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Abstract

A high-accuracy numerical approach is introduced for three-dimensional, time-dependent simulations of

variable density and viscosity, miscible flows in a circular tube. Towards this end, the conservation

equations are treated in cylindrical coordinates. The spatial discretization is based on a mixed spectral

element/Fourier spectral scheme, with careful treatment of the singularity at the axis. For the temporal

discretization, an efficient semi-implicit method is applied to the variable viscosity momentum equation.

This approach results in a constant coefficient Helmholtz equation, which is solved by a fast diagonal-
ization method. Numerical validation data are presented, and simulations are conducted for the three-

dimensionally evolving instability resulting from an unstable density stratification in a vertical tube. Some

preliminary comparisons with corresponding experiments are undertaken.
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1. Introduction

Miscible flows involving fluids of different densities and viscosities are encountered under a wide
variety of circumstances, ranging from lubrication applications to enhanced oil recovery. Even in
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the simple geometry of a circular pipe, such flows exhibit a range of interesting axisymmetric,
helical, and three-dimensional instabilities [1–3], as well as complex non-linear behavior.

The experimental investigations of Petitjeans and Maxworthy [4], and Kuang et al. [5] focus
specifically on variable density and viscosity, miscible displacements in capillary tubes at low
Reynolds numbers. They show that if a net flow is applied in order to displace a more viscous fluid
by a less viscous one, the resulting flow field remains nearly axisymmetric over large parameter
ranges. For high P�eeclet numbers Pe, a quasisteady finger of the less viscous fluid is seen to
propagate along the tube axis, leaving behind a layer of the more viscous fluid at the wall. Pre-
dominantly axisymmetric behavior is observed regardless of whether the capillary tube is oriented
horizontally or vertically. Only in the presence of significant density differences do very slow flows
display significant three-dimensional effects. As a result, the early axisymmetric Stokes flow
simulations of Chen and Meiburg [6] are able to obtain good overall agreement with the experi-
mental data of Petitjeans and Maxworthy [4] and Kuang et al. [5], as far as the finger propagation
velocity and the wall layer thickness are concerned. For small P�eeclet numbers, on the other hand,
there are significant differences between the axisymmetric simulations and the experiments, in that
the simulations indicate the formation of a quasisteady finger at a much lower Pe value than the
experiments. One possible explanation for this discrepancy could be related to the action of non-
conventional, so-called Korteweg stresses [7], which are not accounted for in our earlier simu-
lations [6]. However, preliminary findings by Chen and Meiburg [8] suggest that simple models of
these stresses might not be able to fully explain the observed differences. Hence, the possible role
of three-dimensional flow effects in this parameter range needs to be explored as well. Due to the
small cross section in the experimental capillary tubes, those effects could not be measured
quantitatively in [4]. That non-axisymmetric effects can be dominant in certain parameter ranges,
however, is clearly demonstrated by Kuang et al. [5] for an unstable density stratification in a
vertical pipe, in the absence of a net flow. Already the onset of the instability is seen to be three-
dimensional, in that a rising finger of the lighter fluid forms in one half of the tube�s cross-section,
whereas the heavier fluid begins to fall in the other half. However, these experiments also indicate
that a net flow above a certain threshold can stabilize the azimuthal instability mode, so that an
axisymmetric mode becomes dominant again.

The above discussion demonstrates a clear need to extend our earlier axisymmetric attempts
[6,8] towards high-accuracy, three-dimensional calculations, if a better quantitative understanding
of these phenomena is to be achieved. The present work thus aims at developing a suitable
computational approach for simulating variable density and viscosity, miscible Stokes flows in
capillary tubes. For this purpose, we introduce a highly accurate spatial discretization scheme for
a cylindrical coordinate system. A challenge arises because in cylindrical coordinates the mo-
mentum and concentration equations exhibit terms containing factors 1=r and 1=r2, which be-
come singular on the axis for r ! 0. Various methods have been proposed in order to remove
these singularities on the axis. In the (low order) finite difference context, a flux based formulation
in conjunction with a staggered grid is commonly used [9,10] in order to deal with the singularity
on the axis. For high order methods, such as spectral or spectral element schemes, the treatment of
the singularity requires special care in order to maintain the order of convergence at the axis.
When a Fourier spectral scheme is employed in the azimuthal h-direction, together with a Jacobi
polynomial based spectral method in the remaining axial x- and radial r-directions, two ap-
proaches are commonly applied. The first choice consists of excluding the discretization of the
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points on the axis by using Gauss–Radau points [11] instead of Gauss–Lobatto points, or by
employing a special transformation of the Gauss–Lobatto points in the r-direction [12]. Alter-
natively, if the equations are explicitly discretized at the boundary points on the axis, proper
boundary conditions for each individual Fourier mode can be derived by L�Hôopital�s rule [13–15].
In the present work we employ a spectral element discretization [16] in the axial and radial di-
rections, along with a Fourier spectral scheme in the azimuthal direction. A very detailed and
comprehensive overview of axisymmetric spectral element methods is given in the book of Ber-
nardi et al. [17]. Gerritsma and Phillips [18] used an axisymmetric spectral element approach,
where they treated the singularities on the axis by means of special expansion functions, based on
Jacobi polynomials, in the elements attached to the axis. By exploiting L�Hôopital�s rule, these
singularities can then be removed. In the present work this approach is extended to a fully three-
dimensional discretization scheme in cylindrical coordinate systems.

