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A

 

BSTRACT

 

: A linear stability analysis is presented for variable-viscosity misci-
ble fluids in an unstable configuration; that is, a heavier fluid placed above a
lighter one in a vertically oriented capillary tube. The initial interface thick-
ness is treated as a parameter to the problem. The analysis is based on the
three-dimensional Stokes equations, coupled to a convection-diffusion equa-
tion for the concentration field, in cylindrical coordinates. When both fluids
have identical viscosities, the dispersion relations show that for all values of the
governing parameters the three-dimensional mode with an azimuthal wave
number of one represents the most unstable disturbance. The stability results
also indicate the existence of a critical Rayleigh number of about 920, below
which all perturbations are stable. For the variable viscosity case, the growth
rate does not depend on which of the two fluids is more viscous. For every
parameter combination the maximum of the eigenfunctions tends to shift
toward the less viscous fluid. With increasing mobility ratio, the instability is
damped uniformly. We observe a crossover of the most unstable mode from
azimuthal to axisymmetric perturbations for Rayleigh numbers greater than
10

 

5

 

 and high mobility ratios. Hence, the damping influence is much stronger
on the three-dimensional mode than the corresponding axisymmetric mode for
large Rayleigh numbers. For a fixed mobility ratio, similar to the constant vis-
cosity case, the growth rates are seen to reach a plateau for Rayleigh numbers
in excess of 10

 

6

 

. At higher mobility ratios, interestingly, the largest growth
rates and unstable wave numbers are obtained for intermediate interface
thicknesses. This demonstrates that, for variable viscosities, thicker interfaces
can be more unstable than their thinner counterparts, which is in contrast to
the constant viscosity result where growth rate was seen to decline monotoni-
cally with increasing interface thickness.
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INTRODUCTION

 

The capillary tube represents one of the fundamental configurations historically
employed in investigations of interfacial phenomena and diffusive effects in the
region of contact between two fluids. Both hydrodynamic stability problems and
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displacement processes have been studied extensively in the above geometry. Hales

 

1

 

was among the first to address the stability of an unstably stratified, variable density
fluid mixture with a constant density gradient in a vertically oriented capillary tube,
in the absence of any net flow through the tube. He found that a stable equilibrium
is possible, as long as the density gradient does not exceed a certain critical value.
Taylor

 

2

 

 devised a simple experiment to obtain this critical gradient of density that he
argued could be used in order to determine the diffusion coefficient of a fluid pair,
see also recent related experimental work.

 

3

 

 Wooding

 

4

 

 took an analytical approach to
the stability problem for a constant density gradient in a capillary tube. He observed
that the three-dimensional mode 

 

β

 

 

 

=

 

 1, where 

 

β

 

 denotes the azimuthal wave number,
represents the most unstable disturbance. The above analysis was extended

 

5

 

 to base
states involving density profiles that vary sinusoidally in the vertical direction or
deviate from a constant value only in a central layer of small vertical extent. This
work confirmed that 

 

β

 

 

 

=

 

 1 represents the most unstable mode for the uniform density
gradient. Without proof, it was assumed that this also holds for the case of sinusoi-
dally varying density. All of the above investigations were limited to cases in which
viscosity variations are absent. To our knowledge, the situation that can be realized
most easily in an experiment, namely that of a relatively thin, miscible interface
formed by placing a heavier fluid above a lighter one in a capillary tube, has not yet
been addressed from a stability theoretical point of view. Variable viscosity influence
on density driven instability is an interesting extension. This is the configuration ana-
lyzed in the investigation we report here.

The presence of a net flow through the tube complicates the situation consider-
ably. Other investigations

 

6,7

 

 discussed the fractional amount of viscous fluid left
behind on the wall of a tube when it is expelled by an inviscid fluid with which it is
immiscible as a function of a suitably defined capillary number 

 

Ca

 

. Density effects
were deemed unimportant in these studies. Numerical calculations for this case,

 

8

 

showed very good agreement with the experimental observations. This classical
work has recently been extended to finite viscosity ratios.

