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High-resolution simulations are employed to identify and analyse the mechanisms
dominating miscible porous media displacements generated by inclined injection wells.
Compared to vertical injection wells, significant differences are observed that strongly
influence breakthrough times and recovery rates. Constant density and viscosity
displacements, for which the velocity field is potential in nature, demonstrate the
existence of pronounced flow non-uniformities, due to the interaction of the inclined
well with the reservoir boundaries. These non-uniformities deform the fronts during
the initial displacement stages.

In the presence of a viscosity difference, the non-uniformities of the potential flow
field result in a focusing of the fingering instability. If the fluids also have different
densities, a gravity tongue will reinforce the dominant finger along one front, while
a gravitational instability leads to the disintegration of the dominant finger along
the other front. Hence, the two fronts emerging from the inclined injection well
usually evolve very differently from each other for variable density and viscosity
displacements.

For inclined injection wells and sufficiently large mobility ratios, gravity tongues
are seen to evolve dendritically for an intermediate range of density contrasts. While
mild gravitational forces are necessary to create the gravity tongue in the first place,
large density differences will suppress the growth of the dendritic side branches. Since
the dendritic branches appear along the side of the gravity tongue that should be
stable according to traditional stability criteria, it can be concluded that the tip region
plays a crucial role in their formation.

1. Introduction
Miscible flooding refers to a process frequently employed in the petroleum industry,

in which a miscible solvent injected into oil-bearing rock formations displaces the
oil towards the production well. In some variations of this technique, the injection
is accomplished by combining vertical wellbores and hydraulically induced fractures:
see figure 1 (Bilhartz et al. 1978). Such fractures can extend several hundred feet away
from the wellbore and are usually vertically oriented. Hence they allow the injection
of the miscible solvent in a vertical, plane source configuration, rather than in the
more traditional line source configuration.

† Author to whom correspondence should be addressed.
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Figure 1. A linear displacement using hydraulically induced fractures to create a vertical
plane source (a), and a simpler radial displacement using a vertical line source (b).

The vertical hydraulic fractures are created by injecting a viscous, sand-laden slurry
into a rock formation at rates that are much higher than matrix flow in the porous
medium can accommodate. Thus, the rock fails and a fracture propagates. If the fluid
pressure of the porous srock formation is unaltered from its original state, the fracture
will generally propagate vertically and laterally, forming two ‘wings’ of near-equal
lengths that emanate in opposite directions from the vertical wellbore: see figure 1.
Continued injection of the viscous sand-laden slurry further propagates and fills the
fracture, until the desired fracture dimensions are attained. The viscous liquid phase
of the slurry is designed to rapidly lose most of its viscosity within hours of being
injected, so that it easily leaks into the surrounding porous rock. It leaves behind
a fracture held open with sand whose permeability is usually at least two orders
of magnitude larger than the permeability of the rock formation being fractured.
In this fashion, the fracture becomes a conduit by which a miscible injected fluid
can be easily transmitted horizontally from the vertical wellbore at the centre of the
fracture, thereby creating a planar injection source. More details of this technology
are described by Howard & Fast (1970).

Vertical plane source configurations for miscible flooding can increase the oil sweep
efficiency relative to radial displacements, by lowering viscous fingering and reducing
the stranded oil pockets that are common to most radial flooding patterns (Taber &
Seright 1992). However, in older oil fields, where the in situ fluid pressures of oil-
bearing rock formations have been altered from their original state, hydraulically
induced fractures have a greater chance of not being vertical. Orientations of up
to 49◦ from the vertical direction have been documented (Wright & Conant 1995).
Considering that miscible floods via hydraulic fractures are usually implemented in
older oil fields where the pressure regimes have been altered, the occurrence of non-
vertical orientations is of great concern. This provides the motivation for the present
investigation, which aims to explore the influence of such a non-vertical orientation
on miscible displacement processes.

The last half-century has seen enormous progress in our understanding of porous
media displacements and the instabilities to which they give rise. Following the
early seminal investigations by Hill (1952), Saffman & Taylor (1958), and Chouke,
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VanMeurs & Vander Poel (1959), further experimental and theoretical research has
provided additional insight on many aspects of such flows, as summarized in the
reviews by Homsy (1987) and Yortsos (1990). Linear stability analyses of rectilinear
and radial miscible displacements dominated by diffusion and/or dispersion were put
on sound theoretical footing by the work of Tan & Homsy (1986), Hickernell &
Yortsos (1986), Tan & Homsy (1987), Yortsos & Zeybek (1988) and Riaz & Meiburg
(2003a). Subsequent work addressed the influence on the interfacial stability of such
features as tangential velocity difference across the interface (Rogerson & Meiburg
1993a), non-monotonic viscosity profiles (Manickam & Homsy 1993), variable
density effects (Manickam & Homsy 1995) and concentration-dependent diffusion
(Riaz & Meiburg 2004). In spite of the early work by Peaceman & Rachford
(1962), high-resolution nonlinear simulations began to have a stronger impact on
the field only more recently. The investigations by Tan & Homsy (1988), Christie
(1989), Zimmerman & Homsy (1992b), Rogerson & Meiburg (1993b), Manickam &
Homsy (1994), Tchelepi (1994), Chen & Meiburg (1998a), Pankiewitz & Meiburg
(1999), De Wit & Homsy (1999), Ruith & Meiburg (2000) and Riaz & Meiburg
(2003b) explore various aspects of two- and three-dimensional miscible displacements,
based on the assumption of homogeneous permeability and isotropic dispersion.
Heterogeneous displacements are addressed by Tan & Homsy (1992), Chen & Meiburg
(1998b), Camhi, Meiburg & Ruith (2000) and Riaz, Pankiewitz & Meiburg (2004),
whereas Zimmerman & Homsy (1991, 1992a), Tchelepi (1994) and Yang & Yortsos
(1998) focus on the influence of anisotropic dispersion.