Our focus is on time-dependent simulations of viscously dominated, miscible displacements.
While this allows us to neglect the convective terms in the momentum equation, the corresponding
terms in the concentration equation have to be retained. However, the time step restriction due to
the viscous terms is much more severe than that resulting from the convective term, cf. [19], so that
implicit methods are the preferred choice. This requires the solution of a system of equations for
each time step. Since the dimensionless viscosity is of order one, the velocity matrix is much more
poorly conditioned than in typical high Reynolds number cases. Moreover, for variable viscosity
the evaluation of the stress terms in cylindrical coordinates leads to more then 30 non-linear
products that have to be computed in pseudo-spectral fashion [19]. Therefore, with iterative solvers
each iteration step becomes significantly more expensive than for constant viscosity, so that effi-
cient direct solvers are desirable. Being a function of concentration, viscosity depends on space and
time, and so the application of direct solvers is not straightforward. In the present work, we
propose a time-splitting approach for the viscous term, which is at least second order accurate in
time and leads to an unconditionally stable discretization with a constant coefficient for the implicit
part. This approach is combined with an efficient fast diagonalization solver proposed by Lynch
et al. [20] and used by Couzy and Deville [21] in the spectral element framework.
2. Governing equations

We address the problem of the slow displacement of a fluid with dynamic viscosity l2 by a
second fluid of viscosity l1 in an circular tube. The two fluids are assumed to be miscible with each
other in all proportions. The numerical simulations to be discussed in the following are intended
to shed additional light on the experiments of Petitjeans and Maxworthy [4], and Kuang et al. [5].
In those experiments a suitably defined Reynolds number is Oð1Þ or less, so that the influence of
the convective term in the momentum equations can be neglected. Consequently, the simulations
will be based on the incompressible Stokes equations. The relative concentration c of the resident
fluid 2 is described by a convection–diffusion equation. The governing equations thus read
ou
ot

�r � sðl; uÞ þ rp ¼ qgeg; ð1Þ

r � u ¼ 0; ð2Þ
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oc
ot

þ u � rc ¼ DDc: ð3Þ
Here u ¼ ðu; v;wÞ denotes the fluid velocity vector and its axial, radial and azimuthal components,
respectively. s is the stress-tensor and depends on the velocity and the dynamics viscosity, p in-
dicates pressure, t denotes time, and l and q represent the dynamic viscosity and density, both of
which depend on the concentration c. We assume functional relationships of the form
qðcÞ ¼ q1 þ cðq2 � q1Þ; lðcÞ ¼ l2e
Rðc�1Þ; R ¼ ln

l2

l1

� �
: ð4Þ
The gravitational acceleration g points in the direction of the unit vector eg. The diffusion coef-
ficient D is considered constant, which for some fluid combinations represents an approximation.
For example, the experiments by Petitjeans and Maxworthy [4] demonstrate a considerable de-
pendence of D on the concentration.

In order to render the above equations dimensionless, all velocities are normalized by a
characteristic velocity U , and all lengths are referred to the tube diameter d. A characteristic
pressure is provided by l2U=d. Density and viscosity are rendered dimensionless by Dq ¼ q1 � q2

and l2, respectively. We thus obtain the non-dimensional equations
ou
ot

�r � sðl; uÞ þ rp ¼ Fceg; ð5Þ

r � u ¼ 0; ð6Þ

oc
ot

þ u � rc ¼ 1

Pe
Dc; ð7Þ
where the P�eeclet number Pe and the gravity number F are defined as
Pe ¼ Ud
D

; F ¼ gd2

m2U
Dq
q2

: ð8Þ
Note that the viscosity parameter R can alternatively be expressed as an Atwood number At
At ¼ l2 � l1

l2 þ l1

¼ eR � 1

eR þ 1
:

In the present investigation two different flow configurations will be considered. In the first one,
a tube is initially filled with fluid 1 in the upstream half and fluid 2 in the downstream half. A net
flow is then applied by injecting fluid 1 at the upstream end, thereby displacing fluid 2. The
characteristic velocity U in this case is taken as the centerline velocity of the Poiseuille flow that
exists far up- and downstream of the mixed zone. The second configuration consists of a vertically
oriented pipe containing two different fluids, without a net flow. Here the flow will be triggered by
an instability, if the density stratification is unstable. The characteristic velocity due to buoyancy
forces, and the associated P�eeclet number, can then be defined as
U ¼ gd2Dq
l2

; Pe ¼ gd3Dq
Dl2

: ð9Þ
Note that in this case the gravity number F is equal to 1.
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3. Computational approach

The governing equations are considered in a cylindrical coordinate system. We first confine our
presentation to the axisymmetric case without swirl, for which only the axial and radial directions
need to be taken into account. Subsequently, we consider the fully three-dimensional equations.
3.1. Axisymmetric problem

The dimensionless continuity, momentum, and concentration equation for the axisymmetric
case are
ou
ox

þ 1

r
o

or
ðrvÞ ¼ 0; ð10Þ
ou
ot

� o

ox
sxx �

1

r
o

or
ðrsrxÞ þ

op
ox

¼ �Fc; ð11Þ
ov
ot

� o

ox
srx �

1

r
o

or
ðrsrrÞ þ

shh
r
þ op

or
¼ 0; ð12Þ
oc
ot

þ u
oc
ox

þ v
oc
or

� 1

Pe
o2c
ox2

�
þ 1

r
o

or
r
oc
or

� ��
¼ 0: ð13Þ
Note that the gravitational term is included only in the case of a vertically oriented tube. The
stress-tensor s is defined as
sxx sxr sxh
srx srr srh
shx shr shh

0
@

1
A ¼ l

2 ou
ox

ou
or þ ov

ox 0
ou
or þ ov

ox 2 ov
or 0

0 0 2 v
r

0
@

1
A;
where u and v denote the velocity components in the x- and r-direction, respectively. Gravity
affects only the x-direction.

