in
the cold wall region, we find

T~0(l), %—}~0(Re )

It follows that most of the heat flux to the cold wall occurs in
this corner region. Specifically, we find

1 )
Nu+EJ -~ T, (—;— y)dy~Re”3f T, (05dp
0 0
~O0 (Re'?). (27)

Numerical evaluation of the local heat flux along the cold
boundaries shows that indeed, most of the heat transfer oc-
curs near the cold stagnation point. This contrasts with the
heat flux distributions along the hot wall, which are evenly
distributed. The scaling (27) is consistent with the convective
energy flux carried by the free surface layer, which is

5 _
ReJ T, dy~0 (Re'’?). (28)

Other predictions are that the maximum vorticity will occur
in this cold corner region, with

Dpax ~T; ~0 (R, (29)
and the strength of the circulation in the core is
Y~O0(Re™ 13, (30)

Quantitative evidence for the correctness of this bound-
ary layer structure comes from examining the computed val-
ues of Nu = (Nu, + Nu_)/2, ¢¥,.ax, @max- Numerical val-
ues of these quantities are given in Table I1. Figure 4 shows a
logarithmic plot of these data for all the cases with Pr = 1
that we have computed. From this figure we conclude that
our computed solutions for large but finite Re support the
asymptotic scalings inferred above, but that boundary layer
behavior is not reached until Re is between 5 10° and 10*.
We also comment that this structure, while valid for Pr = 1,
may be substantially altered from extreme values of Pr. Fig-
ure 5 gives a schematic summary of the structure for Pr = 1.
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VI. NUMERICAL RESULTS: Pr#1

Equations (3) and (4) show that convection of vorticity is
stronger (weaker) than convection of energy according to
Pr <1 (Pr> 1). The influence of Pr on the motion is ascer-

O(Re™"3) ? 1

_______________ I—"'W

|
ORe%s) __l 1
I

Core

O(Re'?) O(Re""2)

O(Re™"3

FIG. 5. Sketch of the important boundary layer regions. The following are
the scalings in regions I, II, and the core.

u v ¥ ] T,

1 Re '3 Re~%/? Re%/3 1 1
11 Re—l/:i 1 Re—2l3 Re213 Re2/3

core Re '3 Re~'/3 Re™!/3 i 1
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FIG. 6. Surface temperature T'(x,1) at {a) Pr=0.1 and Re = 10%, 10%,
2% 10%, and 5% 10*. (b) Pr = 50 and Re = 20, 100, 200, and 500.

tained from a sequence of computations with Pr = 0.05, 0.1,
1, 10, and 50. The largest value of Re or Ma attainable with
reasonable accuracy was 5X 10*,

Figures 6(a) and (b) are plots of the surface temperature
corresponding to Pr = 0.1 and 50 at various values of Re. It
is seen that, with increasing Re, the surface vorticity at the
hot corner first decreases, and then begins to increase mono-
tonically with further increase in Re. This is similar to the
case Pr = 1 in Fig. 2(a). The surface velocity corresponding
to the parameter values of Fig. 6(a) and (b) are shown in Fig.
7(a) and (b). It is observed that a two-peak structure is even-
tually approached at sufficiently large Re (or Ma). It is im-
portant to note [Fig. 7(b)] that at appropriately low values of
Re (depending on Pr), for Pr> 1 the motion is faster near the
hot corner than almost everywhere on the free surface except
in the readily developed thermal layer (and vorticity layer at
the cold corner). The opposite is true for Pr < 1 and low Re,
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FIG. 7. Associated surface velocity u(x,1) at the parameter values of Fig.
6(a) and (b), respectively.

see Fig. 7(a), where convection is expected to dominate near
the cold corner.

The influence of Pr on the pattern of circulation is evi-
dent from Fig. 8(a) and (b) which show the streamlines of the
thermocapillary motion corresponding to Pr, Re, and Ma
values of 0.05, 1000, 50, and 50, 200, 10 000. At sufficiently
low Re it is seen that the point where ¢,,,, occurs is close to
the cold corner when Pr < 1, while for Pr> 1 this point oc-
curs near the hot corner. Thus, it is again concluded that
convective effects are more important at the hot (cold) corner
according or Pr> 1 ( < 1) at appropriate low values of Re.
With increasing Re, however, the pattern of motion is simi-
lar to that for Pr = 1 in Fig. 3(a). This behavior with Pr was
also found by Fu and Ostrach® in their axisymmetric half-
zone model.
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(a)

.. W

FIG. 8. Streamlines corresponding to (a) Pr=0.05 and Re = 1000;
— Y = 0.0088, and {b) Pr = 50 and Re = 200; — ¢,,,,, = 0.0019.

The most remarkable influence on Pr on thermocapil-
lary convection is found on the shape of the free surface.
Figures 9(a) and (b) show # (x) for the parameter values in
Figs. 6(a) and (b) and 7(a) and (b). It is seen that for Pr > 1, the
region of strong motion near the hot corner is accompanied
by sufficient low pressure that the largest depression exceeds
the largest elevation. At Pr < 1, however, there is a buildup
of pressure sufficient to produce a secondary elevation near
the hot corner.

It is of interest to note that, for all the cases considered,
|k (x)| is small, indicating that the range of capillary numbers
for which the surface deflection is accurately given by per-
turbation in Ca may be rather large.

VIl. CONCLUSIONS

We have presented the results of a reasonably complete
study of thermocapillary convection in a square cavity. Our
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FIG. 9. Surface deflection at the parameter values of Fig. 6(a) and (b), re-
spectively.

accurate computational procedure allows us to consider si-
tuations with large Re and Ma, and thus observe the forma-
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tion of boundary layers, in particular at the cold stagnation
point region. This boundary layer structure is shown to be
consistent with an asymptotic theory valid as Re — oo.

We encountered no difficulty in computing two-dimen-
sional steady states by time-like iterations. It is also felt, from
numerical experiments, that such steady motion continue to
exist at yet higher values of Re and Ma. Since, from previous
experimental work and from the analysis of Smith and Da-
vis,*? it is expected that oscillatory motions will occur at
some critical Re and Ma, it is conjectured that such an un-
steady motion is three-dimensional. Furthermore, our re-
sults at finite Ma in a finite cavity suggest that experimental-
ly observed instabilities may be associated with the rapid
turning flows and high vorticity associated with the cold
wall region, as opposed to the parallel shear flows treated by
Smith and Davis.
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