In all of the above studies, planar or line injection sources are assumed that
are oriented orthogonally to the main flow direction. Hence they do not provide
information on the central question under consideration here, which concerns the
influence of inclined injection wells. Section 2 sets up the model problem that will be
studied in order to address this issue. The governing equations, boundary and initial
conditions will be stated, and the computational approach will be outlined briefly.
Subsequently, § 3 will describe the nature of the potential flow field, which is due to
the reservoir geometry and the injection configuration alone, and which governs the
simplified problem of a constant density and viscosity displacement. Understanding
the features of this potential flow subsequently will be crucial for analysing the
mechanisms that dominate variable density and viscosity displacements, as described
in § 4. Section 5 summarizes the findings from this investigation and discusses the
main conclusions to be drawn.

2. Problem formulation
In order to investigate miscible porous media displacements generated by inclined

injection wells, we focus on the two-dimensional model configuration of a horizontal
reservoir of height H , length W , and aspect ratio A = H/W : see figure 2. An injection
well located at the centre, and inclined by an angle α with regard to the vertical, injects
a constant rate Q of fluid volume per unit spanwise width, equally distributed along
its length. The injected fluid of density ρ1 and viscosity μ1 is miscible in all proportions
with the resident fluid of ρ2 and μ2, subject to a constant diffusion coefficient D. The
variable c indicates the local volume concentration of the injected fluid. The upper
and lower boundaries of the reservoir are impenetrable, while vertical production
wells are placed at the left and right reservoir boundaries. We aim to investigate the
temporal evolution of the front separating the injected and the displaced fluid, from



292 E. Upchurch and E. Meiburg

H

W

x

y

Wellbore

c = 1

α

μ = μ1
ρ = ρ1

c = 0
μ = μ2
ρ = ρ2

Figure 2. Schematic of the miscible flow due to an inclined planar injection source. The
resident fluid 2, characterized by viscosity μ2 and density ρ2, is displaced by the injected fluid
1, with μ1 and ρ1. The horizontal rectangular reservoir is of height H and width W , and it
has a constant permeability k. The injection source is inclined by an angle α with regard to
the vertical direction.

the start of the injection up to the time when the displacement front first reaches one
of the production wells.

2.1. Governing equations

We assume the reservoir permeability k to be constant and isotropic, so that
the permeability is identical in the horizontal and vertical directions. Under these
conditions, Darcy’s law takes the form

∇p = −μ

k
u − ρg∇y, (2.1)

where p represents pressure, u is the fluid velocity, and g indicates the gravitational
acceleration. The concentration field c of the displacing fluid is governed by a
convection–diffusion equation of the form

∂c

∂t
+ u · ∇c = (1 − c) ∇ · u + D∇2c, (2.2)

where

∇ · u = q (2.3)

denotes the local source strength of the injected fluid (Chen & Meiburg 1998a).
A few comments are in order regarding the assumption of a constant and isotropic

diffusion coefficient D between the injected and displaced fluids in (2.2). Frequently,
at the slow displacement velocities found in petroleum reservoirs, molecular diffusion
dominates over flow-induced dispersion, as first indicated by Blackwell, Rayne &
Terry (1959) and later confirmed by van der Poel (1962), Perkins & Johnston (1963)
and Stalkup (1983). On the other hand, the higher fluid velocities commonly employed
in laboratory experiments result in velocity-dependent, anisotropic dispersion (Taylor
1953) to dominate, as described by Perkins & Johnston (1963), Gardner & Ypma
(1984), Christie & Bond (1986), Christie (1989), Coskuner & Bentsen (1990), Christie,
Jones & Muggeridge (1990), Bacri, Salin & Woumeni (1991), Bacri et al. (1992),
Zimmerman & Homsy (1992b), Tchelepi (1994), Petitjeans & Maxworthy (1996),
Chen & Meiburg (1996) and Petitjeans et al. (1999), among others. A more detailed
discussion of this topic is provided by Upchurch (2005).

We non-dimensionalize (2.1)–(2.3) by scaling all lengths with H , time with H 2/Q,
and velocity with Q/H . Note that this approach differs from the diffusion-based
scaling employed by other authors (e.g. Tan & Homsy 1986; Rogerson & Meiburg
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1993a; Tchelepi 1994; Manickam & Homsy 1995) for problems without an externally
imposed length scale. The variables p, ρ, μ and c are rendered dimensionless by using
μ1Q/k, �ρ = ρ2 − ρ1, μ1 and c1, respectively. As dimensionless forms of (2.1)–(2.3)
we thus obtain

∇ · u = q, (2.4)

∂p

∂x
= −μu, (2.5)

∂p

∂y
= −μv − Gρ, (2.6)

∂c

∂t
+ u · ∇c = (1 − c) ∇ · u +

1

Pe
∇2c. (2.7)

Here the gravity parameter

G =
(ρ2 − ρ1) Hgk

μ1Q
(2.8)

represents the ratio of gravitational to viscous forces, while the Péclet number

Pe =
Q

D
(2.9)

indicates the relative importance of convective and diffusive transport on the
concentration field.