 

9

 

 Petitjeans and
Maworthy

 

10

 

 and Chen and Meiburg

 

11

 

 analyzed the corresponding miscible problem
both experimentally and computationally, based on the Stokes equations (see also
the related experiments in Ref. 12). In these flows, a cutoff length is set by diffusive
effects rather than surface tension, so that in some sense, a Péclet number 

 

Pe

 

 takes
the place of 

 

Ca

 

. The above authors also address the role of density differences by
conducting experiments and simulations in vertical tubes. Substantial differences
between the experiments and the numerical data are observed at small values of 

 

Pe

 

,
in that a quasisteady finger emerges for significantly smaller values of 

 

Pe

 

 in the sim-
ulations, as compared to the experiments. This raises the question as to whether non-
conventional, so-called Korteweg stresses

 

13,14

 

 or divergence effects, can be impor-
tant, an issue that has been addressed elsewhere.

 

15

 

 A particularly striking finding
was reported in the follow-up experiments of Kuang 

 

et al.

 

16

 

 In a vertical capillary
tube without net flow, these authors observe that the sharp interface formed by plac-
ing a heavier, more viscous silicone oil above a lighter and less viscous one leads to
an interfacial instability with an azimuthal wave number 

 

β

 

 

 

=

 

 1. However, when a
small upward net flow was applied to this gravitationally unstable base state, the
interface evolved in an axisymmetric fashion, rather than exhibiting an azimuthal
instability mode.
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: VARIABLE-VISCOSITY MISCIBLE FLUIDS

 

As a first step, in the present work, we perform the linear stability analysis of the
density-driven instability for variable-viscosity miscible fluids in a capillary tube.
The analysis is based on the three-dimensional Stokes equations, and it proceeds
along similar lines as our recent investigation for the corresponding situation in a
Hele–Shaw cell,

 

17,18

 

 as well as the related experiments and nonlinear simulations.

 

19

 

Introduction of a net flow will be the next step. It is to be seen if the aforementioned
experimental observation reflects an effect of the net flow within the linear frame-
work of the stability problem, or if it represents a nonlinear effect.

The paper is organized as follows: initially the physical problem, the governing
equations, and the relevant dimensionless parameters are described in more detail.
Next, the linearization is described for both axisymmetric and azimuthal perturba-
tions, and the numerical procedure for solving the resulting eigenvalue problem is
outlined. Subsequently, the results of the stability analysis are presented in the form
of dispersion relations and associated information for the two cases of identical and
different viscosity fluids. Finally, we summarize our main conclusions.

 

PHYSICAL PROBLEM

 

Governing Equations

 

We consider the situation of variable-viscosity miscible fluids in an unstable con-
figuration; that is, a heavier fluid placed above a lighter one in a vertically oriented
capillary tube, as shown in F

 

IGURE

 

 1. We assume a suitably defined Reynolds number
to be small, so that the motion is governed by the three-dimensional Stokes equations

 

(1)∇ u⋅ 0=

FIGURE 1. Sketch of the vertical capillary tube and the cylindrical coordinate system.
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(2)

(3)

 

These equations describe the conservation of mass, momentum, and species, respec-
tively. Here 

 

u

 

 represents the flow velocity, the gravitational acceleration 

 

g

 

 points in
the 

 

−

 

z

 

-direction given by unit vector 

 

e

 

g

 

, 

 

c

 

 indicates the concentration of the heavier
fluid,  denotes the viscous stress tensor, and 

 

D

 

 represents the diffusion coefficient,
which is assumed constant. Note that implicitly contained in the above set of equa-
tions is the Boussinesq approximation, which assumes that density variations are
significant in the gravitational term only.

Following other authors, the density 

 

ρ

 

 and the viscosity 

 

µ

 

 are assumed to be linear
and exponential functions of the concentration 

 

c

 

, respectively,

 

(4)

(5)

 

where 

 

ρ

 

1

 

 and 

 

µ

 

1

 

 indicate the density and viscosity of the heavier fluid, and 

 

ρ

 

2

 

 and

 

µ

 

2

 

 represent the counterparts for the lighter fluid. The mobility ratio 

 

R

 

 is given by

 

(6)

 

The governing equations are rendered dimensionless by introducing a character-
istic length 

 

L

 

*

 

, velocity 

 

U

 

*

 

, time 

 

T

 

*

 

, pressure 

 

P

 

*

 

, and density difference 

 

G

 

*

 

 in the
form

 

(7)

(8)

(9)

(10)

(11)

 

Note that the nondimensionalization is always carried out with the smaller viscosity,
so that a meaningful comparison can be made between cases in which either the
lighter or the heavier fluid is the more viscous.

