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Abstract

The influence of nonmonotonic viscosity—concentration relationships on viscous fingering of neutrally buoyant, miscible fluids
in a Hele-Shaw cell has been investigated. In a first step, quasisteady base states are obtained by means of nonlinear Stokes
simulations. The properties of these base states are analyzed as a function of the Péclet number, the viscosity ratio, and the profile
parameters. Subsequently, the stability of these base states is investigated by means of a linear stability analysis. Overall, the
nonmonotonicity of the viscosity—concentration relationship is seen to have a much smaller influence on Hele-Shaw displacements
than on corresponding Darcy flows. The reason for this difference lies in the nature of the respective base states. For Darcy flows,
the base state is characterized by constant velocity and a diffusively decaying concentration (and hence viscosity) profile. This base
viscosity profile is strongly affected by the nonmonotonicity. On the other hand, for Hele-Shaw displacements the quasisteady base
states are convectively dominated and characterized by sharp fronts, so that their shape depends only weakly on the details of the
viscosity—concentration relationship. Hence, for Hele-Shaw displacements both the eigenfunctions and the associated growth rates
are quite similar for monotonic and nonmonotonic profiles, in contrast to the findings by [O. Manickam, G.M. Homsy, Stability
of miscible displacements in porous media with nonmonotonic viscosity profiles, Phys. Fluids A 5 (1993) 1356-1367] for Darcy
flows.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Hele—Shaw cells are frequently employed in order to investigate aspects of porous media displacements, cf. [2]. In
addition this geometry, in its own right, is relevant to numerous application areas, from lubrication problems, bearing
flows, and oil displacements in fractured rocks, to small-scale MEMS devices. It is well known that the analogy
between Hele—Shaw flows and displacements in true porous media is an incomplete one. Hence it is necessary to
establish the limits of this analogy carefully, in order to avoid drawing misleading conclusions. Towards this goal, [3]
recently compared linear stability results for miscible Hele-Shaw displacements governed by the Stokes equations
with corresponding Darcy results for porous media. As a first step, the authors establish the quasisteady base states of
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two-dimensional Hele-Shaw displacements by means of nonlinear Stokes simulations. They find the front thickness
of this quasisteady state to scale with Pe~1/2, while it depends only weakly on the viscosity ratio. In a subsequent step,
the stability of the quasisteady front to spanwise perturbations is examined, based on the three-dimensional Stokes
equations. Generally poor agreement is observed between the Stokes results and corresponding findings for Darcy
flows [4]. [5] extend this investigation to variable density displacements in vertical Hele—Shaw cells and find excellent
agreement with the experimental data of [6] regarding the most amplified wavelength. These results establish Stokes
based direct simulations and accompanying linear stability analyses as powerful tools for comparing Hele—Shaw
displacements with their Darcy based counterparts.

For miscible displacements governed by Darcy’s law, [1] and [7] obtained interesting linear stability results and
nonlinear dynamics if the two fluids give rise to nonmonotonic viscosity profiles, cf. also the investigation by [8]. In
particular, the authors find that even for a favorable (unfavorable) endpoint viscosity contrast the displacement can be
unstable (stable). Furthermore, the diffusion of the base state can be destabilizing, so that initially stable nonmonotonic
profiles can become unstable after some time. In order to identify the cause for this unexpected behavior, the authors
analyze the eigenfunctions of the flow, with a particular focus on the structure of the vorticity and streamfunction
fields. They observe a quadrupole structure of the vorticity field, similar to the investigations by [9] for radially
dominated displacements with nonmonotonic profiles, and by [10,11] for shear stabilized displacements, which can
give rise to dynamics fundamentally different from the dipole structure that dominates the evolution of monotonic
displacements [4]. The goal of the present investigation is to establish if such unconventional behavior is limited to
Darcy based flows, or if it can be observed in Hele-Shaw displacements as well. As shown by [12,3], Hele—-Shaw
flows are strongly influenced by the presence of an additional length scale in the form of the gap width of the cell,
which affects both the shape of the quasisteady state, as well as its linear stability characteristics.

The present investigation is structured as follows: In a first step, we will establish the structure of the two-
dimensional base state for nonmonotonic displacements, and compare its features with those of base states for
monotonic profiles. Subsequently, the linear stability analysis will be performed for the nonmonotonic base states.
A discussion of the findings concludes the paper.