It remains to specify the variation of density and viscosity with the injected fluid
concentration. Here we follow earlier authors (e.g. Tan & Homsy 1986) and employ

ρ(c) =
ρ2

(ρ2 − ρ1)
− c (2.10)

along with

μ(c) = eR(1−c), R = ln

(
μ2

μ1

)
. (2.11)

By cross-differentiating (2.5) and (2.6) to eliminate pressure, and defining the vorticity
ω according to

ω =
∂v

∂x
− ∂u

∂y
, (2.12)

we obtain

ω = −R

(
u

∂c

∂y
− v

∂c

∂x

)
+

G

μ

∂c

∂x
. (2.13)

The above form of the vorticity equation is equivalent to the one first shown by Heller
(1963); see also De Josselin De Jong (1960). It indicates that vorticity is present in
the flow field at locations where density and viscosity vary, as a result of local
concentration gradients. Consequently, the vorticity variable provides a well-suited
tool for analysing the effects of viscosity and density variations, and their mutual
interactions, onto the overall displacement flow. Hence we follow other authors
(Tryggvason & Aref 1983; Meiburg & Homsy 1988; Tan & Homsy 1988; Chen &
Meiburg 1998a; Ruith & Meiburg 2000; and others), and decompose the velocity field
into a potential component upot that reflects the presence of the injection well and
the boundaries, and a rotational component urot that captures the effects of viscosity
and density variations

u = upot + urot . (2.14)
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Finally, we introduce the streamfunction ψ according to

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (2.15)

Our system of governing dimensionless equations thus takes the form

∇2ψ = −ω, (2.16)

ω = −R∇ψ · ∇c +
G

μ

∂c

∂x
, (2.17)

along with (2.7) for the concentration field. As boundary conditions for the stream-
function and concentration fields, we have

x = ±0.5

A
:

∂ψ

∂x
= 0,

∂c

∂x
= 0, (2.18)

y = ±0.5 : ψ = 0,
∂c

∂y
= 0. (2.19)

Note that the above conditions effectively impose symmetry at the left and right
boundaries.

Ideally, we would impose the initial condition of potential flow everywhere, along
with c = 1 at the source location and c = 0 elsewhere. Physically, such a discontinuous
initial condition for the concentration field would be smoothed in time by diffusion.
Computationally, however, the initial discontinuity can trigger unphysical oscillations,
and hence numerical instability. Hence, we spread out the initial concentration front
over a small distance on each side of the source by means of an error function
distribution, in order to obtain a smooth initial concentration field. For details, the
reader is referred to Upchurch (2005).

2.2. Computational approach

The simulations typically employ a computational domain of aspect ratio A = 1/10,
which is discretized into 2048 × 200 grid points. Test simulations found this
discretization to be sufficient for the range of Péclet numbers, mobility ratios
and gravity parameters employed in the present investigation. In particular, this
discretization ensures that numerical diffusion is always significantly smaller than
physical diffusion. The concentration equation is stepped forward in time by means of
a second-order-accurate alternating direction implicit (ADI) technique (Peaceman &
Rachford 1955), where the fluid velocities in the nonlinear term are taken at the old
time level. The Poisson equation for the rotational component of the streamfunction
is solved by a spectral approach (Canuto et al. 1988) in the x direction, combined
with 6th-order compact finite differences (Lele 1992) in the y direction.

2.2.1. Representation of the potential flow field

The inclined line source is discretized into N point sources of equal strength,
as sketched in figure 3. The horizontal boundaries at the top and bottom of the
computational domain are accounted for by an infinite (in the y direction) series of
mirror images of these sources, based on the closed-form expressions provided by
Lamb (1932). In order to avoid singularities in the flow field, the point sources within
the computational domain, as well as their extensions immediately above and below,
are smoothed according to a Gaussian distribution of radius ξ , as described in detail
in Upchurch (2005). Typically, we chose N = 200 and ξ = 0.005. These parameters
were selected such that a further increase in N did not result in a noticeable change
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Figure 3. Schematic showing the use of smoothed point sources to represent the inclined
injection well. The method of images is employed to account for the top and bottom reservoir
boundaries.

of the flow field. Note that for these parameters there exists substantial overlap
of the smoothed point sources, so that the non-uniformity of the injection well is
minimized. Furthermore, at the start of the simulation the error-function-like fronts
are located beyond the radius of these smoothed point sources, so that the remaining
non-uniformities do not affect the fronts.

2.3. Validation

The simulation procedure was validated by comparing both early and late time
results for vertical injection wells to published data. For early times, unstable viscosity
ratios R > 0 and G = 0, the preferred wavenumber of emerging fingers for a vertical
injection well was compared with linear stability results of Tan & Homsy (1986),
which are based on the quasi-steady-state assumption. Good quantitative agreement
was obtained: see figure 4. For late times, we compared long-term simulation results
for vertical injection wells, R > 0 and G > 0, with corresponding data obtained by
Tchelepi (1994). Close qualitative and quantitative agreement was observed for both
the growth of the mixing region and the number of well-developed fingers. More
details can be found in Upchurch (2005).

3. Characteristics of the potential flow field
A vertical source (α = 0◦) yields purely horizontal streamlines and a constant

velocity magnitude of one half, except for right at the injection source, where
the velocity decreases to zero due to the smoothing of the point sources. Placing
the injection source at an inclined angle will deform the streamlines, due to the
interaction of the source with the impenetrable top and bottom reservoir boundaries.
Near the line source, the streamlines will be oriented perpendicularly to the source.
On the other hand, the presence of the reservoir boundaries enforces a horizontal
streamline direction in the far field. Consequently, the potential velocity field develops
a degree of non-uniformity that increases with the inclination angle α. Example
streamline patterns are shown in figure 5 for α = 30◦, 45◦ and 60◦. Note that along the
central section of the line source the streamlines maintain a direction approximately
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Figure 4. Comparison of the preferred early-time wavenumbers obtained in the present,
nonlinear simulations, with the linear stability results of Tan & Homsy (1986), for R = 3, after
Upchurch (2005). Good quantitative agreement is obtained. Following those authors, time in
this figure is rendered dimensionless via diffusive scaling.
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Figure 5. Potential flow streamlines for α = 30◦, 45◦ and 60◦. The streamlines were generated
by tracing the velocity field, starting from equally spaced locations along the line source. The
inclination of the line source, in combination with the impenetrable top and bottom reservoir
boundaries, causes the potential velocity field to be non-uniform near the injection well. For
large inclination angles, a stagnation point is seen to emerge where the line source forms an
acute angle with the boundary.
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Figure 6. Velocity magnitude contours for α = 30◦, 45◦ and 60◦, respectively. The contour
interval is 0.015. In the vicinity of the acute angle, near the stagnation point, an area of slow
flow exists, while the region of the obtuse angle shows accelerated flow.