 

(12)

(13)

(14)

 

where the Rayleigh number 

 

Ra

 

 is defined by

 

(15)

∇p ∇ τ⋅ ρgeg+=

∂c
∂t
----- u ∇c⋅+ D∇2c.=

τ

ρ ρ2 c ρ1 ρ2–( )+=

µ µ2eRc,=

R
µ1

µ2
------.ln=

L* d=

U* ∆ρgd2

µmin
----------------=

T *
µmin

∆ρgd
--------------=

P* ∆ρgd=

R* ∆ρ ρ1 ρ2.–= =

∇ u⋅ 0=

∇p ∇ τ⋅ ceg–=

∂c
∂t
----- u ∇c⋅+ 1

Ra
-------∇2c,=

Ra ∆ρgd3

Dµmin
----------------.=
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The Stokes equations, when formulated in cylindrical coordinates (r, θ, z), exhibit
terms of the form r−1, r−2, r−3, which lead to geometric singularities at the axis, r = 0.
Verzicco and Orlandi20 proposed rewriting the governing equations by replacing the
velocity components vr, vθ, and vz by qr = vr ⋅ r, qθ = vθ, and qz = vz, respectively.
Thus, by definition qr = 0 on the axis, which on a staggered grid avoids the problem
of singularities. The authors also demonstrate that alternative formulations (e.g.,
qθ = vq ⋅ r) neither enhance the accuracy nor simplify the discretization. Hence, we
used this formulation for our numerical analysis.

LINEAR STABILITY ANALYSIS

Linearization and Formulation of the Eigenvalue Problem

We linearize the above set of equations around a quiescent base state

(16)

where the base concentration profile is given by

(17)

The parameter δ denotes the thickness of the interfacial region. We assume that the
diffusive time scale of the base state is much larger than the characteristic time scale
of the instability growth, so that the base state can be held constant for the purpose
of evaluating the instability growth rate. The perturbations, denoted by a prime, are
assumed to have the form

(18)

where the “hatted” quantities represent axisymmetric eigenfunctions and β denotes
the azimuthal wave number. It should be noted that, due to the underlying geometry
of the problem, only integral values of β have physical significance. By substituting
the above relations into the dimensionless conservation equations, subtracting out
the base state and linearizing, we obtain the system of linear equations in terms of
qr, qθ and qz as

(19)

qr

qθ

qz

p

c

r θ z t, , ,( )

0

0

0

p

c

z( )

qr′

qθ′

qz′

p′
c′

r θ z t, , ,( ),+=

c 0.5 0.5 erf z
δ
--⎝ ⎠

⎛ ⎞ .⋅+=

qr′

qθ′

qz′

p′
c′

r θ z t, , ,( )

q̂r r z,( ) βθ( )cos⋅

q̂θ r z,( ) βθ( )sin⋅

q̂z r z,( ) βθ( )cos⋅

p̂ r z,( ) βθ( )cos⋅
ĉ r z,( ) βθ( )cos⋅

eσt,=

0
∂q̂r

∂r
-------- βq̂θ r

∂q̂z

∂z
--------+ +=
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(20)

(21)

(22)

(23)

This represents an eigenvalue problem with     and  as eigenfunctions
and σ as the eigenvalue of the system. There are three externally prescribed param-
eters in the form of the Rayleigh number Ra, the mobility ratio R, and the initial
interfacial thickness δ.

NUMERICAL IMPLEMENTATION AND BOUNDARY CONDITIONS

The computation domain for the solution of the eigenvalue problem extends from
the axis to the outer wall in the r-direction, that is, from 0 to 0.5, and from −l/2 to l/2
in the vertical z-direction, as shown in FIGURE 1. The domain length l has to be cho-
sen sufficiently large for its effect on the numerical eigenvalue and eigenfunction
results to be negligible.

Three-Dimensional Perturbations

The linear equations (20)–(23) are discretized by second order finite differences
in both the r- and z-directions. To concentrate the numerical resolution in the inter-
facial region, a non-equidistant grid is taken such that an appropriate concentration
of grid points is obtained in the interfacial region. The required numerical resolution
is established by means of test calculations. These show that for most cases Nr = 19
points in the radial direction is sufficient to keep the error in the eigenvalue to less
than 0.1%. The required number of points in the z-direction depends on the domain
length and the interface thickness δ. The largest calculations employ up to Nz = 91
and Nr = 23 points, which results in a matrix of size 5NzNr×5NzNr = 10,465×10,465.