The spatial discretization of Eqs. (10)–(13) is performed by a spectral element method (SEM).
The SEM is based on the decomposition of the computational domain X into a number K of non-
overlapping subdomains (spectral elements) Xk. Each spectral element Xk is mapped onto the
standard element Xe ¼ ½�1; 1� � ½�1; 1�, with coordinates e1; e2. We employ an iso-parametric
mapping, which associates with each point ðe1; e2Þ 2 Xe a unique point ðxk; rkÞ 2 Xk. In general,
the elements Xk do not have to be Cartesian, and therefore the coordinates xk and rk can be
functions of both e1 and e2. In the present investigation, however, rectangular elements are ad-
vantageous. Consequently, we obtain the simpler relations
xkðe1Þ ¼ nkðe1Þ; rkðe2Þ ¼ gkðe2Þ;
where n and g are prescribed functions.
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To demonstrate the spectral discretization of the governing equations, we consider as an ex-
ample the axial momentum equation (11). The weak formulation of Eq. (11) over X is
Z

X

ou
ot

Wdxrdr þ
Z
X

sxx
oW
ox

�
þ srx

oW
or

� p
oW
ox

�
dxrdr þ BT ¼ �

Z
X
FcWdxrdr; ð14Þ
where W is the test function and BT is the boundary term due to the integration by parts. The
treatment of BT and the implementation of Dirichlet and Neumann boundary conditions require
special care in practical applications. We will address this issue in more detail below. Here, we
drop the boundary term BT in order to simplify the presentation of the spatial discretization. For a
decomposition of X into a number of spectral elements K, we can transform the weak forms of the
individual elements on the standard element and obtain
Z

Xe

ou
ot

WjJ jrde1 de2 þ
Z
Xe

sxx
oW
oe1

dr
de2

�
þ srx

oW
oe2

dx
de1

� p
oW
oe1

dr
de2

�
jJ jrde1 de2

¼ �
Z
Xe

FcWjJ jrde1 de2; ð15Þ
where jJ j is the determinant of the Jacobi matrix associated with the iso-parametric mapping (see
[27]).

To ensure compatibility between the discrete velocity and pressure space, we use the PN � PN�2

method of Maday and Patera [16]. Within each spectral element, the solutions for velocity and
pressure are expanded in tensor-product-based polynomials of order N (velocity) and N � 2
(pressure), respectively. The expansion functions for the velocity in the x-direction can be expressed
in terms of the one-dimensional Lagrangian interpolating polynomials based on the N þ 1 Gauss–
Lobatto–Legendre nodes (GLL). For the pressure expansion functions, they are based on the one-
dimensional Lagrangian interpolating polynomial through theN � 1 Gauss–Legendre (GL) nodes.
Following Tomboulides [14] or Gerritsma and Phillips [18], the expansion basis in the r-direction is
different for the elements adjacent to the axis and the remaining elements. In the former, we use
interpolation functions through the N þ 1 Gauss–Lobatto–Jacobi points (GLJ) for the velocity.
For the pressure, we consider interpolation functions through the N � 1 Gauss–Jacobi (GJ) points,
which are associated with the Jacobi polynomials P ð0;1Þ. In the latter, we use the same expansion
functions in the r-direction as in the x-direction. Note that Gerritsma and Phillips [18] employ the
non-staggered approach, in which the pressure is discretized at the N � 1 inner velocity points.

The expansions of the axial velocity u and the pressure p in an element adjacent to the axis read
uðx; rÞ ¼
XN
i;j¼0

uij/iðe1Þ �//jðe2Þ; ð16Þ
pðx; rÞ ¼
XN�1

i;j¼1

pijwiðe1Þ �wwjðe2Þ; ð17Þ
where /i and wi are the Lagrange interpolation functions associated with the GLL and GL points,
respectively. The interpolation functions associated with the GLJ and GJ points are denoted by �//j

and �wwj. Note that the test functions W are expanded in the same manner as the velocity. If we
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introduce these expansions into the weak from of Eq. (15), and consider the second term of this
equation as an example, we obtain for constant viscosity l
Z

Xe

2l
XN
i;j¼0

/0
iðe1Þ �//jðe2Þuij

XN
r;s¼0

/0
rðe1Þ �//sðe2ÞWrs

dr
de2

rðe2Þ
wðe2Þ

jJ jwðe2Þde1 de2; ð18Þ
where /0
iðe1Þ denotes the derivative with respect to e1. Note that we multiplied the equation by

wðe2Þ=wðe2Þ, where wðe2Þ :¼ ð1þ e2Þ is the weight function associated with the Jacobi polynomial
P ð0;1Þ (cf. [14,18,19]). We assume, without loss of generality, that the side that corresponds to the
symmetry axis is mapped onto the edge e2 ¼ �1 of Xe. Then numerator and denominator of the
fraction r=w tend to zero for r ! 0, and we apply L�Hôopital�s rule at the axis. This gives
rðe2Þ
wðe2Þ

����
e2¼�1

¼ orðe2Þ
oe2

:

The integral of Eq. (18) is evaluated by GLL and GLJ quadrature [19] in e1- and e2-directions,
respectively
XN
p;q¼0

2l
XN
i;j¼0

/0
iðe1;pÞ �//jðe2;qÞuij

XN
r;s¼0

/0
rðe1;pÞ �//sðe2;qÞWrs

dr
de2

rðe2Þ
wðe2Þ

jJ jwp�wwq;
where wp denotes the GLL weight. The function wðe2Þ is absorbed into the GLJ weights �wwq (cf.
[18]). The first and the third terms of Eq. (15) are dealt with in the same manner. The treatment of
the pressure term (the last term) in this equation is even simpler, because pressure is not dis-
cretized at the axis of symmetry due to the staggered grid.