perpendicular to the source. However, the presence of reservoir boundaries causes
the emergence of a stagnation point where the source forms an acute angle with
the boundary. As α increases, this stagnation point moves farther away from the
intersection of the well with the reservoir boundary. It causes some of the injected
fluid to turn around and to flow across the injection well. Hence the local volume
flux increases on the other side of the well, where it forms an obtuse angle with the
boundary.

A detailed evaluation shows that the velocity maximum found in this region remains
fairly constant at about 0.76 � |umax| � 0.78 for angles in the range 30◦ � α � 60◦:
see figure 6. Far away from the injection well, the velocity field approaches a uniform
parallel flow with constant velocity for all cases. We can estimate the region of
non-uniformity to extend over a distance of O(tan α) away from the centre of the
domain.

The non-uniform potential flow velocity field distinguishes the present displacement
from earlier, rectilinear displacements in which the well was oriented perpendicularly
to the main flow direction, e.g. Tan & Homsy (1988) and Ruith & Meiburg (2000).
This non-uniform flow is expected to affect the displacement front in multiple ways.
Firstly, even if the front were convected as a passive scalar, it would be stretched
and tilted as a result of local potential velocity gradients. Secondly, for unfavourable
mobility ratios the variations in the potential velocity field will result in uneven
fingering along the front. In regions of high velocities normal to the front, viscous
fingering will be amplified, so that we expect to observe more and stronger fingers. On
the other hand, in regions of smaller fluid velocity fingering activity should decrease.
Finally, for variable density displacements the stretching and tilting of the interface
by the non-uniform potential velocity field can be expected to create local regions of
unstable density stratification, in which gravitational fingering may occur. The goal
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Figure 7. Early (a)–(d) and late (e)–(h) time displacement front configurations for R = G = 0,
Pe = 2000 and source inclination angles of α = 0◦, 15◦, 30◦ and 60◦, respectively. For these
constant density and viscosity displacements, the concentration field is passively convected by
the potential velocity field. During the early stages, the fronts are deformed as a result of the
non-uniformity of the potential velocity fields in the vicinity of the injection wells. Later on,
they are being convected in the nearly uniform velocity far field, without significant further
deformation.

of the present investigation is to explore how these scenarios play out quantitatively,
and how they are coupled to secondary, vortical flow patterns.

4. Results
4.1. Negligible viscosity difference, R = 0

4.1.1. Constant density displacements, G = 0

Constant viscosity and density displacements allow us to examine how the potential
flow field influences the miscible flood front. Under these conditions, the front is
convected by the potential flow field as a passive, diffusing scalar. Figure 7 displays
representative displacement fronts for various source inclinations α, at both early and
late times. As the source angle increases, the distortion of the front during the early
stages of the displacement becomes more pronounced, in accordance with the growing
spatial non-uniformities of the potential flow field. In particular, the acceleration
and deceleration of the front near the velocity maximum and the stagnation point,
respectively, can be recognized. Note that the stretching and tilting of the front takes
place during the early stages only, when the front migrates through the non-uniform
regions of the potential flow field in the vicinity of the injection source. For these
early stages of the displacement, the local velocity of the front depends strongly on
the inclination angle. Since the non-uniformity of the potential velocity field extends
a distance of O(tan α) away from the centre of the domain, and the front moves with
O(1) maximum horizontal velocity, the early stages last for O(tan α) dimensionless
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time units. During the later stages, the front finds itself in regions of nearly uniform,
parallel potential flow, and its velocity asymptotically reaches a value of one half.
Any deformation during this phase is due to a combination of molecular diffusion
and flow-induced dispersion (Taylor 1953; Petitjeans & Maxworthy 1996; Chen &
Meiburg 1996; Petitjeans et al. 1999).

As the source inclination angle increases, the stagnation points located at the
horizontal reservoir boundaries move away from the intersection of these boundaries
with the line source. As discussed above, this causes a fraction of the injected
fluid to turn back towards the source. Hence, the section of the front that crosses
the stagnation point streamline undergoes continued stretching. In the absence of
diffusion, this stretching would persist for all times, and the stretched interface would
reach the top and bottom reservoir boundaries only asymptotically. For the present
miscible case, however, diffusion causes the injected fluid to spread to these boundaries
after a time that depends on Pe.