At the outer wall of the tube (i.e., at r = 0.5), all velocity components are assumed
to vanish, as well as the normal derivative of the concentration perturbation. The ver-
tical domain boundaries are sufficiently far away from the interface that we can pre-
scribe homogeneous Dirichlet conditions for all velocity components, as well as for
the concentration perturbation. At the axis r = 0, qr = 0 since qr = vr ⋅ r. We do not
need to specify boundary conditions for the other velocity components or the con-
centration perturbation, at the axis, since the use of staggered grid implies that only
grid points for the radial velocity lie on the axis. For the pressure variable, no bound-
ary conditions are necessary, because we employ a staggered grid.

∂ p̂
∂r
------ eRc ∂

∂r
----- 1

r
---

∂q̂r

∂r
--------⎝ ⎠

⎛ ⎞ β2

r3
----- q̂r– 1

r
---

∂2q̂r

∂z2
----------- 2β

r2
------ q̂θ– R∂c

∂z
-----

∂q̂z

∂r
-------- R1

r
---∂c

∂z
-----

∂q̂r

∂z
--------+ + +=

1
r
---– β p̂ eRc ∂

∂r
----- 1

r
--- ∂

∂r
----- rq̂θ( )⎝ ⎠

⎛ ⎞ β2

r2
----- q̂θ–

∂2q̂θ

∂z2
----------- 2β

r3
------ q̂r– R∂c

∂z
-----

∂q̂θ
∂z

--------- Rβ
r
---∂c

∂z
----- q̂z–+ +=

∂ p̂
∂z
------ eRc 1

r
--- ∂

∂r
----- r

∂q̂z

∂r
--------⎝ ⎠

⎛ ⎞ β2

r2
----- q̂z–

∂2q̂z

∂z2
----------- 2R1

r
---∂c

∂z
-----

∂q̂z

∂z
--------+ + ĉ–=

σĉ ∂c
∂z
----- q̂z+ 1

Ra
------- ∂2ĉ

∂r2
-------- 1

r
---∂ĉ

∂r
----- β2

r2
----- ĉ– ∂2ĉ

∂z2
--------+ + .=

p̂, q̂r , q̂θ, q̂z, ĉ
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Axisymmetric Perturbations

To obtain information on the stability of purely axisymmetric perturbations, we
consider the case β = 0 separately. This provides an additional validation of the three-
dimensional approach in the limit of small wave numbers. To avoid boundary con-
ditions for pressure and also to save memory by reducing the total number of vari-
ables used in the computation, we conveniently rewrite the governing equations in
the stream function and vorticity variables.

Vorticity ω and stream function ψ are defined, as usual by

(24)

(25)

We assume an axisymmetric disturbance of the form

(26)

Using these relations and linearizing, similar to the three-dimensional case, we
obtain the system of linear equations

(27)

(28)

(29)

where  is set to zero on all domain boundaries and  vanishes on all boundaries
except for the outer wall, where it takes the value  At the far-field
boundaries the concentration perturbation is assumed to vanish, whereas along the
outer wall and the tube axis its normal derivative  tends to zero. A staggered
grid is not required here due to the absence of the pressure variable and of singular-
ities at the axis. Hence, a Chebyshev collocation method is used in the z-direction
with two separate subdomains that cover the regions z ≥ 0 and z ≤ 0, respectively, in
order to concentrate grid points at the interface. In the radial direction a highly accu-
rate, compact finite difference scheme of third order at the wall and up to tenth order
in the interior is used.21 More details about the numerical implementation are pub-
lished elsewhere.22

vr
1
r
---∂ψ

∂z
-------– ,= vz

1
r
---∂ψ

∂r
-------=

ω
∂vr

∂z
--------

∂vz

∂r
--------.–=
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ω′
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eσt.=

0 ∇2ψ̂ ω̂+=
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∂z
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⎛ ⎞ 2
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∂z2
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⎛ ⎞ 2∂ψ̂
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-------–+ + +=

2R
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r
-------∂c

∂z
-----∂3ψ̂
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-----+

σc 1
Ra
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r
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-------,–=

ψ̂ ω̂
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∂ĉ ∂r⁄
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FIGURE 2. Three-dimensional perturbations, dispersion relationships for δ = 0.1 and
Ra values: �, 5 ×102; �, 103; �, 5 ×103; �, 104; �, 105; �, 106; �, 107. For comparison,
the axisymmetric data are plotted as well. The growth rate for β = 1 is seen to exceed that
for β = 0 for all values of Ra.

