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Abstract

The suitability of various open boundary conditions is evaluated for direct numerical simulations of

three-dimensional, incompressible, spatially and temporally evolving, swirling laminar jets in domains that
extend to infinity in the downstream and radial direction. From the point of view of specifying conditions at

the open boundaries, this class of flows is particularly challenging due to its ability to support traveling

waves. Towards this end, several radial boundary conditions are implemented and tested with respect to

their ability to conserve local and global mass, to handle low and high entrainment flow, and to avoid the

introduction of artificial waves propagating from the boundaries into the interior: a free-slip condition, two

types of homogeneous Neumann conditions, and a radiation condition in spirit of the outflow boundary

condition. Global mass is conserved automatically within machine accuracy in the free-slip and simple

radiation case, while the Neumann conditions require some iterative modification to conserve mass. This
yields a computationally less efficient scheme which additionally exhibits poorer conservation properties

due to the limited number of iterations. The free-slip condition typically requires the largest radial extent of

the computational domain due to its impermeable character which is particularly problematic for the high

entrainment flow. Hence, the radiation condition has been found as the most suitable lateral boundary

condition for both high and low entrainment jets.
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1. Introduction

Vortex breakdown in swirling flows is characterized by an abrupt change in the structure of the
nominally axisymmetric core, which gives rise to an internal stagnation point. It represents a
crucial element in a variety of technical applications ranging from the stabilization of combustion
processes to flows over delta wings. Furthermore, it arises in a number of natural settings such as
tornadoes, dust devils and water spouts. In spite of its great importance, a satisfactory under-
standing of the mechanisms leading to vortex breakdown, and hence the ability to predict it, is still
elusive. Hence there is a strong motivation to perform highly accurate, detailed numerical sim-
ulations in order to unravel the underlying fluid dynamics. The goal is to obtain well resolved
spatial and temporal information about the flow field that can be compared against existing
theories and experiments on vortex breakdown, cf. Leibovich [30], Althaus et al. [2], Spall and
Snyder [46], Lucca-Negro and O�Doherty [32] among others.
Direct numerical simulations of incompressible, nominally axisymmetric swirling flows are

particularly difficult to perform, since such flows are very sensitive to small disturbances. Fur-
thermore, simulating the Navier–Stokes equations in cylindrical coordinates requires special care
due to the singular behavior of some terms near the axis. As pointed out by Althaus et al. [2] and
Spall et al. [44] this problem is often circumvented by solving the equations in Cartesian coor-
dinates. However, this approach introduces unphysical azimuthal perturbations related to grid
orientation effects, which can negatively affect the simulation results.
An additional complication arises when swirling flows in semi-infinite domains are to be sim-

ulated. The finite size of the computational domain requires the implementation of open
boundaries, at which conditions need to be specified that have a negligible influence on the
evolution of the flow in the interior of the domain. As Breuer et al. [12] point out, the formulation
of such open boundary conditions requires great care especially for time-dependent swirling flows,
since they are capable of supporting propagating waves. This renders it much harder to avoid the
introduction of artificial waves that propagate upstream from the outflow boundary. In addition,
strong swirl can potentially cause strong local entrainment or outflow in the radial direction. This
has to be taken into account when selecting lateral boundary conditions, especially since the
transitions among various forms of vortex breakdown are very sensitive to coflow fluctuations.
The formulation of proper upstream inflow conditions has been a matter of discussion as well.