4.1.2. Variable density displacements, G > 0

Equation (2.17) states that variable density displacements result in the production of
vorticity along the interface, due to the presence of horizontal concentration gradients.
For constant permeability and viscosity, the dimensional vorticity field is given by

ω = −gk

μ
ρx. (4.1)

By integrating across the finite-width interface, we can determine the circulation-per-
unit interface length as

|γ | =
gk

μ
�ρ cos θ, (4.2)

where θ is the local angle of inclination of the interface with respect to the vertical
direction. The overall circulation associated with each front between the top and
bottom reservoir boundaries then is

|Γ | =
gk �ρ H

μ
. (4.3)

As shown in figure 8 for a set of representative angles and G = 0.5, this circulation
destroys the point symmetry of the flow with regard to the centre of the domain. It
rotates the displacement fronts in such a way that the lighter fluid moves above the
denser one, i.e. into a gravitationally stable position; see also the earlier observations
by Christie et al. (1990), Tchelepi (1994) and Ruith & Meiburg (2000). For the purpose
of determining a characteristic time scale associated with the interface rotation, let us
assume that all of the circulation associated with a front is concentrated in a point
vortex at the centre of the front (y = 0). The angular velocity induced by this point
vortex at the upper and lower reservoir boundaries provides a characteristic time scale
for the interface rotation in the form of

trot =
Hμ

gk �ρ
. (4.4)

The early frontal shape is governed by the interaction of gravitational rotation and the
deformation due to the non-uniform potential flow. For the right-propagating fronts
in figure 8, both of these effects tend to rotate the front in the clockwise direction. For
the left-propagating fronts, the non-uniformity due to the injection well tilts the front
in the clockwise direction, while gravity causes a rotation in the opposite direction.
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Figure 8. Early (a)–(d) and late (e)–(h) time displacement front for R = 0,G = 0.5, Pe = 2000
and source inclination angles of α = 0◦, 15◦, 30◦ and 60◦, respectively. The density difference
results in the gravitational rotation of the interfaces, thereby breaking the symmetry of the
flow. For α � 30◦, the left front is tilted rapidly enough to suppress gravitational fingering. For
α = 60◦, notice the incipient fingering in the upper section of the left interface at late times.

The figure demonstrates that for early times the source effect dominates. During the
later stages, however, the front has moved away from the source, so that the influence
of the non-uniformity declines, whereas gravity maintains its action. Hence, during
the later flow stages in figure 8 the left frontal shapes are dominated by gravity for
all but the largest source inclination angle. With regard to the overall propagation
velocity of the left front, the opposing influences of the non-uniformity and gravity
partially cancel each other. Hence the left front propagates more slowly than the right
one, which reaches the vertical boundary of the domain (‘breaks through’) first.

An interesting question concerns the long-term evolution of the left-propagating
front in figure 8(d, h). As one possibility, the continued action of gravity might cause
the front to rotate into a gravitationally stable configuration, until it resembles the
frontal shapes of figures 8(a–c) and 8(e–g). Alternatively, we note that in figure 8(d , h)
denser (black) fluid is situated above less dense (white) fluid, so that the possibility
of a gravitational instability at the interface arises. In fact, close inspection of
figure 8(d , h) indicates the presence of small undulations along the top section of
the left-propagating front at late times, which reflect the incipient stages of such an
instability.

As G increases to 1, this instability becomes clearly visible already during the earlier
stages (see figure 9), and significant gravity-driven fingering can be observed. This
fingering process encapsulates pockets of the more viscous fluid behind the front,
which gradually diffuse into the surrounding injected fluid. For long times, the frontal
tilting by gravity results in lighter fluid being placed above heavier fluid, so that any
fingering activity ceases.
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Figure 9. Displacement fronts for R = 0, G = 1, Pe = 2000 and source inclination angles of
α = 0◦, 15◦, 30◦ and 60◦, respectively. For this larger value of G, the tilting of the left front
proceeds more rapidly. However, for the largest source inclination angle gravitational fingering
sets in before the front has been rotated sufficiently far to suppress the gravitational instability.

Analysing the gravitationally unstable situation of a denser fluid placed above
a lighter one along a quiescent front, Manickam & Homsy (1995) identify the
characteristic time scale for the growth of gravitational fingers as

tgrav =
Dμ2

g2k2 �ρ2
. (4.5)

Hence, for gravitational fingers to grow before the left interface has been rotated
sufficiently to suppress such fingering, the ratio

trot

tgrav

= Pe G (4.6)

has to be sufficiently large. The required value of Pe G for gravitational fingering to
occur depends on the source angle, as the interface has to be rotated further for large
α in order to suppress gravitational fingering. The comparison of figures 8 and 9 is
consistent with the scaling law (4.6), in that it shows gravitational fingering becoming
more prominent for increasing G, even though the interface is rotated into a stable
position more rapidly.

In summary, even for the relatively simple situation of a constant viscosity displace-
ment, we identify three time scales associated with (i) the propagation of the front
through the non-uniform part of the potential velocity field near the injection well,
(ii) the rotation of the front due to gravitational vorticity, and (iii) the gravitational
fingering instability. The relative magnitude of these three time scales determines the
evolution of the flow.
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Figure 10. Displacement fronts for R = 1, G = 0, Pe = 2000 and source inclination angles of
α = 0◦, 15◦, 30◦ and 60◦, respectively. As the angle of inclination grows, the uniform viscous
fingering pattern gives way to configurations dominated by a single finger propagating along
the reservoir boundary. This reflects a focusing of the viscous fingering instability by the
velocity maximum in the non-uniform potential flow field.

4.2. Moderate viscosity difference, R = 1

4.2.1. Constant density displacements, G = 0

Even a moderate amount of unfavourable viscosity difference results in the growth
of fingers for the case of a vertical injection well: see figure 10 (a, e). Here the fingering
pattern is rather homogeneous, as the potential velocity field is spatially uniform.

For a source inclination angle of α = 15◦, the spatial variations in the potential
velocity field begin to modify the fingering pattern. Fingers grow more rapidly in
the region of the obtuse angle between the source and reservoir boundary, where
the potential flow is accelerated. Conversely, their growth is damped in the vicinity
of the stagnation points where the source and the reservoir boundary form an
acute angle. This observation is consistent with the basic stability criterion for
viscous fingering (Saffman & Taylor 1958; chouke et al. 1959), which states that
the destabilizing influence is proportional to the product of the viscosity difference
and the velocity component normal to the interface. However, this influence of
the potential flow field non-uniformity is limited to early times. During the later
stages the fronts move through a nearly uniform, parallel potential flow, so that the
fingering pattern becomes more uniform. Consequently, near the time of breakthrough
the fingering patterns for α = 0◦ and 15◦ are quite similar.

