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The influence of a variable diffusion coefficient on the gravitational instability at the interface
between two variable viscosity fluids in a vertical capillary tube is investigated, based on the
three-dimensional Stokes equations. As the viscosity contrast between the fluids grows, the
maximum density gradient of the self-similar base concentration profile increases while its location
is shifted into the more viscous fluid. Thus the perturbations are forced to grow in a more viscous
environment, which can reduce their growth rate by up to 30%. For large viscosity contrasts,
intermediate interface thicknesses are seen to give rise to the highest growth rates. For most
parameter combinations, the first azimuthal mode is found to be most unstable. However, for large
viscosity ratios and small interface thicknesses the axisymmetric mode dominates.

© 2006 American Institute of Physics. [DOI: 10.1063/1.2192447]

The gravitational instability at the interface separating a
heavier fluid above from a lighter fluid below represents a
classical problem in fluid mechanics (Batchelor and
Nitsche'). Vanaparthy et al’ analyzed the miscible version of
this instability in a vertical capillary tube, based on the three-
dimensional Stokes equations, in order to study how its
growth is affected by the presence of sidewalls. A compre-
hensive review of the pertinent literature is provided by those
authors. Subsequently, Payr et al.® extended this investiga-
tion to fluids of different viscosities. They report that the
growth rates do not depend on whether the heavier or the
lighter fluid is the more viscous one, and that in the presence
of large viscosity contrasts thicker interfaces may be more
unstable than thinner ones. The first azimuthal mode is gen-
erally found to be most unstable, in agreement with the ex-
perimental observations of Kuang et al* and the three-
dimensional nonlinear simulations of Wilhelm and Meiburg.5
However, for large viscosity contrasts and thin interfaces, the
axisymmetric mode may have a larger growth rate than its
azimuthal counterpart. Corresponding findings for Hele-
Shaw configurations are reported by Graf et al.® and Goyal
and Meiburg.7

All of the above investigations employed a constant dif-
fusion coefficient. Especially for fluids with widely disparate
viscosities, this is known to be a poor approximation of the
real situation. For example, the measurements by Petitjeans
and Maxworthy8 clearly show that for water and glycerin
the diffusion coefficient varies strongly with the con-
centration (cf. also the experiments of Rashidnia and
Balasubramaniam’ and the simulations of Chen and
Meiburg10 and Riaz et al. 11). Hence, a detailed analysis of the
influence of a variable diffusion coefficient is the goal of the
present investigation. For this purpose, we utilize the well-
established Stokes—Einstein relation (Probsteinu), according
to which the diffusion coefficient is inversely proportional to
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the fluid viscosity. While this relation does not hold for all
fluid mixtures, cf. Zwanzig and Harrison,13 it is well suited
as basis for a first exploration of the effects of a variable
diffusion coefficient.

We consider an unstable, miscible interface that sepa-
rates a lighter fluid from a heavier one placed above it, in a
vertically oriented capillary tube of diameter d. The two flu-
ids of different viscosities are assumed to be miscible with
each other in all proportions, with a diffusion coefficient
D(c) that depends on the concentration c¢. Since the flow
velocities are small, the fluid motion is governed by the
three-dimensional Stokes equations. The density p=p,
+c(p,—p,) and viscosity u=pu,eR¢ are assumed to be linear
and exponential functions of the concentration, respectively.
Here p; and w; indicate the density and viscosity of the
heavier fluid, while p, and u, represent their counterparts for
the lighter fluid. R denotes the logarithm of the viscosity
contrast, R =In( w/ ,u,z). We assume the variation of the dif-
fusion coefficient with concentration is governed by the gen-
eralized  Stokes—FEinstein  relation  (cf.  Probstein'®)
D(c)- u(c)=const., so that D=D,e®¢ where D, denotes the
diffusion coefficient of an infinitesimally small amount of the
heavier fluid 1 in pure fluid 2.

The governing equations are rendered dimensionless by
introducing a characteristic length L"=d, viscosity u"= i,
velocity U'=Apgd®/ poin> time T"= upin/ Apgd, pressure
P*=Apgd, and density difference R*=Ap=p,—p,. The diffu-
sion coefficient is referred to its average value D= ) (lJDdc, SO
that a meaningful comparison can be made with calculations
assuming a constant diffusion coefficient. This implies that
with an increasing value of R the diffusion coefficient varies
over a larger range, while its average value remains un-
changed.

By using the above relations in the Stokes equations, we
obtain the set of dimensionless equations

V-u=0, (1)
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Vp=V-7-¢cVz, ) comes steeper in the more viscous fluid due to the locally
weaker diffusion, and shallower in the less viscous fluid as a
dc 1 result of locally stronger diffusion. The shape of the profiles
PR Ve= Ra V-(DVe). () resembles the experimentally measured curves of Petitjeans

Here, the Rayleigh number Ra= Apgd® /D" i, provides a
relative measure of the destabilizing buoyancy forces and the
stabilizing effects of diffusion and viscosity. In treating these
and related equations numerically, we adopt the approach
outlined by Vanaparthy et al.* for the region near the axis.