Fixed inflow conditions are employed by Kopecky and Torrance [27] and Grabowski and Berger
[20] in solving the incompressible, steady, axisymmetric Navier–Stokes equations for swirling,
laminar flows in a tube and trailing wing vortices, respectively. Their time independent nature
raised some concern (e.g. [30,45]), as it artificially constrains the inflow. Such inflow conditions do
not allow for upstream propagating disturbances past the inflow plane, which may represent a
serious limitation for swirling flows near criticality thresholds. On the other hand, relaxing the
fixed inlet boundary conditions may cause the entire breakdown bubble to leave the computa-
tional domain. This issue is addressed independently by Krause [29] and Spall et al. [44], who
prescribe the axial velocity component on the lateral boundary. Although these authors provide
quite different physical justifications and numerical implementations, both sets of simulations
successfully model breakdown in tubes, induced and governed by an a priori known pressure
distribution at the lateral wall. The vortex breakdown remains within the computational domain,
which enables the authors to conduct simulations over extended time periods and to study dif-
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ferent types of breakdown in radially confined flows, cf. the review articles of Spall and Synder
[46] and Althaus et al. [2]. They reproduce the three major types of vortex breakdown observed in
tube experiments (e.g. [18]), viz. the bubble, helical and double-helical types. Spall and Snyder [46]
and Althaus et al. [2] point out that these different modes are obtained by imposing a fixed inflow
swirl ratio and varying the freestream axial velocity on the lateral boundaries.
In an attempt to eliminate the dominant dependency of the various breakdown modes on the

pressure distribution along the lateral boundary, i.e. on the shape of the tube, recent experiments
by Billant et al. [7] and Maxworthy (private communication) employ a pressure-driven water jet
discharging into a large tank whose side walls are far removed from the core of the swirling jet.
These experiments mimic the case of a nominally axisymmetric jet issuing into a domain that is of
infinite extent in the radial and downstream directions (semi-infinite domain).
The goal of the present numerical investigation is to simulate vortex breakdown in semi-infinite

domains, in order to be able to compare with the above experiments. Towards this end, we solve
the Navier–Stokes equations in cylindrical coordinates. The specific issue addressed in this article
is the identification of optimal open boundary conditions for simulations of incompressible, time
dependent, and three-dimensional vortex breakdown flows. To summarize the above discussion,
such boundary conditions should not give rise to artificial waves propagating from the boundaries
into the interior of the domain, either along the core of the jet or perpendicularly to it. They
should conserve local and global mass around machine accuracy even for long simulation times,
and they should allow for the simulations to be carried out in computational domains that do not
have to be excessively large. Finally, they should be suitable for both low and high entrainment
flows, they should not affect the global stability of the flowfield, cf. Buell and Huerre [13], and they
should be computationally efficient and easy to implement. We discuss the suitability in all of
these regards of several different boundary conditions, ranging from free-slip and various
homogeneous Neumann conditions to radiation conditions. The advantages and shortcomings of
all of the conditions with respect to the above demands will be evaluated in detail.
2. Governing equations

In the present investigation, the incompressible Navier–Stokes equations are formulated in
cylindrical coordinates ðr; h; zÞ, cf. Fig. 1. In this formulation, the Navier–Stokes equations exhibit
terms of the type r�1; r�2; r�3, which lead to geometrical singularities at the axis r ¼ 0. Verzicco
and Orlandi [47] propose to rewrite the governing equations by replacing the velocity components
Fig. 1. Sketch of cylindrical computational domain.
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vr; vh; vz with qr ¼ vr � r, qh ¼ vh, and qz ¼ vz, respectively. Thus qr ¼ 0 per definition on the axis,
which on a staggered grid avoids the problem of singularities.
In order to render the governing equations dimensionless, we introduce characteristic length (L)

and velocity (U ), whose exact form will be discussed below in the context of specific inflow
profiles. The convective time scale thus is T ¼ L=U , and the characteristic pressure is provided by
P ¼ qU 2, with q representing the constant density.
With the above scaling the dimensionless continuity equation becomes
oqh
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þ oqr
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with the substantial derivatives in their conservative form [47]
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Here time and pressure are indicated by t and p, respectively. The Reynolds number Re takes its
usual form
Re ¼ U � L
m