2. Physical problem
The investigation focuses on constant density, miscible fluids of different viscosities in a Hele—Shaw cell, as shown

in Fig. 1. The less viscous fluid 1 on the left displaces the more viscous fluid 2 to the right. For narrow gap widths e,
the flow velocities will be small, so that the fluid motion can be described by the three-dimensional Stokes equations

V-i=0, (D
Vp=V.rz, ()
e

a—j—i—u-VC:DVzC. 3)

Here # denotes the flow velocity, while ¢ indicates the relative concentration of the more viscous fluid. T represents
the viscous stress tensor for Newtonian fluids, and D refers to the diffusion coefficient, which is assumed constant.
X, Y, z indicate the spanwise, streamwise and cross-gap directions, respectively.

The viscosity u is a function of the concentration ¢ and will depend on the fluid pair used. As [1] point out, there
are a variety of fluid combinations for which the viscosity—concentration relationship is nonmonotonic. In order to be
able to compare the present Stokes results with their earlier findings for Darcy flows, we employ the same functional

Fig. 1. Miscible displacement in a Hele—Shaw cell. The less viscous fluid on the left displaces the more viscous fluid on the right.
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relationships between viscosity and concentration as [1]. For an endpoint viscosity ratio & = u/u1, the viscosity
profile u(c) is given by a sine function modified through a sequence of transformations as follows

u(c) = p1 - thm sin(§), “4)
1+

§=8(—n)+&n, n:(l—i-—ZZC’ (3)
where

Eozsin_l(i) & =m —sin_l<i>, (6)

Hm Mm

and

a= (I —cm) —nm 7 nmzﬂ/z—éo. 7

(I—cm)mm—1) §1—6o

The profile has the end-point viscosities «(0) = 1 and u(1) = «, and a maximum value w,, at the concentration
¢ = ¢y, In following [1], we introduce the logarithm R of the viscosity ratio defined as

R=In22 =in(a), ®)
1
and a parameter A that relates the end point slopes of the viscosity profile
_dp/dcle=0 +dp/dcle=
a+1 ’

A

®

For monotonic profiles A is always positive, while for nonmonotonic profiles A depends on the magnitude of the
gradient at the end points. A < 0 indicates that the slope of the viscosity profile at ¢ = 1 is steeper than at ¢ = 0, while
A > 0 denotes the reverse scenario.

The governing equations are rendered dimensionless by introducing a characteristic length L*, velocity U*,
time T*, pressure P* and viscosity u* in the form of

L*=e, (10)
U*=U, (11)
— (12)
=
U
pr_ ’ (13)
e
W= p1, (14)

where U refers to the average velocity across the gap of the Hele—Shaw cell. We thus obtain the set of dimensionless
equations as

V-u=0, (15)
Vp=V.t, (16)
dc 1 _,

E-Hpvczﬁv c, 17)

where the Péclet number defined as

_Ue

Pe=— (18)

indicates the relative magnitude of convective to diffusive transport of the concentration.
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3. Stokes flow simulations

In order to establish the quasisteady base states by means of nonlinear, two-dimensional Stokes flow simulations,
we follow the computational strategy described by [3]. The required discretization of 1,025 and 193 points in the
y- and z-directions was established by means of careful convergence tests. In order to evaluate the influence of the
governing dimensionless parameters, we conducted simulations for Pe = 500, 1,000 and 2,000; R =2, 3 and 5;
um=1.1,1.5and 2; and A = —15, —10, —3, 0, 3, 10 and 15.

3.1. Evolution of the quasisteady displacement front

Upon the start of the flow, the velocity field immediately deforms the concentration distribution in the interior of
the cell, while the concentration at the wall changes due to diffusion only. This change in the concentration field, in
turn, modifies the viscosity field, thus leading to the formation of a well-defined finger of the less viscous fluid that
propagates along the center of the Hele—Shaw cell (Fig. 2). This finger exhibits a steep concentration front at its tip,
and diffusively spreading concentration layers along its sides. For sufficiently large values of Pe and R, the finger tip
will reach a quasisteady state in a moving reference frame. The base state for the corresponding monotonic profile
with an exponential viscosity—concentration relationship, shown for comparison, demonstrates that the differences in
the base state due to nonmonotonicity are minor. For small Péclet numbers, diffusion outweighs convection, so that