For both of the fluids at rest everywhere, the base con-
centration profile ¢ is a solution of the equation dJc/ dt
=d/ @ ac/ ﬁz). By introducing the similarity variable »
=z/\4D"t, we obtain the nonlinear ordinary differential
equation

— 2— —\2
g% e R E_R<£> , @
dn 1—e R do dny

with the boundary conditions ¢(7— %)=1 and ¢(n— —»)
=0. This equation is solved iteratively for ¢(#) in the control
volume —10= =10, using second-order finite differences,
until a converged profile is obtained. Test calculations
showed this volume to be sufficiently large so that the
boundaries have a negligible effect on the solution. As an
initial condition for the iteration procedure we employ a lin-
early varying profile in the computational domain. Since the
diffusive fluxes do not vanish exactly at the boundaries, mass
conservation needs to be enforced by satisfying the addi-
tional integral condition [~ cd#n=const.

Figure 1(a) shows the resulting base concentration pro-
file as a function of the viscosity ratio R. For R=0, ¢ is the
symmetric error function profile. With increasing R, ¢ be-

and Maxworthy.8 We remark that it remains meaningful to
refer to z=0 as the interface location, as there are equal
amounts of fluid 2 above, and fluid 1 below the interface,
respectively. The gradient of the base concentration profile is
plotted as function of the viscosity ratio in Fig. 1(b). The
maximum slope of the concentration profile is seen to grow
with R. The resulting increase in the local Rayleigh number
Ra;, formed with the local density gradient rather than the
overall density difference, is expected to be destabilizing.
From (4) we obtain the location of the maximum gradient,
i.e., the location of the inflection point, as

R (dE)
—eRe——(—] | 5
Mmax = € 2(1—€_R) d?] - ( )

Since all of the terms on the right-hand side of this equation
are positive, 7. 1S positive for all values of R. This is
confirmed by Fig. 1(c), which quantifies the upward shift of
the location of the maximum slope. This shift reaches a
maximum for a value of R between 3 and 4, and subse-
quently decreases for larger R values. Figure 1(d) shows that
the concentration, and hence the viscosity, at this location of
the maximum slope increases monotonically with R. This
should have a stabilizing effect, as the perturbation will grow
more slowly in a more viscous environment.

We now consider small perturbations to this base state of
the form ¢&(r,z)cos(B6)e”, where the hatted quantity repre-
sents the two-dimensional eigenfunction, and 3 denotes the
azimuthal wave number. For the purpose of evaluating the
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FIG. 2. Growth rate o as a function of the azimuthal wave number g for
D=const. (—) and D=D(c) (- -), with Ra=10°, 6=0.5, and various R. The
variable diffusion coefficient consistently results in a reduced growth rate.

stability of these perturbations, we assume that the diffusive
time scale of the base state is much larger than the charac-
teristic time scale of the instability growth, so that the base
state can be held constant. Note that, since the linear stability
analysis is conducted in the original (not similarity) vari-
ables, the interface thickness denoted by & represents an in-
dependent parameter. By substituting the above relations into
the dimensionless governing equations, subtracting out the
base state and linearizing, we obtain an eigenvalue problem
of the form A¢=0B¢p, where o is the growth rate and
¢=(,p,¢) denotes the eigenvector. This system is solved
for o and ¢ as functions of the azimuthal wave number B,
for various combinations of Ra, R, and &, as discussed by
Vanaparthy et al’

An inspection of the concentration eigenfunction con-
tours for the cases R=2 (more viscous fluid on top) and
R=-2 (more viscous fluid at the bottom) shows that they
represent mirror images of each other, as their maxima are
shifted in opposite directions, i.e., always toward the more
viscous fluid. The growth rates are identical. A simple trans-
formation shows that, if a solution to the linearized pertur-
bation equations is given by o, R,, Cz.(z), ¢gs(r,z), and
i, g.(r,z), another solution to the same equation with the
same value of o is of the form

R_=-R,, (6)
g-(2) =1 -Cpy(=2), (7
Cr-(r,2) = Cgy(r,—2), (8)
i, g (r,2) =1, go(r,— 2). )

For this reason, we will limit our discussion to positive val-
ues of the viscosity ratio only, in which the upper heavier
fluid is the more viscous one.

We carried out corresponding calculations with both
constant (CD) and variable (VD) diffusion coefficients, re-
spectively. Figure 2(a) displays the leading eigenvalue as a
function of the azimuthal wave number S for the representa-
tive case of Ra=10°, 6=0.5, and various R. It should be
noted that even though only integral values of B are physi-
cally meaningful, the dispersion relations are drawn as con-
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FIG. 3. Dispersion relations for various values of &, Ra= 107 and R=4. For
these parameters, intermediate interface thicknesses can exhibit the highest
growth rates.

tinuous curves in order to guide the eye. As expected, an
increase in R has a stabilizing influence, while larger values
of Ra are seen to result in higher growth rates. Moreover, the
results show that for all (Ra,R) combinations, the VD
growth rates are consistently lower than their CD counter-
parts, by up to 30% for larger values of R. This result is
remarkable, considering that the average diffusion coefficient
for VD is equal to the constant diffusion coefficient for CD,
so that the overall damping influence of diffusion should be
comparable for the two cases.