: ð4Þ
The formulation of the non-linear, convective terms is of crucial importance to the numerical
stability of the scheme. Apart from time differencing errors, satisfying certain integral constraints
is essential for obtaining stable, long term computations ([3,21], etc.). For the fractional-step
method employed here, conservation of mass is of superior importance, since the intermediate
stage, which is obtained by time advancement of the momentum equations, has to be globally
divergence free, as the subsequent projection step modifies only the local divergence.
3. Numerical technique

We employ the finite-difference scheme in primitive variables first introduced by Verzicco and
Orlandi [47]. The incompressible, time-dependent, three-dimensional Navier–Stokes equations are
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solved in cylindrical coordinates, with second-order spatial accuracy all the way to the axis. The
numerical solution is advanced in time by a fractional-step method employing an approximate-
factorization technique. The numerical scheme is accelerated by parallelizing the code with MPI.
3.1. Spatio-temporal discretization and accuracy

Chorin [15] as well as Kim and Moin [26] point out that the role of the pressure in the
momentum equations can be interpreted as a projection operator, which projects an arbitrary,
globally divergence-free velocity field v̂i into a globally and locally divergence-free velocity field
vlþ1i . Here the subscript i ¼ 1; 2; 3 refers to the three coordinates r; h; z, and the superscript lþ 1
represents the new time level. This fact is exploited by fractional-step methods, also known as
time-split methods, which are commonly used in DNS simulations (e.g. [26,38,47]).
Verzicco and Orlandi [47] point out that the implicit treatment of the viscous terms in the

momentum equations requires the inversion of large sparse matrices. These matrices can be re-
duced to three tridiagonal matrices each by an approximate factorization procedure with error
OðDt3Þ, cf. Beam and Warming [5], Kim and Moin [26] for details. Taking the increment
Dq̂i ¼ q̂i � qli the factorized form of the momentum equations reads
ð1� #lAirÞð1� #lAihÞð1� #lAizÞDq̂i ¼ Dt½clHl
i þ .lH

l�1
i � Giðalpl þ blp

lþ1Þ
þ ðcl þ .lÞðAir þ Aih þ AizÞqli �; ð5Þ
with #l ¼ ðcl þ .lÞDt=2. Here Hi contains the spatially discretized convective terms, as well as
those viscous terms that have first- or zeroth-order velocity derivatives, while Air, Aih and Aiz

denote discrete expressions for the viscous terms. Gi represents the discrete gradient in the form
Gi ¼ r
d
dr

;
1

r
d
dh

;
d
dz

� �
: ð6Þ
Explicit expressions for Hi, Gi, Air, Aih and Aiz are obtained by central second-order finite differ-
encing of the momentum equations (2) and (3) on the staggered grid (Fig. 2). Following Harlow
and Welch [23], velocity fluxes are defined on the cell surfaces while the pressure p and the variable
U related to it are defined at the cell centers. Thus only qr is defined at r ¼ 0, with qrðr ¼ 0Þ ¼ 0 by
definition. As a result, second-order accuracy at the axis is retained, since no ad hoc boundary
conditions are required at r ¼ 0.
Eq. (5) represents a generalization of the equations proposed by Verzicco and Orlandi [47] in

the spirit of Armfield and Street [4]. The latter show that, depending on the time integration
coefficients al; bl, the fractional-step method may be implemented in an iterative (al ¼ 0,
bl ¼ cl þ .l 6¼ 0), non-iterative projection (al ¼ bl ¼ 0), or non-iterative pressure correction
(al ¼ cl þ .l 6¼ 0, bl ¼ 0) fashion. Note that the subscript l distinguishes the coefficients corre-
sponding to the different substeps of a multi-step method, i.e. l ¼ 1; 2; 3 for a three-step method.
Although all types have been implemented in the past, Armfield and Street [4] identify the

pressure correction method to be the optimal. They base this decision on the discussion of the
boundary conditions for the intermediate velocity flux q̂i. In particular they show for a driven
cavity flow that the method retains the temporal order of accuracy without requiring a modified
intermediate boundary condition and is computationally efficient, cf. Ruith [40] for further