BIE >

Fig. 2. Evolution of a quasisteady base state near the finger tip for Pe = 2,000 and R = 5. Left: Monotonic, exponential profile. Right: Non-
monotonic profile with A =0 and w,;, = 2. The quasisteady base states of the two cases show small differences, but are quantitatively very similar
overall.
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Fig. 3. Evolution of the front thickness d(y as a function of time for Pe = 500 and 2,000, respectively (R =3, A =0, u;, = 2). While a quasisteady
state evolves for the larger Pe-value, this is not the case for Pe = 500, as diffusive effects prevent the formation of a sharp concentration front at the
finger tip.
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Fig. 4. Tip velocity vgp (left) and front thickness dg (right) of the quasisteady displacement front as a function of Pe for different viscosity ratios.
Solid lines: nonmonotonic profiles with A =0 and w,; = 2, dashed lines: exponential monotonic profiles. The tip velocity of the quasisteady state
is generally lower for nonmonotonic profiles, as compared to their monotonic counterparts. While the monotonic profiles closely follow a Pe=1/2
scaling, this is not the case for the nonmonotonic profiles for the range of Pe-values considered here.
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Fig. 5. Left: Viscosity profiles for R = 5 and different values of 11, . Right: Quasisteady tip velocity as function of j,, for various viscosity ratios R.
Similarly to monotonic profiles, the front velocity increases with R. As u;, increases, the overall mobility of the finger is reduced, so that the tip
velocity decreases.

a steep concentration layer at the tip of the front cannot be maintained. This is reflected by Fig. 3, which shows the
simulation with Pe = 2,000 to reach a quasisteady state, while the front thickness of the Pe = 500 calculation grows
diffusively after reaching a minimum. Here the front thickness is defined as the distance between the ¢ = 0.1 and
¢ = 0.9 contours at the tip of the finger.

Fig. 4(left) displays the tip velocity vy, of the quasisteady base state as a function of Pe for different values of R.
The solid lines show the results of a representative nonmonotonic case with A =0 and u,, = 2, while the dashed lines
depict the monotonic, exponential case for comparison. Note that for the lower values of Pe and R the simulations
reach a nearly quasisteady state only briefly. We observe that for nonmonotonic profiles the tip velocity is substantially
lower than for the corresponding exponential cases with equal Pe and R. In contrast to the exponential cases, for
nonmonotonic profiles the tip velocity increases with Pe [3]. For both exponential and nonmonotonic profiles, the tip
velocity increases with the viscosity contrast.

The front thickness is dominated by the local strain field at the finger tip, which in turn is generated by the difference
between the fluid velocity behind the finger tip and the Poiseuille flow ahead of the finger tip. Larger tip velocities
generally result in a stronger strain field, and hence in a decreasing front thickness, cf. Fig. 4(right). Interestingly,
while the monotonic profiles closely follow the scaling law [13]

do~ Pe /2, (19)

nonmonotonic viscosity profiles deviate somewhat from this behavior for the range of Pe-values considered here.
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Fig. 6. Left: Viscosity profiles for R =5 and various values of A. For larger A, the effective viscosity of the outer layer of the finger increases,
which lowers its mobility. Right: Quasisteady tip velocity as a function of A. As a result of the reduced mobility of the finger for increasing values

of A, its tip velocity is reduced.

As the maximum u,, of the viscosity—concentration relationship increases, the diffusive region connecting the
finger and the resident fluid experiences an increase in viscosity. This reduces the overall mobility of the finger and

thus results in a lower tip velocity, cf. Fig. 5.

Similarly to w,,, the value of the parameter A affects the viscosity in the diffusive layer connecting the displacing
and the resident fluid. Positive values of A increase the viscosity in this region, thus reducing the finger’s mobility

and slowing it down, while negative values of A have the opposite effect, cf. Fig. 6.
4. Linear stability analysis

4.1. Formulation of the eigenvalue problem

In order to perform the linear stability analysis of the quasisteady displacement, the three-dimensional Stokes

equations are linearized around the two-dimensional base state

ux,y,z,) =04+u'(x,y,2,1), (20)
v(x,y,2,) =0(y,2) + V' (x, v, 2, 1), 1)
wx,y,z,0) =w(y,z) +w'x,y,z,1), (22)
px,y,z,0) =p(y,2) +p'(x,y,2,1), (23)
c(x,y,z,1) =¢(y,2) + ' (x,y,2,1). (24)