In the axisymmetric case the physical boundary conditions on the axis are
ou
or

¼ 0 and v ¼ 0: ð19Þ
The boundary term BT of the axial momentum equation (14) is
BT ¼ �
Z
oX

lW
ou
or

dsþ
Z
oX

pds:
The Dirichlet boundary condition (v ¼ 0) is employed as essential boundary condition, i.e., it is
implemented directly in the approximation space. In contrast, the Neumann boundary condition
(ou=on ¼ 0) is considered as natural boundary condition in the weak form. This approach is
common in finite element methods (cf. [22]). Employing the same procedure to Eqs. (10), (12) and
(13) yields a semi-discretized system for velocity, pressure and concentration. If the viscosity l
varies with concentration, lðx; r; tÞ is expanded in the same manner as the axial velocity u, and the
relation (4) is employed to close the problem.
3.2. Temporal discretization of the axisymmetric problem

The semi-discretized system is now discretized in time. We first consider only the momentum (5)
and continuity (6) equations
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ouN
ot

þ LðlÞuN � DTpN ¼ Bf
N
; ð20Þ

DuN ¼ 0; ð21Þ
where LðlÞ is the discrete spatial diffusion operator, DT denotes the discrete gradient operator, D
the discrete divergence operator, and B represents the discrete mass matrix. Furthermore, uN and
pN indicate velocity and pressure, respectively, while f

N
denotes the right-hand-side at the nodal

points. Note that f
N
is a function of the concentration, and that LðlÞ depends on the viscosity.

The time step restriction due to the diffusive term in the Stokes equation is much more severe
than the CFL criterion imposed by the convective term in the convection–diffusion equation (7).
Consequently, it is desirable to treat the diffusive term in the Stokes equation implicitly. Towards
this end, we employ a second order backward differentiation method (BDF 2), cf. [23]
3

2Dt
B

�
þ LðlÞ

�
unþ1
N � DTpnþ1

N ¼ Bf nþ1

N
þ 1

Dt
2BunN

�
� 1

2
Bun�1

N

�
; ð22Þ

Dunþ1
N ¼ 0; ð23Þ
where the superscript n denotes a quantity at time tn :¼ n � Dt. One possibility is to use the Uzawa
algorithm [24] to solve this system of equations. However, here we employ the more efficient
fractional step method proposed by Maday et al. [25] instead. This method takes the form
3

2Dt
B

�
þ LðlÞ

�
u�N ¼ gn

N
þ DTpnN ; ð24Þ

2Dt
3

D B�1DTdpN ¼ �D u�N ; ð25Þ

unþ1
N ¼ 2Dt

3
B�1DTdpN þ u�N ; ð26Þ
where u� is a splitting velocity that is evaluated from Eq. (24), dpN :¼ pnþ1
N � pnN represents the

pressure deviation, and gn
N
denotes the right-hand-side of Eq. (22). In Eqs. (24)–(26) a splitting

error is involved that is of second order in Dt [26]. Note that one Helmholtz equation (24) and one
so-called ‘‘pseudo-Laplacian’’ equation (25) have to be solved at each time step. The pressure
equation (25) is usually ill-conditioned, which renders direct solvers [27] or very sophisticated
preconditioned iterative solvers [28] desirable. Here we use a direct solver that is based on the fast
diagonalization method of Lynch et al. [20] (for a short overview of this method see Appendix A.1).
This method has been applied to the spectral element pressure matrix in [27], and has been proven
to be at least an order of magnitude faster than a preconditioned conjugate gradient solver. The
condition number of the Helmholtz operator is a function of j ¼ 3=ð2DtlÞ. If j increases, the
condition number tends to unity, and the Helmholtz matrix becomes diagonally dominant. For
high Reynolds number flows j is usually large, and hence the Helmholtz matrix is well-conditioned.
Under those circumstances iterative solvers converge very rapidly. In the present case, however,
the Helmholtz matrix is ill-conditioned, so that direct solvers become the preferred choice. A very
efficient direct solver is the fast diagonalization solver mentioned above. This approach can be
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employed to the Helmholtz matrix if l is constant (cf. [21]). The basic idea behind the fast di-
agonalization solver is to compute an eigenvalue decomposition of the Helmholtz operator in a
preprocessing step. Subsequently, the inverse of the decomposed operator is computed and stored.
To evaluate the solution of the Helmholtz equation, only multiplications have to be performed.
However, the preprocessing step is appropriate only for time-independent Helmholtz operators,
so that we aim at obtaining such an operator even for the variable viscosity problem.

Let us consider the fully discretized momentum equation (22) in the form
3

2Dt
B

� �
unþ1
N � DTpnþ1

N ¼ gn
N
� LðlÞunþ1

N : ð27Þ
We define the diffusive operator associated with the maximum viscosity lmax ¼ maxðlðx; r; tÞÞ
as Lmax. Note that lmax is time-independent and can be determined as an upper bound of l at the
start of the simulation. We can add Lmaxunþ1

N on both sides of Eq. (27)
3

2Dt
B

�
þ Lmax

�
unþ1
N � DTpnþ1

N ¼ gn
N
þ Lmax
�

� LðlÞ
�
unþ1
N ;
and approximate the term ðLmax � LðlÞÞumax
N by a second order extrapolation method (EX2),

which results in a second order semi-implicit method
3

2Dt
B

�
þ Lmax

�
unþ1
N � DTpnþ1

N ¼ gn
N
þ 2 Lmax
�

� LðlÞ
�
unN � Lmax

�
� LðlÞ

�
un�1
N : ð28Þ
In Appendix A.2 we show for a simplified test problem that the semi-implicit method is un-
conditionally stable. The Helmholtz operator on the left-hand-side is time-independent, and thus
this Helmholtz equation can be solved by employing the direct fast diagonalization solver [20,21].