Fig. 2. Sketch of the computational cells: (a) cell at axis and (b) cell in the interior of the domain. p and U are defined at
the center of the cell, whereas qh, qr and qz are defined on the cell surfaces.
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details. For these reasons we select the pressure correction method, for which Eq. (5) takes the
form proposed by Verzicco and Orlandi [47].
In this study we use a three-step hybrid Runge–Kutta/Crank–Nicolson scheme which Rai and

Moin [38] attribute to Spalart. It uses an explicit Runge–Kutta method for the convective terms,
and an implicit Crank–Nicolson method for the viscous terms. Therefore the numerical scheme
exhibits no viscous stability restriction, while the convective time step can be substantially larger
for the Runge–Kutta scheme employed if compared to the Adams–Bashforth method tradition-
ally used, cf. Ruith [40] for details. The actual values of the coefficients are c1 ¼ 8=15, c2 ¼ 5=12,
c3 ¼ 3=4, .1 ¼ 0, .2 ¼ �17=60 and .3 ¼ �5=12. Due to .1 ¼ 0, the method is self starting. As
mentioned above, v̂i does not satisfy local continuity. This is subsequently enforced in each cell by
qlþ1i ¼ q̂i � ðcl þ .lÞDtGiU; ð7Þ
where U is a scalar related to the pressure. Substituting Eq. (7) into the continuity equation (1), we
obtain a Poisson equation for U
LU ¼ 1

ðcl þ .lÞDt
Dq̂; ð8Þ
with L and D as the discrete Laplace and discrete divergence operators, respectively, in the form
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At each substep of the Runge–Kutta scheme the scalar U is calculated. The computation of U
implies the solution of an elliptic equation for which trigonometric expansions are applied in the
axial and azimuthal direction. This approach is very efficient for calculating U directly, and it gives
the solenoidal velocity field within machine round-off errors. Note that no ad hoc boundary
conditions need to be specified for U since it is defined at the cell center, cf. Fig. 2. However,
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compatibility with the velocity boundary conditions requires d/=d~n ¼ 0, with ~n representing the
direction perpendicular to the respective boundary, as will be discussed in detail in Section 4.
After U is obtained, the velocity is corrected and the pressure is updated by using

Gplþ1 ¼ Gpl þ GU � ðcl þ .lÞDt=ð2ReÞLGU, which is obtained from the discretized momentum
equations and transforming qlþ1i � q̂i with Eq. (7) into U. We assume a smooth function U so that
it is possible to write
plþ1 ¼ pl þ U � ðcl þ .lÞDt
2Re

LU: ð10Þ
Braza et al. [10] investigate the importance of the viscous term ðcl þ .lÞDt=ð2ReÞLU for the wake
behind a circular cylinder and conclude that for high Reynolds number calculations it may be
neglected. However, the convergence is improved if one considers the complete Eq. (10) and since
the additional computational effort is negligible the viscous term is included in all simulations.
Perot [36,37] shows conclusively that the first-order accuracy of the discrete pressure is inherent

to all fractional-step methods of the form Giðalpl þ blp
lþ1Þ, with al þ bl ¼ 1, independent of the

boundary conditions. Moreover, both he as well as Armfield and Street [4] emphasize that the
order of accuracy of the pressure update does not affect the order of accuracy of the incompressible
velocity field. Hence, the present scheme is second order accurate for the viscous terms, and third
order accurate for the convective terms. The overall spatial accuracy is second order for the
velocity and first order for the pressure.
In the present study we limit ourselves to relatively low Reynolds numbers, i.e. laminar flows.