Larger angles of inclination give rise to more pronounced differences. For α = 30◦

and 60◦, fingers emerge only in the regions of accelerated potential flow, whereas
much of the front does not exhibit any fingering. This stabilization of large sections
of the front reflects a combination of three effects, viz. (i) the local reduction in the
magnitude of the potential flow velocity, (ii) the large angle of interfacial inclination,
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which further reduces the normal component of the potential flow velocity, and
(iii) the presence of a tangential velocity difference across the interface, which is
known to be stabilizing (Rogerson & Meilburg 1993a, b). Even for long times, these
large-α flows are dominated by single fingers propagating along the top and bottom
reservoir boundaries. Note that these fingers are unrelated to the phenomenon of
gravity tongues (Ruith & Meiburg 2000), as there is no density contrast in the present
flow.

In summary, we find that for unfavourable viscosity differences the inclination of
the injection well leads to a ‘focusing’ of the viscous fingering instability in the region
of large-potential flow velocity. This focusing results in the rapid formation of a single
dominant finger, which causes the front to break through significantly earlier than
for a vertical injection well.

We remark that for the cases shown in figure 10 the governing equations, boundary
and initial conditions are symmetric with respect to the centre of the domain.
Nevertheless, small asymmetries can be detected in the late-stage flow patterns. These
are due to the amplification of random numerical perturbations by the fingering
instability. There are several potential sources for introducing such small numerical
errors. These sources include the spatial and the time discretization in general (e.g.
the direction sequence of the ADI procedure), the use of the Gaussian sources and
their images, and others.

4.2.2. Variable density displacements, G > 0

For unfavourable viscosity ratios and G > 0, the displacements are dominated by a
competition between the gravity- and viscosity-driven mechanisms that were discussed
above in isolation. How this competition plays out depends on the inclination
angle, and the potential flow field it generates. Representative early- and late-time
displacement fields are shown in figure 11 for G = 0.5. The case of a vertical injection
well demonstrates the tendency of the flow to form a gravity tongue. Note that this
results in the suppression of viscous fingering, which had been prominent in the
G = 0 counterpart. The explanation for this observation lies in the stabilization of
the interface by gravitational forces, which lead to a reduced normal velocity, since the
fluid now has a strong upward velocity component, and a tangential velocity difference
across the interface (Rogerson & Meiburg 1993a); see also Ruith & Meiburg (2000).
Note that, in comparison to the constant viscosity case shown in figure 8, the fronts
break through earlier, as the growth of the gravity tongue is now amplified by the
unfavourable mobility ratio.

For all non-zero angles of inclination, we recognize a clear difference in the evolution
of the two fronts. The right-propagating front is stable to fingering in all cases.
Here, the tendency of the R = 0, G = 0.5 flow to form a gravity tongue (figure 8) is
reinforced by the tendency of the focusing mechanism observed for the R = 1, G = 0
case (figure 10) to form a dominant viscous finger along the top boundary. This
reinforcement is confirmed by the bottom frame in the right column, which shows
the rotational streamlines superimposed on the concentration gradient field. These
streamlines indicate a strong clockwise vortex centred around the right-propagating
front, which accelerates the top section of this front. As a result, the right-propagating
front reaches the end of the computational domain more quickly than the constant
viscosity and constant density flows discussed above.

On the other hand, the left-propagating front shows pronounced fingers for all
non-vanishing angles of inclination. For α = 15◦ and early times, the clockwise front
rotation by the potential flow field is approximately balanced by the anticlockwise
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Figure 11. Displacement fronts for R = 1, G = 0.5, Pe = 2000 and source inclination angles of
α = 0◦, 15◦, 30◦ and 60◦, respectively. For the right-propagating fronts at non-zero angles, the
tendency of the focusing mechanism to form a dominant viscous finger along the top boundary
of the reservoir is reinforced by the emerging gravity tongue, resulting in early breakthrough.
The left-propagating fronts, on the other hand, are characterized by vigorous viscous and/or
gravitational fingering, which leads to the disintegration of the dominant finger along the
bottom boundary.

rotation due to gravity, so that the front is oriented nearly in the vertical direction. As
a result, there is a sufficient velocity component normal to the interface to produce
strong viscous fingering. Note, however, that the topmost finger, adjacent to the upper
reservoir boundary, is already more fully developed than the others and evolves into
a gravity tongue. For long times, the effect of the non-uniform potential velocity field
decreases, and the front is dominated by gravitational rotation for α = 15◦.

For α = 30◦ and 60◦, the left-propagating fronts exhibit vigorous fingering as well.
A comparison with the G = 0 counterparts in figure 10 demonstrates that this fingering
is mostly driven by buoyancy forces. In these flows, the rotation of the left-propagating
fronts by gravity does not occur rapidly enough, and the tangential velocity difference
across the fronts is not sufficiently strong to suppress gravity-driven fingering.
Eventually, the upward gravitational fingering results in the disintegration of the single
viscous finger that had formed along the bottom boundary for G = 0. The rotational
field associated with the left-propagating front indicates a weak anticlockwise vortex,
which delays the propagation of the lower section of this front.

Increasing G to 1 intensifies the gravitational mechanisms and thus shifts some of
the above balances. In particular, for α = 15◦ the left-propagating front now rotates
into a stable position more rapidly, so that viscously driven fingering is suppressed:
see figure 12. The same effect is observed for α = 30◦ between G = 1 and 2 (not shown).