We are now in a situation to present the fully discretized system of Eqs. (10)–(13). Towards this
end, the concentration equation (13) is discretized by a mixed implicit/explicit time stepping
scheme. We use a BDF2 method for the diffusive term and an EX2 method of the convective term.
Finally we obtain
3

2Dt
B

�
þ Lc

�
cnþ1
N ¼ 1

Dt
2BcnN

�
� 1

2
Bcn�1

N

�
þ 2NðunNÞcnN � Nðun�1

N Þcn�1
N ; ð29Þ
lnþ1
N ¼ eRðc

nþ1
N �1Þ; ð30Þ
3

2Dt
B

�
þ Lmax

�
unþ1
N � DTpnþ1

N ¼ gn
N
þ 2 Lmax
�

� Lðlnþ1
N Þ

�
unN � Lmax

�
� Lðlnþ1

N Þ
�
un�1
N ; ð31Þ
D unþ1
N ¼ 0; ð32Þ
where Lc and NðunNÞ are the discretized diffusion and convection operators of the concentration
equation, respectively. The computation of the nth time step is now performed in the following
way: First, the concentration equation is solved using the old velocity and concentration values. It
should be noted that here we use the same efficient fast diagonalization solver as for the mo-
mentum equation. Subsequently, the viscosity lnþ1

N is updated directly from cnþ1
N . Finally, the
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momentum and continuity equation are solved together by employing the fractional step method
according to Eqs. (24)–(26).
4. Axisymmetric flow simulations

4.1. Validation

In order to validate the method described above, we establish the second order accuracy in Dt
of the semi-implicit algorithm by means of comparing with an analytic solution. Furthermore, we
reproduce the miscible flow results of Chen and Meiburg [6] in a capillary tube.

We consider the axisymmetric problem of the form
ou
ot

�rðlruÞ þ rp ¼ f ; ð33Þ

r � u ¼ 0; ð34Þ

oc
ot

þ u � rc� 1

Pe
Dc ¼ fc ð35Þ
with exact solution ðu :¼ ðu; vÞÞ

uðx; r; tÞ ¼ x3r2 cosðtÞ; ð36Þ

vðx; r; tÞ ¼ � 3

4
x2r3 cosðtÞ; ð37Þ

pðx; r; tÞ ¼ x2r2 cosðtÞ; ð38Þ

lðx; r; tÞ ¼ eðaxþbrÞ; ð39Þ

where a and b are given constants and the forcing terms f ¼ ðfx; frÞ; fc are chosen such that Eqs.
(33)–(35) are fulfilled. We solve the equations on the domain X ¼ ½0; 1� � ½0; 1� and prescribe the
exact solution as Dirichlet conditions on the boundary of the domain.

We begin by considering the special case a ¼ b ¼ 0, for which l is constant, and 2� 2 elements
are employed, with a time step Dt ¼ 10�4. The spectral convergence of the SEM is apparent from
Fig. 1, which shows the maximum error in the computational domain. As a further test, we keep
the polynomial degree constant and compare the error of the constant viscosity case with that for
a variable viscosity one (a ¼ 0:1; b ¼ 0:2), cf. Fig. 2. The error is almost identical for both cases.

The second order accuracy in time is clearly demonstrated by the figure. This shows that the
splitting error introduced by the semi-implicit operator splitting is also of second order in Dt.

4.2. Results

As a further validation step, we compare numerical results obtained by the present approach
with earlier ones of Chen and Meiburg [6]. We consider a pipe whose upstream half is filled with
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The results indicate second order accuracy in time for both cases.
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fluid 1, while fluid 2 occupies the downstream half. The fluids are miscible and have different
viscosities l1 and l2 with l2 > l1. At time t ¼ 0, a net flow is generated by which fluid 1 displaces
fluid 2. The flow is characterized by the P�eeclet number Pe, the viscosity contrast R, and the gravity
number F as defined in (8). In order to be able to compare, we take the same parameter values as
Chen and Meiburg [6], i.e., Pe ¼ 1600, R ¼ 5, and F ¼ 0. Since the concentration front propagates
downstream with a certain tip velocity Vtip, we perform the simulations in a moving frame of
reference. The computational domain extends from 0 to 1.5 in the axial direction, and from 0 to
0.5 in the radial direction. We prescribe the symmetry conditions (19) at the axis and no-slip
conditions at the solid wall. In the moving reference frame, the �downstream� boundary at x ¼ 1:5
becomes an inflow boundary. Here, we assume a Poiseuille flow velocity profile, which is a good
approximation as long as care is taken to keep this boundary sufficiently far removed from the
propagating front. The �upstream� boundary at x ¼ 0 becomes a mixed inflow/outflow boundary
in the moving reference frame. Here we apply a convective boundary condition of the following
form for the concentration
oc
ot

þ V
oc
ox

¼ 0:



496 D. Wilhelm, E. Meiburg / Computers & Fluids 33 (2004) 485–508
This condition is discretized in space and time
Fig. 3

agreem
Bcnþ1
N � BcnN
Dt

þ V D
x
cnN ¼ 0;
where D
x
is the SEM derivative operator in the x-direction, and B denotes the (diagonal) mass

matrix. For test purposes, we implemented a wide range of convection velocities V in the above
boundary condition. The simulation results were found to be nearly independent of the value of
V . For the velocity, we employ a homogeneous Neumann condition. The spatial resolution is
32� 4 elements of polynomial degree N ¼ 8, with a time step of Dt ¼ 0:5� 10�3.