As demonstrated by Verzicco and Orlandi [47], second-order accuracy is satisfactory for this class
of flows. In addition, at these moderate Reynolds numbers the high frequency energy content of
the flow and the associated aliasing errors can safely be neglected.
3.2. Grid

Since vortex breakdown originates in the vortex core, high spatial resolution is required near
the axis. On the other hand, all open boundaries should be sufficiently far removed from the
location of the vortex breakdown, in order for it to remain unaffected by the numerical conditions
implemented at these boundaries. Furthermore, spatial variations of all flow quantities can be
expected to diminish far away from the axis, so that a coarser resolution of the far field is
appropriate. For these reasons, a coordinate transformation is attractive that concentrates grid
points in the region near the axis. We adopt the radial transformation used by Grabowski and
Berger [20] which ensures that successive cells are stretched by a constant factor. It allows to
specify the number of points within the vortex core, nR, and the total number of points in the
radial direction nr used to discretize the entire radial extent of the domain Rd .
In order to avoid any contamination of the vortex breakdown by the downstream boundary,

the axial extent of the computational domain Zd is required to be large. While this will result in
weak gradients next to the downstream boundary, we do not employ a mapping of the down-
stream direction, in order to retain the ability to apply a Fourier series approach for the solution
of the Poisson equation (8). To keep the aspect ratio of the computational cells within the vortex
core close to 1, a fairly large number of grid points in the axial direction nz is required. However,
this disadvantage is more than compensated by the speed and accuracy of the Poisson solver.
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4. Boundary conditions

Fig. 1 shows the three boundaries of the domain: the inflow, outflow and the radial or lateral
boundary. In general, all of these boundaries are open, so that mass and momentum can be
transported across them. In the following, we will discuss the computational treatment of each of
these boundaries separately.
4.1. Inflow boundary

In the present simulations we consider two different inflow profiles, viz. a high and a low
entrainment case. Both profiles are axisymmetric and constant over time, and we do not super-
impose any perturbations. The use of such steady inflow conditions has been criticized in the
context of simulating trailing wing vortices (e.g. [30,45]), as they do not allow for the upstream
propagation of disturbances past the inflow plane. A relaxation of the inlet boundary condition,
on the other hand, requires certain ad hoc adjustments along the lateral boundary, in order to
keep the breakdown within the computational domain. This, in turn, has the disadvantage of
affecting the initiation and mode selection of the vortex breakdown, cf. Althaus et al. [2]. Snyder
and Spall [42] investigate the possible influence that upstream propagating waves might have on
the breakdown structure of trailing wing vortices. To this end, they simulate breakdown in a tube-
and-vane apparatus. They compare results obtained from a simulation of the full apparatus with
results considering fixed inlet conditions, derived from the results using the complete vane
geometry. These calculations reveal that breakdown location and structure are essentially unaf-
fected by the use of fixed, steady inflow conditions. This suggests that our choice of fixed, steady
inflow boundary conditions will not unduly constrain the development of the various vortex
breakdown modes further downstream.
4.1.1. Grabowski profile
In order to study the case of low entrainment, we focus on a class of profiles that were already

investigated by Grabowski and Berger [20] in steady, axisymmetric simulations. This provides an
opportunity to validate our own axisymmetric steady state results, and to study both the unsteady
evolution as well as three-dimensional effects for this class of flows, referred to as �Grabowski
profiles� hereafter. The non-dimensional form of the velocity profile is obtained by scaling the
radius with the characteristic core radius L ¼ R, and the velocities with the freestream axial
velocity U ¼ ~vz;1. The two-parameter non-dimensional velocity components then take the form
vhð06 r6 1Þ ¼ Srð2� r2Þ;
vhð16 rÞ ¼ S=r;

vrðrÞ ¼ 0;

vzð06 r6 1Þ ¼ a þ ð1� aÞr2ð6� 8r þ 3r2Þ;
vzð16 rÞ ¼ 1:

ð11Þ
Here the swirl parameter S represents the azimuthal velocity at the edge of the core,
S ¼ ~vhðRÞ=~vz;1. The coflow parameter a denotes the ratio of the velocity at the axis to the free
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stream velocity, a ¼ ~vz;c=~vz;1. Setting a greater or less than one yields the jet- or wake-like
behavior, respectively. The properties of the Grabowski profile are sketched in Fig. 3.
4.1.2. Maxworthy profile
The second class of profiles is intended to model the high entrainment, top-hat jet flows studied

in the experiments of Billant et al. [7] and Maxworthy (private communication). To render the
velocity components dimensionless, length and velocity are scaled by the core radius L ¼ R and
the centerline velocity U ¼ ~vz;c, respectively. This yields the dimensionless velocity profiles of the
form
vhðrÞ ¼
Sr
2
1

�
� erf r � 1

d

� ��
;

vrðrÞ ¼ 0;

vzðrÞ ¼ 1� a � 1
2a

1

�
þ erf r � 1

d

� ��
:

ð12Þ
Hence we obtain a three-parameter velocity profile defined by the swirl parameter S, the
dimensionless shear-layer thickness d, and the coflow parameter a. The latter is defined in the
same way as for the Grabowski profile (a ¼ ~vz;c=~vz;1), while S ¼ Xc~r=~vz;c approximates the solid
body rotation at the axis Xc for sufficiently small d/0:2. This type of profile will be referred to as
the �Maxworthy profile� hereafter. Its properties are sketched in Fig. 4.
4.2. Outflow boundary

The present investigation is designed to simulate the non-linear temporal and spatial devel-
opment of swirling flows. This precludes the use of any periodicity assumptions to reduce the
computational domain. In particular, the simple periodic outflow boundary conditions success-
fully employed by Brancher et al. [9] and Hu et al. [24] in simulations of temporally growing flows
can not be applied. In agreement with the observations by Jin and Braza [25] for plane shear-layer
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simulations, Neumann type boundary conditions were found to yield non-physical feedback,
which strongly affects the global stability of the flowfield, cf. Buell and Huerre [13]. Hence we
choose to follow Orlanski [34] and apply convective boundary conditions for each velocity flux
component
oqi
ot

þ C
oqi
oz

¼ 0: ð13Þ
This boundary condition, also known as non-reflective, radiation, absorbing, or advective con-
dition, is spatially and temporally local, and thus computationally very efficient to implement. In
contrast to Orlanski, however, C is taken to be a constant convection velocity of the large-scale
structures, rather than a local propagation velocity. It has to be determined experimentally or in
preliminary runs. Obviously it is important to show that the value of C is not critical to the
solution in the interior of the domain. This is demonstrated by, among others, Salvetti et al. [41]
for coaxial jets and by Pauley et al. [35] for two-dimensional separating laminar boundary layers.
For the present case of swirling jets, it will be shown in Section 5. While a constant value of C
yields satisfactory results for incompressible flows, there are efforts to determine an optimal C-
value to ensure non-reflecting behavior in compressible and aeroacoustics computations, cf. e.g.
Colonius [16] and Rowley and Colonius [39].
For all of the above examples, the vortical structures generated in the interior of the domain are

convected across the boundary without any significant distortion or reflection. Nevertheless,
Akselvoll and Moin [1] observe that this boundary condition does have an upstream influence
over about one dimensionless length. Salvetti et al. [41] point out that within this zone the
streamlines are artificially forced to be perpendicular to the boundary. We suggest that this may
be a result of the one-dimensional origin of this boundary condition. Thus, in the results presented
in Section 5, this zone near the outflow boundary should be considered from this perspective.
Finally we wish to address the question whether the in- and outflow boundary conditions agree

with the implicit assumptions necessary to solve the Poisson equation (8) by a cosine expansion
for / in the axial direction. Verzicco and Orlandi [47] show that q̂i ¼ qlþ1i þOðDt2Þ. Consequently
we take q̂i ¼ qlþ1i on the domain boundary without loss of accuracy which, with Eq. (7), yields
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GiU ¼ 0. The proof for the in- and outflow condition is now straightforward, considering that the
convective condition (13) is determined at time levels l and l� 1, in line with the convective terms
Hi.