FIGURE 3. Isocontours of the concentration eigenfunction  for β = 0 and 1 for
δ = 0.1 and Ra = 105.

ĉ
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RESULTS

Constant Viscosity

In FIGURE 2 the leading eigenvalue is plotted as a function of the wave number β
for several Ra values, ranging from 500 to 107, and a constant thickness of the inter-
face δ = 0.1. These dispersion relationships show that for small and intermediate
wave numbers, the curves for Ra > 106 become indistinguishable, implying that an
additional increase in Ra affects only the range of unstable wave numbers and
the short-wavelength cutoff, but not the most dangerous wave number or its growth
rate. It should be noted that the data for noninteger values of β are plotted in
FIGURE 2 to guide the eye, because only the integer values are of physical signifi-
cance. FIGURE 2 demonstrates that the azimuthal perturbation β = 1 is always more
unstable than its axisymmetric counterpart. The concentration eigenfunctions for
β = 0 and 1 are shown in FIGURE 3 for δ = 0.1 and Ra = 105. The presence of only
one sign in the eigenfunction for β = 1 indicates that the lighter fluid is rising in one
half of the capillary tube, with the heavier fluid sinking in the other half. The quali-
tative form of the fingers produced is illustrated in FIGURE 4.

FIGURE 4. Qualitative form of finite amplitude fingers for δ = 0.1 and Ra = 107.
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FIGURE 5. Dispersion relationships for various interface thickness values and Ray-
leigh numbers: �, 5 ×102; �, 103; �, 5 ×103; �, 104; �, 105; �, 107. β = 1 represents the
most amplified integer mode for all values of δ and Ra.
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For larger values of δ, the corresponding dispersion relationships are presented in
FIGURE 5. We observe a general trend of decreasing growth rate and smaller cutoff
wave number for increasing interface thickness. However, there is no qualitative
change in the shape of the concentration eigenfunction  with increasing thickness,
as is shown in FIGURE 6. From the dispersion relationships shown in FIGURES 2 and
5 we deduce that for all values of the interface thickness, β = 1 remains the most dan-
gerous mode. For this reason, we consider this wave number in more detail.

By extrapolating the growth rate for β = 1 and Ra = 107 to δ = 0, we find that the
maximum eigenvalue for a step-like concentration base state is approximately 0.028,
as shown in FIGURE 7. The variation of the growth rate σ with Ra, for various δ values
and β = 1, is shown in FIGURE 8. In general, thinner interfaces and larger Ra values
are seen to be destabilizing. For Ra > 106, the growth rate is seen to asymptotically
reach a plateau, the value of which depends on δ.

For each δ, a critical value Racrit can be identified below which the base state is
stable to axisymmetric perturbations. The existence of this critical value reflects the
stabilizing influence of the outer wall. The Racrit values found here for capillary
tubes are significantly higher than those reported elsewhere17 for Hele–Shaw cells.
This is to be expected, since the stabilizing influence by the walls should be stronger
in a capillary tube, where the perturbation is surrounded by the solid wall on all
sides. In a Hele–Shaw cell, on the other hand, the perturbations are affected by
the walls only in the direction normal to the gap, but not in the spanwise direction.
FIGURE 9 depicts the critical Rayleigh number Racrit as a function of δ, for β = 1 and
β = 0. For all interface thicknesses, the value of Racrit for β = 1 is smaller than
the corresponding value for β = 0. By linear regression through the data points for
β = 1, we obtain the relationship

(30)

This relationship indicates that Rayleigh numbers below O(920) are stable for all
base concentration profiles, with respect to any axisymmetric or three-dimensional
perturbation.

It is interesting to compare the above relationship (30) for the present, error func-
tion type base concentration profiles with the classical result2 dealing with unstable
density stratifications with a constant gradient dc/dz in a capillary tube. Taylor dem-
onstrated that such profiles are stable as long as

(31)

where

(32)

For relatively smooth base concentration profiles of the error function type (i.e., rea-
sonably large values of δ) the present criterion (30) should approach the classical
Taylor criterion (31). To check if this is the case, we rewrite (30) for dimensional δ as

(33)

In the first term on the left hand side, we approximate dc/dz by the value at z = 0

ĉ

Racrit 1800δ 920.+=

dc
dz
------ρ0gαd4

Dµ
-------------------------- 1087,≤

ρ ρ0 1 αc+( ).=

ddc
dz
------⎝ ⎠

⎛ ⎞ 1–
dc
dz
------ρ0gαd4

Dµ
--------------------------× 1800δ

d
--- 920.+≤
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(34)

For δ/d = 2, we thus obtain

(35)

dc
dz
------

z 0=

1

δ π
----------.=

dc
dz
------ρ0gαd4

Dµ
-------------------------- 1275,≤

FIGURE 7. The growth rate σ as a function of δ, for β = 0 (�) and β = 1 (�), with
Ra = 107. This indicates that for all values of the interface thickness, β = 1 remains more
dangerous than the axisymmetric mode.