In Fig. 3 the concentration contours (at levels c ¼ 0:1; 0:2; . . . ; 0:9) are given for t ¼ 1 and 3.
The comparison with the results of Chen and Meiburg [6] in Fig. 4 indicates good quantitative
agreement. Note that different values were taken for the velocities of the moving reference
frame in the two simulations. Consequently, only the shape, but not the location of the con-
centration contours should be compared. The concentration front is seen to propagate down-
stream with a time dependent tip velocity VtipðtÞ. Following Chen and Meiburg [6], we define Vtip
as the rate at which the concentration contour c ¼ 0:5 propagates. In Fig. 5 VtipðtÞ is plotted as
a function of time. After an initial transient of about two dimensionless time units, Vtip ap-
proaches a constant value which closely matches that of [6]. The discrepancies between the
simulations during the transient phase are due to the fact that different initial front thicknesses
were employed. As a result, only the long time asymptotic values of VtipðtÞ should be compared.
The accompanying streamline pattern in the frame of reference moving with Vtip shows the
existence of a stagnation point at the tip, cf. Fig. 6, which is in agreement with [6]. Note that
we also performed a simulation on a much finer grid of 50� 6 elements (N ¼ 8) and found
virtually no difference compared to the coarser grid results. Furthermore, we performed a
simulation in a domain four times as long in the axial direction, which again gave essentially
identical results.
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5. Three-dimensional flow simulations

Here we consider the stability problem in which a heavier fluid is located above a lighter one in
a vertical pipe, in the absence of a net flow. For this case, the characteristic velocity due to
buoyancy forces, along with the associated P�eeclet number, are defined by Eq. (9). The gravity
parameter is F ¼ 1 for this case. The spatial discretization of the governing equations (4)–(7) is
again performed in a cylindrical coordinate system. The axial, radial, and azimuthal directions are
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denoted by x, r, and h, and the respective velocity components are ðu; v;wÞ. We employ a Fourier
spectral expansion in the azimuthal direction
Table

Bound

ûum
v̂vm
ŵwm

ĉcm

~vvm
~wwm
uðx; r; h; tÞ ¼
XNz=2�1

m¼0

ûumðx; r; tÞeimh; ð40Þ
where m represents the azimuthal Fourier mode. Furthermore, we introduce the new variables
~vvm ¼ v̂vm þ iŵwm; ~wwm ¼ v̂vm � iŵwm ð41Þ

following to Tomboulides [14] or Tomboulides and Orszag [15]. These authors show that, close to
the axis, the Fourier coefficients of the velocity components behave as
ðûum; v̂vm; ŵwmÞ / ðbrm; crm�1; icrm�1Þ; ð42Þ

where b and c are constants. They furthermore demonstrate that ~vvm vanishes at r ¼ 0 and scales
like ~vvm / rmþ1, which is equivalent to the fact that the vorticity is regular at r ¼ 0. On the other
hand, the variable ~wwm has a non-zero value at r ¼ 0 for m ¼ 1. However, Tomboulides and Orszag
[15] show that for m ¼ 1 the 1=r2 terms vanish in the azimuthal momentum equation. Hence, the
singularity at r ¼ 0 can be removed by the transformation (41).

However, there are still terms in the equations for which both numerator and denominator go
to zero at the same rate close to the axis, which leads to equations of undetermined forms. To
handle this problem, we employ the same special treatment as in the axisymmetric case (cf. Section
3.1). Moreover, boundary conditions are required at the axis, if a SEM discretization is employed
in the (x; r)-plane. These conditions, which can be deduced from the continuity equation and the
relation (42) according to [14,29], are summarized in Table 1.

5.1. Spatial and temporal discretization

For the sake of simplicity, we consider in a first step Stokes flow with constant viscosity and
density. Then the pressure and the forcing term f ¼ ðfx; fr; fhÞ can be expanded similarly to the
velocity (40). By introducing these expansions into Eqs. (5) and (6), we obtain one system of
equations for each of the Nz=2 complex Fourier modes by using the transformation (41)
oûum
ot

� l Dxr

�
� m2

r2

�
ûum þ op̂pm

ox
¼ f̂fm;x; ð43Þ
1

ary conditions at the axis r ¼ 0 for different Fourier modes

m ¼ 0 m ¼ 1 mP 2

oûum=or ¼ 0 ûum ¼ 0 ûum ¼ 0

v̂vm ¼ 0 ov̂vm=or ¼ 0 v̂vm ¼ 0

ŵwm ¼ 0 oŵwm=or ¼ 0 ŵwm ¼ 0

oĉcm=or ¼ 0 ĉcm ¼ 0 ĉcm ¼ 0

~vvm ¼ 0 ~vvm ¼ 0 ~vvm ¼ 0

~wwm ¼ 0 o~wwm=or ¼ 0 ~wwm ¼ 0
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o~vvm
ot

� l Dxr

 
� ðmþ 1Þ2

r2

!
~vvm þ op̂pm

or
� m

r
p̂pm ¼ ~ffm;r; ð44Þ

o~wwm

ot
� l Dxr

 
� ðm� 1Þ2

r2

!
~wwm þ op̂pm

or
þ m

r
p̂pm ¼ ~ffm;h; ð45Þ

oûum
ox

þ 1

2r
oðr~vvmÞ
or

þ m~vvm
2r

þ 1

2r
oðr ~wwmÞ
or

� m~wwm

2r
¼ 0; ð46Þ
where
Dxr ¼
o2

ox2
þ 1

r
o

or
r
o

or

� �
; ð47Þ

~ffm;r ¼ f̂fm;r þ if̂fm;h; ð48Þ

~ffm;h ¼ f̂fm;r � if̂fm;h: ð49Þ
Here p̂pm, f̂fm;x, f̂fm;r, and f̂fm;h refer to the Fourier coefficients of p and the components of f , re-
spectively. Now we consider as an example the variational form according to ~vvm
Z

X

o~vvm
ot

Wdxrdr þ
Z
X
l

o~vvm
ox

oW
ox

 
þ o~vvm

or
oW
or

þ ðmþ 1Þ2

r2
~vvmW

!
dxrdr þ B̂BT

�
Z
X
p̂pm

ð1� mÞW
r

�
þ oW

or

�
dxrdr ¼

Z
X

~ffm;rWdxrdr; ð50Þ
where W is the test function and B̂BT is the boundary term that results from integration by parts.
The SEM discretization proceeds in analogy to the axisymmetric case, i.e., in the elements ad-
jacent to the axis pressure and velocity are discretized at the GLJ and GJ points, respectively. The
1=r and 1=r2 terms are treated by L�Hôopital�s rule as described in Section 3.1, and the boundary
conditions of Table 1 are prescribed directly at the axis r ¼ 0.