Here, a quantity with the -symbol denotes the base state, while the '-symbol indicates a perturbation quantity. The
above expressions are substituted into the governing equations, the base state is subtracted out, and all terms of second
or higher order in the perturbations are neglected. The perturbations are assumed to be wavelike in the spanwise

x-direction

u'(x,y,z,t) =i(y, z) - sin(Bx) - e, (25)
V(x,y,z,t) =0(y, 2) - cos(Bx) - 7', (26)
w'(x,y,2,1) = W(y, 2) - cos(Bx) - €', 27
p'(x,y,2,1) = p(y,2) - cos(Bx) - 7', (28)
' (x,y,2,t) =E(y,2) - cos(Bx) - 77, (29)

where o denotes the growth rate, 8 indicates the wave number, and the "-symbol represents the eigenfunctions. We

thus obtain a generalized eigenvalue problem of the form

A9=0B¢

(30)
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with the growth rate o as the eigenvalue. As usual, a positive (negative) eigenvalue indicates unstable (stable) behavior.
A and B denote the coefficient matrices and are given by

0 BL 3 3 0
BL My My M3 0
A= O Mi Ms Ms |, 31
—0. 0 Mi Mg Mo
9 0 -4 -& Mo
with
My = 1(Byy + 8z — B7L) + s + iy Dy (32)
My =—piiyL. (33)
M3 =—pji:L, (34)
Ma =210y + By + Bee = B°L) + fizz, (35)
ﬁ:ﬁzi, (36)
(jie | - (e, - L
ﬁ = 2Uy dy é + Hc_ + (v; + wy) a—Zé + Mca_z + (Uyy + vZZ)MCév 37)
My = i3z, (38)
My =219, + i(dyy + dzc — B71) + i1, dy, (39)
(B =N e (B 2\ e
&Zzwz 9z é"‘ﬂc_z + (v; + wy) dy £+/Lc_y +(wyy+wzz),uc£a (40)
1 _ _ __ L
Mio= o (=BL+ By + 0z2) — Dy — 3, (41)
and
00000 p
00000 i
B=10 000 0f and ¢=]| 0 (42)
00000 ﬁ’
00001 ¢

The resulting set of equations is discretized on a domain that extends from z =0 to z = 0.5 and is centered around
the finger tip in the streamwise direction. This domain has to be taken sufficiently large so that Neumann conditions
can be assumed for the perturbations at the upstream and downstream boundaries. At the wall the perturbation velocity
and the normal derivative of the concentration perturbation are set to zero, while symmetry boundary conditions are
employed at the centerline. The base state velocity and concentration fields, as well as all their required derivatives,
are interpolated from the DNS grid to the stability grid using sixth order Lagrangian interpolation. In the z-direction
the nodes are spaced equidistantly, while a stretched grid is employed on the two subdomains y > yp and y < yyp that
concentrates the grid points near yy;,. For this purpose a mapping function provided by [14] is employed, cf. [15]. The
numerical solution procedure for the generalized eigenvalue problem follows the approach described in detail by [3].
Convergence tests demonstrated that a much higher resolution is necessary for nonmonotonic viscosity profiles, as
compared to the monotonic case. For most parameter combinations a resolution of 7, = 193 in the z- and ny, =435 in
the y-direction is employed.
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4.2. Linear stability results

Fig. 7(left) compares the growth rate oy, of the most dangerous mode as a function of the viscosity ratio R for the
nonmonotonic and monotonic profiles. For both cases, the growth rate increases with the viscosity contrast. While the
growth rates are similar in magnitude, the nonmonotonic profile generally is slightly less unstable than the monotonic
one. The dominant wave number for the nonmonotonic case is somewhat higher than for the exponential counterpart,
cf. Fig. 7(right). For those values of Pe for which we obtained a quasisteady state, the influence of Pe on the growth
rate and the dominant wave number was minor (not shown). Taken together, these results show that the influence
of the nonmonotonicity on the most amplified wave number and the associated growth rate is relatively minor, and
considerably smaller than what was observed by [1] for Darcy flows. A visual inspection of the eigenfunctions shows
that they are qualitatively and quantitatively very similar for the monotonic and nonmonotonic profiles (Fig. 8), which
in turn reflects the similarity of the base states.