FIGURE 8. The growth rate σ corresponding to the most dangerous wave number
β = 1 as a function of Ra for interface thickness δ: �, 0; �, 0.1; 	, 0.5; �, 1; �, 2. The
dashed line corresponds to extrapolated data for the step function profile.
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FIGURE 9. The critical Rayleigh number Racrit as a function of the interfacial thick-
ness parameter δ, for the axisymmetric mode β = 0 (�) and the most dangerous three-
dimensional mode β = 1 (�). For all values of δ, the axisymmetric mode is seen to have a
larger value of Racrit.

FIGURE 10. Isocontours of the concentration eigenfunction  for R = 1 and R = −1 for
δ = 0.5, β = 1, and Ra = 105. The eigenvalue corresponding to both cases is σ = 7.97×10−3.
The maxima of the eigenfunctions are always shifted toward the less viscous fluid.

ĉ
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which is indeed close to the relationship, (31), derived by Taylor. The slightly higher
value than Taylor’s result is expected, since we based the comparison on the largest
value of the concentration gradient, rather than its average value.

Variable Viscosity

FIGURE 10 shows the concentration eigenfunction contours for R = 1 (less viscous
fluid below) and R = −1 (less viscous fluid above). Although the growth rates are
identical, the maxima of the eigenfunctions are shifted in opposite directions; that is,
always toward the less viscous fluid. It has been demonstrated18 that a simple trans-
formation of the governing equations (Stokes equations) shows the eigenvalues to be
equal for both the cases. As a consequence we limit our discussion to positive values
of the mobility ratio.

FIGURE 11 displays the dispersion relations for δ = 0.1, Ra = 107, and various val-
ues of the mobility ratio R. An increase in the mobility ratio R dampens the growth
of the instability, due to the higher average viscosity of the two-fluid system. How-
ever, FIGURE 12 shows a crossover of the most unstable mode from azimuthal to axi-
symmetric for large values of R and Ra > 105. Hence the damping influence, with
increasing mobility ratio, is much stronger on the three-dimensional mode than the
corresponding axisymmetric mode for large Rayleigh numbers. However, no such
change of stability occurs for lower Rayleigh numbers, because all the unstable
modes in this case are equally damped.

For a constant mobility ratio, similar to the constant viscosity case, the growth
rate increases with the Rayleigh number, until it reaches a plateau at about Ra = 105.
Furthermore, the eigenfunctions and finger shapes are similar to the constant viscos-
ity case (cf. FIGS. 3 and 10) except that they are no longer symmetric but shifted
toward the less viscous fluid.

FIGURE 11. Growth rate as a function of β for various mobility ratios R: �, 0; �, 0.5;
�, 1; �, 2; 	, 3; �, 4; �, 5 with δ = 0.1 and Ra = 107. Increasing the mobility ratio has a
stabilizing effect.
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FIGURE 13 shows the variation of the maximum growth rate with the interface
thickness for β = 0 and β = 1, at two different values of the mobility ratio. We find
that for larger mobility ratios the highest growth rates occur at an intermediate value
of the interfacial thickness. This is in contrast to the constant viscosity case, for
which the growth rate is seen to decline monotonically with increasing interface
thickness (compare with FIGS. 2 and 5). FIGURE 13 also shows that the most unstable
interface thickness increases with the mobility ratio.

FIGURE 12. Non-uniform damping with increasing mobility ratio results in a cross-
over of the most unstable mode from β = 1 (�) to β = 0 (�). For δ = 0.1 and Ra = 107,
crossover occurs at R = 3.48.