The semi-discretized momentum and continuity equations can be written in matrix form
o~uum
ot

þ ~LLðmÞ~uum � ~DDT ðmÞp̂pm ¼ B ~ff
m
; ð51Þ

~DDðmÞ~uum ¼ 0; ð52Þ
where
~uum ¼ ðûum; ~vvm; ~wwmÞT ; ~ff
m
¼ ðf̂fm;x; ~ffm;r; ~ffm;hÞ

T
:

Here ~LLðmÞ; ~DDT ðmÞ, and ~DDðmÞ represent the discretized diffusion, gradient, and divergence opera-
tors corresponding to the mth Fourier mode, respectively. For problems involving variable vis-
cosity, we define ~LLmaxðmÞ as the discrete diffusion operator related to the maximum viscosity lmax.
We can then employ the semi-implicit BDF2/EX2 scheme described above, see Eqs. (29)–(32). The
right-hand-side of the momentum equation involves the discretized form of the non-linear
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diffusion operator rðlðx; r; h; tÞrÞu at the time levels tn and tn�1. Both this operator as well as the
convection operator in the concentration equation are evaluated in a pseudo-spectral fashion [19].
The fractional step method can still be applied for each Fourier mode. Finally, two Helmholtz
equations and one pseudo-Laplacian equation have to be solved for each Fourier mode at time
step tnþ1. This is done by employing the fast diagonalization solver, as described in Section 3.1.

5.2. Results

As a first step, we consider an unstable density stratification involving two fluids of identical
viscosities. As observed in the experiments of Kuang et al. [5], the resulting instability develops in
a fully three-dimensional fashion. In a subsequent step, we will allow for variable viscosities as
well. In order to closely reproduce the experimental conditions, the value of the P�eeclet number in
the simulations, defined by Eq. (9), is set to Pe ¼ 1:35� 105. Similarly to our investigation for
miscible flows in a Hele–Shaw cell (cf. [30]), we initially prescribe a steep concentration gradient at
x ¼ 0 by means of an error function profile. In addition, we superimpose disturbances in the radial
and azimuthal directions in order to accelerate the growth of the instability, so that the initial
concentration field has the form
cðx; r; h; 0Þ ¼ 1

2
erf

xþ e sinðprÞ � sinðhÞ
b

� �
:

Here b characterizes the thickness of the interfacial region, while e determines the magnitude of
the radial and azimuthal perturbation. For the representative simulation to be discussed in the
following, we set the thickness parameter to b ¼ 0:2 and choose a small disturbance level of
e ¼ 10�5. The azimuthal wavenumber m ¼ 1 is selected for the initial concentration perturbation
based on a linear stability investigation [31] that shows m ¼ 1 to be the dominant mode for the
above parameter combination. In Fig. 7 the absolute value of max jûumðx; r; tÞj is shown as a
function of t. The figure demonstrates that both modes are amplified exponentially, and that the
amplification rate is larger for the azimuthal mode m ¼ 1 than for the axisymmetric mode m ¼ 0.
By assuming disturbances of the form
ûumðx; r; tÞ ¼ ûu0mðx; rÞerðmÞt; m ¼ 0; 1;
amplification rates of rð0Þ � 0:013 and rð1Þ � 0:0195 are obtained. Hence, azimuthal distur-
bances are seen to dominate over axial ones as long as the amplitudes are small and non-linear
interactions can be neglected. It should be noted that the present amplification rates of
rðmÞ � 0:02 are in the same range as those of three-dimensional perturbations in corresponding
Hele–Shaw flows [30]. In order to study the non-linear regime, we carry out a separate simulation
with a larger initial perturbation of e ¼ 0:2. Fig. 8 shows the time evolution of max jûumðx; r; tÞj.
This large initial disturbance level renders the flow non-linear from the very beginning. The three-
dimensional flow structure is depicted in Fig. 9 by means of iso-surfaces of the concentration level
c ¼ 0:5 at different times. The sinusoidal initial disturbance can still be recognized at t ¼ 40. For
later times, a finger of lighter fluid is seen to form and rise into the heavier fluid above, with a
corresponding finger of the denser fluid falling downwards. Note that far away from the region
where these two fingers pass each other, their tips approach the centerline again, so that a nearly
axisymmetric flow evolves locally around the tip. For all times, the overall flow is seen to maintain
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nearly perfect point symmetry around the origin, as expected on the basis of the symmetry
properties of the governing equations. Fig. 10 shows the same flow field from a different per-
spective.