The above simulation results demonstrate that for variable viscosity and density
displacements the two fronts formed by an inclined injection well evolve very
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Figure 12. Early and late time displacement front for R = 1, G = 1, Pe = 2000 and α = 15◦.
The stronger influence of gravity, as compared to the flow shown in figure 11, rapidly rotates
the left-propagating front into a gravitationally stable position, thereby suppressing fingering.

0.5

t = 1.30(a)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0y
0.5

t = 5.45(e)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0

0.5
t = 1.12(b)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0y
0.5

t = 4.36(f )

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0

0.5
t = 1.06(c)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0y
0.5

t = 3.88(g)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0

0.5
t = 1.21(d)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0y

y

x

x

0.5
t = 3.64(h)

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0

0.5

–0.5
–5 –4 –3 –2 –1 0 1 2 3 54

0

Figure 13. Displacement fronts for R = 3, G = 0, Pe = 2000 and α = 0◦, 15◦, 30◦ and 60◦,
respectively. Similarly to lower mobility ratios, a single dominant finger quickly forms for each
inclined front. However, in contrast to lower mobility ratio displacements, this dominant finger
separates from the reservoir boundary and propagates towards the reservoir centreline, while
undergoing repeated splitting events.

differently. For one front, the effects of gravity tongue formation and ‘focused
fingering’ reinforce each other, so that a single dominant finger evolves which results
in early breakthrough. The other front is characterized by a competition of these
two effects, which leads to the disintegration of the dominant finger via viscous and
gravitational instability.

4.3. Flows dominated by viscosity differences, R = 3

For a larger unfavourable viscosity difference of R = 3 and G = 0, some of the
features seen earlier for R = 1 persist: see figure 13. The focusing of the fingering
instability by the non-uniformities of the potential flow field is clearly visible, and it
leads to the formation of a single dominant finger for each inclined front. Notice,
in the bottom frame of the right column, that the rotational flow field has the
form of two strong clockwise vortices, which accelerate the dominant fingers. For
α = 60◦, much of the two fronts remains completely stable. However, at the higher
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Figure 14. Displacement fronts for R = 3, G = 0.5, Pe = 2000 and α = 0◦, 15◦, 30◦ and 60◦,
respectively. Along the right-propagating front, flow focusing and gravity tongue formation
reinforce each other, whereas for the left-propagating front, they favour opposite trajectories
for the injected fluid.

mobility ratio of R = 3 the dominant fingers do not remain attached to the reservoir
boundaries, as had been the case for R = 1. Instead, they separate from the boundary
and subsequently propagate towards the centreline of the reservoir. In this process,
they give rise to strongly nonlinear dynamics including repeated shielding, splitting
and merging events, similar to earlier findings for vertical injection wells (Tan &
Homsy 1988; Tchelepi 1994; Ruith & Meiburg 2000; and others). Consequently, the
fronts break through much earlier for R = 3, as compared to R = 1.

In the presence of a density contrast, G > 0, and for α >0, the focusing mechanism
for generating a single dominant finger interacts with the tendency towards forming
a gravity tongue: see figure 14. With regard to the right-propagating front, these
two mechanisms reinforce each other, so that a dominant finger/gravity tongue
propagates underneath the upper reservoir boundary. Note that for α = 15◦ and 30◦

a few secondary fingers initially emerge, whereas for α = 60◦ the front is completely
stable below the gravity tongue. This is consistent with the findings for vertical source
scenarios by Tchelepi (1994) and Ruith & Meiburg (2000). Interestingly, the gravity
tongue can take a dendritic shape, with evenly spaced small branches forming in the
downward direction. This feature will be discussed in more detail below.

For the left-propagating front, the focusing mechanism and the gravity tongue
formation favour opposite tendencies: While the focusing mechanism generates a
finger of the lighter, injected fluid at the lower boundary, gravity acts to collect the
lighter fluid near the upper boundary. As a result, the dominant finger of lighter
fluid that initially forms at the bottom soon separates from the lower boundary, splits
repeatedly, and propagates towards the upper boundary. In this fashion, it bypasses
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Figure 15. Quasi-steady propagation velocity of the gravity tongue for G = 0.5 and
Pe = 2000, as a function of the viscosity ratio and the well inclination angle. The gravity
tongue velocity is seen to depend strongly on the viscosity ratio, but it is nearly independent
of the well inclination angle, for angles of 15◦ or larger.

and traps a substantial amount of the heavier fluid behind itself, thereby reducing
the sweep efficiency.

Figure 15 presents a quantitative summary of the observed quasi-steady gravity
tongue propagation velocities, as a function of the well inclination angle and the
viscosity ratio. As expected, a larger viscosity ratio results in higher propagation
velocities. Interestingly, the well angle has a much smaller effect: as long as the well
is not aligned in the vertical direction, the magnitude of the well inclination affects
the gravity tongue propagation velocity by no more than roughly 10 %.

4.4. Dendritic fingering

For high mobility ratios and α > 0, several of our simulations exhibit dendritic
fingering, in the sense of repeated, short-wavelength branching events of a main finger
which itself largely stays intact. The ensuing fingering patterns are similar to earlier
observations for immiscible flows (e.g. Couder et al. 1986a, b; Maxworthy 1986;
Kopf-Sill & Homsy 1987; Meiburg & Homsy 1988). By analysing a large number
of simulation results, we found that before such dendritic branching can occur, the
main finger has to propagate far ahead of its neighbouring competitors, so that it
is largely unconfined. Hence dendritic fingering is observed mostly for the dominant
fingers that form as a result of the focusing mechanism, or for gravity tongues. All
other fingers are more likely to exhibit the traditional tip splitting familiar from
vertically oriented sources. An example of a dominant finger giving rise to dendritic
branching is shown in figure 16. This type of dendritic branching usually occurs on
the downstream side of a diagonally propagating dominant finger, where the interface
is viscously unstable.