FIGURE 13. The growth rate σ as a function of δ for , R = 0, β = 0; ,
R = 0, β = 0; , R = 0, β = 0; , R = 0, β = 0. In all cases Ra = 107. For larger
mobility ratios, interfaces with intermediate thicknesses are seen to be most unstable.
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The shapes of the eigenfunctions shown in FIGURE 14 explain the emergence of
this most unstable interface thickness. We note that the vertical extent of the eigen-
functions is affected by both of the two externally imposed length scales, namely, the
tube diameter and the interface thickness. Due to this influence of the tube diameter,
for interface thicknesses much smaller than the tube diameter, the vertical scale of
the eigenfunction does not decrease at the same rate as δ. Conversely, for interface
thicknesses larger than the tube diameter, the size of the eigenfunction does not
increase as strongly with δ. As a result, for thin interfaces the eigenfunction extends
over a region several times wider than the interface. Since it has to be anchored in
the region of the unstable density gradient, it has to extend substantially into the high
viscosity fluid, which exerts a stabilizing influence. In contrast, for thick interfaces
the eigenfunction can reside almost entirely within the interfacial region, so that its
maximum can shift substantially toward the low viscosity region. In other words, the
eigenfunction can select a location that represents an optimal combination of unsta-
ble density gradient and low viscosity fluid. This is confirmed by TABLE 1, which
provides a comparison of the normalized density gradient and the viscosity for two
values of δ. The table shows that for the thicker interface the normalized concentra-
tion gradient, and hence, the driving force behind the instability, has not decreased
much, but the fluid viscosity at the location of the eigenfunction maximum shows
that its completely in the lower viscosity fluid for δ = 0.5. Hence, the thicker inter-
face gives rise to a stronger overall instability.

CONCLUSIONS

The current investigation presents linear stability results for the miscible interface
formed by placing a heavier fluid above a lighter fluid, with different viscosities, in
a vertically oriented capillary tube. The analysis is based on the three-dimensional
Stokes equations coupled to a convection–diffusion equation for the concentration
field in cylindrical coordinates. By linearizing this set of equations, a generalized
eigenvalue problem is formulated, whose numerical solution yields both the growth
rate as well as the two-dimensional eigenmodes as functions of the dimensionless
parameters characterizing the problem; namely, the Rayleigh number, the mobility
ratio, and the interface thickness.

For constant viscosity case, the dispersion relations show that for all Ra values
and interface thicknesses the azimuthal mode β = 1 represents the most unstable dis-
turbance. In particular, its growth rates are consistently higher than those of the axi-
symmetric mode. The most amplified mode thus corresponds to the formation of one
finger of the lighter fluid rising over one half of the tube cross section, with a second
finger of the heavier fluid falling in the other half. This is in agreement with other

TABLE 1. Concentration gradient and fluid viscosity at the location of the eigenfunction
maximum for Ra = 106 and R = 5

δ

0.1 0.61 2.583

0.5 0.56 2.035

cz cz( )
max

⁄ µ µmin⁄
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experimental observations.16 The stability results, furthermore, indicate the exist-
ence of a critical Rayleigh number Racrit ≈ 920, below which all perturbations are
stable. For relatively thick interfaces, the present data for Racrit are seen to approach
the classical value2 for a uniform density gradient. For a constant interface thickness,
the growth rates reach a plateau as Ra > 106. The detailed numerical analysis for
density-driven instability of identical viscosity miscible fluids is given elsewhere.22

When the viscosity of either fluid is increased, the instability is damped compared
to the constant viscosity case. There is a crossover of the most unstable mode from
azimuthal to axisymmetric for large values of R and Ra > 105. Hence, the damping
influence, with variable viscosity, is much stronger on the three-dimensional mode
than the corresponding axisymmetric mode for large Rayleigh numbers. It is also
seen that the growth rate does not depend on which of the two fluids is the more vis-
cous. For every parameter combination the maximum of the eigenfunctions tends to
shift toward the less viscous fluid. For a fixed mobility ratio, similar to the constant
viscosity case, the growth rates are seen to reach a plateau for Rayleigh numbers in
excess of 106. An interesting observation is that at higher mobility ratios the largest
growth rates and unstable wave numbers are obtained for intermediate interface
thicknesses. Thus, with different viscosity fluids, thicker interfaces can be more
unstable than their thinner counterparts.

Other experiments16 had shown that a small amount of net flow through the cap-
illary tube can stabilize the azimuthal instability mode and maintain an axisymmet-
ric evolution of the flow. To analyze the effect of a net flow onto the linear stability
of the interface, we need to include a base flow of Poiseuille type in our analysis.
Efforts in this direction are currently underway.
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