In a final simulation, we extend the above simulation to fluids of different viscosities. The
heavier fluid is assumed less viscous than the lighter fluid below it, with the density contrast given
by At ¼ 0:82 ðR ¼ 2:3Þ. The initial conditions are identical to the previous case. Figs. 11 and 12
show the iso-concentration surfaces for three different times. The more viscous, rising finger of
lighter fluid is seen to be substantially wider than its less viscous, falling counterpart. Again, both
finger tips are seen to assume nearly axisymmetric shapes far above and below the original plane
of instability. The symmetry properties of the constant viscosity case are no longer observed. This
is in close agreement with the experimental findings of Kuang et al. [5].
6. Summary and conclusions

The purpose of the present investigation is to introduce a highly accurate numerical method for
time-dependent, three-dimensional simulations of variable density and viscosity, miscible flows in



Fig. 9. Temporal evolution of the concentration field for the constant viscosity case. Shown is the c ¼ 0:5 isosurface at

t ¼ 40; 200 and 400. Pe ¼ 1:35� 105.
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a cylindrical geometry. Towards this end, we have developed an approach that treats the con-
servation equations in a cylindrical coordinate system. The spatial discretization is performed by a
mixed spectral element/Fourier spectral scheme. Here, the treatment of the well known singularity
on the axis of symmetry requires special care. We employ a transformation of the velocity
components in Fourier space, which removes the singularity directly at the axis. Moreover, special
polynomial expansion functions based on the Jacobi polynomial P ð0;1Þ are used in the first ele-
ments adjacent to the axis, in order to obtain a proper behavior of the solution for r ! 0. Spectral
convergence is demonstrated for the present numerical scheme.



Fig. 10. Temporal evolution of the concentration field for the constant viscosity case. Same results as in Fig. 9, but

shown from a different perspective.
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The high-accuracy spatial discretization is combined with an efficient semi-implicit time step-
ping scheme. This approach is especially well-suited for the momentum equation with variable
viscosity. It allows for an implicit treatment with a constant diffusion operator, even though the
viscosity varies with both location and time. The resulting semi-discretized momentum equation is
absolutely stable. While this is not the case for the concentration equation if the convection
operator is treated explicitly, the constraint due to the CFL condition is much less severe than that
resulting form an explicitly treated diffusion operator. Moreover, all equations are of the



Fig. 11. Temporal evolution of the concentration field for the variable viscosity case. Shown is the c ¼ 0:5 isosurface at

t ¼ 10; 50 and 100. Pe ¼ 1:35� 105;R ¼ 2:3.
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Helmholtz type and are solved by a efficient direct solver that is based on a fast diagonalization
method.

The above approach has been validated in various ways, and some initial simulations of three-
dimensional variable density and viscosity flows have been presented. The results for displace-
ments driven by a net flow are in close agreement with earlier numerical and experimental
observations. In addition, the three-dimensionally evolving instability resulting from an unstable



Fig. 12. Temporal evolution of the concentration field for the variable viscosity case. Same results as in Fig. 11, but

shown from a different perspective.
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density stratification closely resembles experimental observations by Kuang et al. [5]. In partic-
ular, for the constant viscosity case a point symmetric structure is observed that is characterized
by two symmetric fingers propagating in opposite directions. For the case of variable viscosity, an
initially prescribed point symmetry quickly breaks up, and the two emerging fingers assume
different shapes. We are now in a position to vary the governing parameters systematically, and to
explore the physical coupling between density and viscosity driven mechanisms. The results of this
investigation will be reported separately.
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Appendix A

A.1. Fast diagonalization solver

The fast diagonaliztion solver employed in the present work is based on the method of Lynch
et al. [20]. This solver can be used to invert operators L which are constructed from one-
dimensional operators Lx and Lr in the following manner:
L ¼ ½ðLx � IrÞ þ ðIx � LrÞ�; ðA:1Þ

where A� B denotes the tensor product of the matrices A and B. Lynch et al. [20] showed that the
inverse of L is given by
L�1 ¼ ðPx � PrÞK�1ðP�1
x � P�1

r Þ;
K ¼ ðKx � Ir þ Ix � KrÞ:
The matrices Ix; Ir are the one-dimensional unity matrices corresponding to the derivative op-
erators Lx; Lr. The matrices Px; Pr contain the eigenvectors of Lx;Lr and Kx;Kr are the diagonal
matrices of the corresponding eigenvalues. With these matrices Lx and Lr can be decomposed as
Lx ¼ PxKxP�1
x ; Lr ¼ PrKrP�1

r :
This decomposition can be performed in a preprocessing step, as long as L is time-independent.
On a Cartesian domain, the pressure matrix in Eq. (25) can be written in the from of (A.1) and this
method can be applied to solve the pressure equation. The same would be true for a time-inde-
pendent velocity Helmholtz equation.
A.2. Stability of semi-implicit method

In the following we will show that the semi-implicit method proposed in Section 3.2 is un-
conditionally stable. For this purpose, we consider the simplified scalar test problem on the in-
terval X ¼ ½�1; 1�:
ou
ot

� lðx; tÞ o
2u
ox2

¼ 0; ðA:2Þ
where lðx; tÞ is a positive function on X. We define the SEM approximation of the operator
�lðx; tÞo2=ox2 by L, and Lmax as the SEM approximation of �lmaxo

2=ox2, where lmax ¼
maxðlðx; tÞÞ over X. The (first order) backward Euler discretization of Eq. (A.2) reads
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Bunþ1
N � BunN
Dt

þ Lunþ1
N ¼ 0; ðA:3Þ
where unN denotes the discretized velocity at time step tn :¼ n � Dt, and B is the diagonal mass
matrix of the SEM approximation. Now we add Lmax on both sides:
Bunþ1
N

Dt
þ Lmaxunþ1

N ¼ ðLmax � LÞunþ1
N þ BunN

Dt
;

and if we extrapolate the term ðLmax � LÞunþ1
N first order in time, we obtain
ðBþ DtLmaxÞunþ1
N ¼ ½Bþ DtðLmax � LÞ�unN :
This is equivalent to
unþ1
N ¼ ½Bþ DtLmax��1½Bþ DtðLmax � LÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼G

unN :
It is obvious that the norm of the matrix G is less or equal 1, because kLmax � Lk6 kLmaxk,
where k � k is a given matrix norm. Consequently, the discretization scheme is unconditionally
stable. This line of reasoning can easily be extended to higher order schemes such as the second
order BDF2/EX2 scheme employed in Section 3.2.
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