Fig. 9(left) displays the dominant growth rate om,x as a function of the maximum viscosity u,, for the parameters
Pe =2,000 and A = 0. The influence of the maximum of the viscosity profile is seen to be relatively small. As pu,,
changes from 1.1 to 2, the growth rate decreases slightly for large R, while there is a mild increase for smaller values
of R. Similarly, the most dangerous wave number Bmax does not exhibit a strong dependence on w,, for A = const.
(Fig. 9(right). In general the dominant wave number decreases slightly as u,, increases.

[1] had observed a strong influence of the end point gradient parameter A on the linear stability results for Darcy
displacements. Fig. 10 shows the maximum growth rate as a function of A for different values of R. The results
are consistent with the Darcy flow by investigation of [1], in that the growth rate shows an overall increase with A.
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Fig. 7. Comparison of the monotonic and nonmonotonic (A = 0, u;;, = 1.5) viscosity profiles, for different values of R and Pe = 2,000. Left:
Maximum growth rate omax. The nonmonotonic profile is found to be slightly less unstable. Right: Most dangerous wave number. The most
dangerous wavelength for the nonmonotonic case is slightly lower, as compared to its monotonic counterpart.
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Fig. 10. Growth rate omax for A =[—15, 15] and R = 3. The end point gradient parameter is seen to have a substantial effect on the growth rate.

However, [1] had found a substantial influence already at much lower values of A. The wave number Bp,x shows a
very weak dependence on A (not shown).

5. Discussion and conclusions

Viscous fingering for neutrally buoyant, miscible fluids in a Hele-Shaw cell has been investigated by means of
nonlinear Stokes flow simulations and a subsequent linear stability analysis, with an emphasis on the influence of
nonmonotonic viscosity—concentration relationships.

In a first step, quasisteady base states were obtained by means of nonlinear Stokes simulations. Similarly to
monotonic profiles, such quasisteady states are seen to develop for large Péclet numbers and viscosity ratios. The
tip velocity for nonmonotonic profiles is seen to be somewhat lower than for monotonic cases, which can be explained
by the reduced mobility of the finger, as a result of the increased viscosity along its sides. As a result, nonmonotonic
profiles have a slightly increased tip thickness. The tip velocity for nonmonotonic profiles is seen to increase slightly
with Pe, in contrast to the exponential profiles. While for monotonic profiles the tip thickness scales with Pe~!/2,
this scaling does not hold for nonmonotonic profiles in the range of Pe-values investigated here. An increase in the
maximum viscosity ., lowers the overall mobility of the finger, and thus reduces its tip velocity.
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Subsequently, the stability of the above base states was investigated by means of a linear stability analysis. The
dominant wave number is seen to be slightly higher for the nonmonotonic case, while the associated growth rate is
somewhat smaller. The viscosity maximum ,, has a fairly small influence on the growth rate and the most amplified
wave number. On the other hand, the end point gradient parameter affects the growth rate significantly, but only at
relatively large values.

Overall, the nonmonotonicity of the viscosity—concentration relationship is seen to have a much smaller influence
on Hele—Shaw displacements than on Darcy flows. The reason for this difference lies in the nature of the base states.
For Darcy flows, the base state is characterized by constant velocity and a diffusively decaying concentration (and
hence viscosity) profile. This base viscosity profile is strongly affected by the nonmonotonicity. On the other hand, for
Hele—Shaw displacements the quasisteady base states are convectively dominated and characterized by sharp fronts.
As a result, their shape depends only weakly on the details of the viscosity—concentration relationship. Hence, for
Hele—Shaw displacements both the eigenfunctions and the associated growth rates are quite similar for monotonic
and nonmonotonic profiles, in contrast to the findings by [1] for Darcy flows.

In this context, it is of interest to mention the work of [16], which takes a different approach towards analyzing
similar flows. These authors employ piecewise viscosity functions in order to generate a simplified model for miscible
displacements. Depending on which one of the fluids is more viscous, and on whether or not the viscosity profile is
monotonic, the authors obtain a hyperbolic or elliptic problem, respectively. This change in type reflects the breakdown
of the parallel flow approximation, which cannot capture the structure at the tip. An open question concerns possible
links between the change in type and spanwise instability.
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