Even more dramatic can be the evolution of dendritic gravity tongues (see
figures 14b, f , 14c, g and 14d , h). Here the side branches originate near the tip of the
tongue, and subsequently propagate a finite distance downward. These dendritic side
fingers do not move with the advancing tip of the gravity tongue. Rather, after being
initiated by the passing tip of the gravity tongue, they remain at a constant streamwise
location as they propagate downward. Note that these fingers form on the underside
of the gravity tongue, which according to the traditional stability criteria should
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Figure 16. An example of dendritic branching on an unconfined dominant finger for R = 3,
G = 0.5, Pe = 2000 and α = 15◦. The branching occurs on the downstream side, where the
interface is viscously unstable.
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Figure 17. Comparison of a dendritically evolving gravity tongue for a coarse (2048 × 200)
and a fine (4096 × 200) grid. The flow parameters are R = 3, G = 0.5, Pe = 4000 and α = 15◦.
(a) A region of 140 × 44 grid points; (b) the same region discretized into 280 × 44 grid points.
While the wavelength of the side branches depends weakly on the resolution, their overall
properties remain unchanged.

be stable. Along this interface, the normal velocity is quite small, the density
stratification is stabilizing, and there is a substantial tangential velocity difference,
which should be stabilizing as well. Hence it is likely that the local dynamics at the
tip of the gravity tongue plays a crucial role in the growth of the dendritic branches.
Our simulations show that the tendency to form a dendritic gravity tongue is sensitive
to the value of G. On one hand, a density difference between injected and displaced
fluid is necessary to form the gravity tongue in the first place. On the other hand,
if G is too large, it will suppress the downward growth of fingers of the lighter
fluid into the heavier fluid. While we have not conducted an exhaustive study of the
parameter range where dendritic gravity tongues appear, we have observed them for
R = 3, 0.25 <G � 0.5 and 15◦ � α � 60◦.

Since the dendritic branches frequently represented the smallest features in our
flow fields, we conducted additional, finer-resolution simulations to ensure that these
structures were properly resolved. A typical comparison is shown in figure 17 for
α = 15◦. The nature of the dendritic fingering is seen to remain unchanged as the
resolution is doubled, although the streamwise wavelength is about 10–20% shorter
for the finer grid. Most likely this reflects a weak influence of numerical diffusion.
Note that this example is for a larger value of Pe = 4000, whereas all of the
examples discussed above are for Pe = 2000, where the resolution requirements are
lower.
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5. Summary and conclusions
The present investigation provides insight into the mechanisms that dominate

variable viscosity and density, miscible displacements generated by inclined injection
sources. The numerical simulation results discussed above reveal significant differences
compared to vertical injection wells, which strongly influence breakthrough times and
recovery rates.

Preliminary simulations of constant density and viscosity displacements, for which
the velocity field is potential in nature, demonstrate the existence of pronounced
non-uniformities in the flow, due to the interaction of the inclined well with the upper
and lower reservoir boundaries. Specifically, we observe the formation of stagnation
points along the reservoir boundaries, and localized areas of increased flow velocities
in the interior of the flow field, close to the boundaries. Even in the absence of
viscosity and density contrasts, these regions of non-uniform flow strongly deform
the interface during the initial displacement stages. When a viscosity difference is
present, a focusing of the fingering instability results which leads to the formation of
a dominant finger in the region of fastest potential flow. Its rapid growth leads to a
much earlier breakthrough of the front than for vertical injection wells, thus reducing
the efficiency of the displacement process. Hence any strategy for optimizing recovery
rates for a given reservoir geometry should attempt to configure well in such a way
that its interaction with the reservoir boundaries produces minimal potential flow
non-uniformities.

In the presence of a density difference, interesting interactions and competitions
between the dominant finger and the emerging gravity tongue are observed. Along
one front, the dominant finger reinforces the gravity tongue, thereby accelerating it
and further reducing its breakthrough time. For the other front, the dominant finger
forms along the opposite boundary from where the gravity tongue would evolve.
In this case, gravitational fingering in the direction normal to the dominant finger
propagation usually leads to the rapid disintegration of this dominant finger. Hence,
the two fronts emerging from the inclined injection well for variable density and
viscosity displacements usually evolve very differently from each other. An important
parameter is the ratio of the time scales governing the gravitational rotation of the
interface and the growth of fingers.

For inclined injection wells and sufficiently large mobility ratios, dendritic fingering
instabilities appear on the flanks of the dominant finger or, even more pronounced,
along the exposed side of the gravity tongue. This happens when the dominant
finger or gravity tongue is unconfined by any competing fingers. The formation
of dendritic side branches on the gravity tongue is sensitive to the gravitational
parameter. On one hand, gravitational forces are necessary to create the gravity
tongue in the first place. On the other hand, if the density difference becomes too
large, gravity will suppress the growth of the dendritic side branches, since they
occur along the gravitationally stable side of the gravity tongue. In either case, the
evolution of dendritic growth appears to require that the gravity tongue propagate
significantly faster than its vertical injection well counterpart. Since the dendritic
branches appear along the side of the gravity tongue that should be stable according
to the traditional criteria, the tip region likely plays a crucial role in their formation.
Efforts to unravel the underlying mechanisms behind this role of the tip are currently
underway.

A further promising line of research could address the formulation of strategies for
optimizing certain displacement properties. Depending on the particular application
under consideration, one may want to delay or accelerate breakthrough, promote or
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suppress mixing, or achieve various other flow properties. Towards this end, it would
be interesting to explore if certain well angles result in optimal behaviour.
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