Dispersion relations for various values of R and 6 show
that the growth rates generally increase with Ra until they
reach an asymptotic plateau for Ra>>10. For moderate val-
ues of R and &, the azimuthal mode B=1 is more unstable
than its axisymmetric counterpart. However, Fig. 3 demon-
strates that for a thinner interface with 6=0.2, a higher vis-
cosity ratio R=4, and large Ra the axisymmetric mode can
exhibit a higher growth rate than the azimuthal one. More-
over, for R=4 the highest growth rate occurs for an interme-
diate value of the interfacial thickness. With CD a similar
observation had been made by Payr et al.® These authors
attribute this behavior to the shift of the eigenfunctions into
the less viscous fluid or the region of least damping influ-
ence. Visual inspection of the eigenfunctions for VD shows
that this shift into the less viscous fluid persists at high Ra
and R, thus allowing the growth rates for thicker interfaces to
be higher than those for thinner ones.

The above observations raise the question as to what
determines the location of the eigenfunction maximum,
along with its growth. For a given value of the interface
thickness &, the two governing dimensionless parameters are
R and Ra, respectively. It is important to realize that they
enter the problem in different ways. The viscosity ratio R,
and with it the variability of the diffusion coefficient, deter-
mines both the base state and also enters directly into the
perturbation equations for the concentration and the three
components of momentum. Ra, on the other hand, does not
affect the base concentration profile, and enters directly only
into the equation for the concentration perturbation. The
large Ra asymptotic regime presents us with an opportunity
to analyze the influence of R in isolation. Towards this
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FIG. 4. Contours of ¢ for CD (upper row) and VD (lower row) with R=3,

6=0.5 and B=1. Left column: Ra=10°, right column: Ra=10". The hori-
zontal line indicates the location of the highest value of Ra;.

end, we carried out four different sets of calculations for
Ra=10". The largest growth rates are obtained for CD, i.e., a
constant diffusion coefficient. Indistinguishable from these
results are those obtained when the variable diffusion coef-
ficient is accounted for only in the perturbation equation, but
not in the base profile (VDE). This suggests that at large
values of Ra the effect of the variable diffusion coefficient in
the perturbation equations is negligible, so that its influence
is felt only through the modification of the base profile. This
observation is confirmed by the fact that the growth rates
computed for a variable diffusion coefficient throughout
(VD) are identical to those obtained when the diffusion co-
efficient is kept constant in the perturbation equations
(VDB), as long as the variable diffusion base profile is ac-
counted for.

For a lower value of Ra=10, the situation is different.
The highest growth rate is again observed for CD, but the
results for VDE are now significantly lower. This indicates
that at lower Ra the variability of the diffusion coefficient in
the perturbation equations is important. In agreement with
this, the results for VDB are still noticeably higher than those
for VD, confirming that the base profile effect cannot account
for all of the difference between CD and VD.

An important quantity with regard to the instability
growth is the local Rayleigh number Ra,;, formed with the
local density gradient dp/dc rather than the global density
difference Ap. As a result of invoking the Stokes—Einstein
assumption, the denominator of Ra; is constant throughout
the flow field, so that Ra; depends on the local density gra-
dient only. As we saw above, this density gradient reaches its
maximum at a location z,,,,(R) >0, which causes the upward
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shift of the eigenfunction maximum as R increases. The
competition of Ra; and the local viscosity with regard to
determining the location of the eigenfunction maximum are
summarized in Fig. 4. For D=const., shown in the upper
row, the steepest slope and the highest local Rayleigh num-
ber occur at z=0. The viscosity profile causes the eigenfunc-
tion maximum to be shifted downward from the location of
the steepest slope, i.e., into the less viscous fluid, where the
perturbation can grow faster. The shift is nearly identical for
the Rayleigh number of 10° and 107. For D=D(c), on the
other hand, shown in the lower row, the steepest slope and
the highest value of Ra; occur at a location z>0. Again the
eigenfunction maximum is shifted downwards from this lo-
cation due to the viscosity profile. This shift is more pro-
nounced for the higher Rayleigh number of 10’. Here the
local value Raq; is in the asymptotic regime over a much
larger section of the interfacial region. Within this section,
the growth rate becomes independent of Ra;, and thus mostly
is a function of the local viscosity. Hence for Ra=10" the
eigenfunction maximum is able to move into a less viscous
environment as compared to the lower value of Ra=10.

In summary, in the asymptotic large Rayleigh number
regime the modification of the base concentration profile
dominates, while for lower Rayleigh numbers the effects of
the concentration-dependent diffusion coefficient are also felt
through the perturbation equations.
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