4.3. Radial boundary

Earlier three-dimensional simulations initiated vortex breakdown by prescribing a more or less
artificial pressure gradient, which was generated by specifying the axial velocity on the radial
boundary. Subsequently it was demonstrated that the selection of this pressure gradient deter-
mines the breakdown mode, cf. Althaus et al. [2] and Spall and Snyder [46]. The present simu-
lations seek to eliminate this dependency, by specifying a radial boundary condition that is nearly
transparent to the flow. In the following, we discuss several possible approaches in this regard, for
which results will be discussed is Section 5.

4.3.1. Free-slip condition
If the coflow is sufficiently large, free-slip conditions can be applied similarly to incompressible

shear-layer simulations (e.g. [28,41]). Generally, free-slip conditions are defined by vanishing
tangential viscous stress components on the cylindrical streamsurface. Thus the non-dimensional
free-slip conditions in the present notation read
qr ¼ 0;
oqh

or
� qh

Rd
¼ 0 and

oqz
or

¼ 0: ð14Þ
Note that the above is true for axisymmetric and three-dimensional cases alike. In the present
investigation we neglect the expression qh=Rd above. This is justified by the fact that for large Rd

this term decreases like 1=R2d for the Grabowski profile. For the Maxworthy profile, it is even
smaller. In addition, possible additional errors introduced by this simplification are far removed
from the dominant dynamic regions of the flow, so that they have a negligible influence. Further,
similarly to the inflow condition, the free-slip condition satisfies the implicit requirement o/=or ¼
0 necessary for the solution of the Poisson equation (8).
Assuming impermeable lateral boundaries Gresho [22] shows for a two-dimensional Cartesian

coordinate system that any constant C automatically satisfies global mass conservation. This
favorable property can also be shown to hold for an axisymmetric case if impulsive starts (as
defined by Gresho) are precluded.

4.3.2. Neumann condition

If appreciable entrainment occurs, such as for the top-hat jet profile, the free-slip boundary
condition requires unpractically large radial dimensions of the computational domain in order to
avoid feedback from the boundaries. In order to be able to truncate the domain at smaller radii,
one has to allow for mass and momentum to be exchanged across the radial boundary. One
possibility in this regard is to take the homogeneous Neumann condition for the radial flux
component
oqr
or

¼ 0: ð15Þ
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This implies constant radial mass flux through concentric cylindrical shells, which models
entrainment at large radii. As stated by Kourta et al. [28], the most challenging problem in
employing the homogeneous Neumann boundary condition is to globally conserve mass. This is
due to the absence of a time derivative in the incompressible continuity equation; a feature that is
retained in the fractional-step formulation. On the other hand, it is much more straightforward to
conserve mass globally in the artificial compressibility method [14] for steady flows, and its dual-
time stepping extension for unsteady flows. However, this approach is computationally much less
efficient than the fractional-step method employed here.
In two-dimensional plane mixing layer simulations, Kourta et al. [28] are unable to conserve

global mass for long simulation times when they use the homogeneous Neumann condition at the
lateral boundaries in combination with a boundary layer type outflow condition. On the other
hand, our convective outflow boundary condition introduces the free parameter C, which can be
used to enforce global mass conservation, as will be explained below.
In order to study the interaction between an open radial boundary employing Eq. (15) and a

prescribed convective outflow condition, we consider two combinations of Dirichlet/Neumann
conditions at the radial boundary. The first one represents the straightforward extension of the
free-slip condition, i.e. oqh=or ¼ oqz=or ¼ 0 (type 1). However, the condition oqh=or ¼ 0 is only
approximately satisfied for velocity profiles decreasing like 1=R2d . This leads to the second version,
in which qh is prescribed in a Dirichlet fashion by setting it to its value at the inflow z ¼ 0, i.e.
qh ¼ qhðRd ; 0Þ. Further we prescribe the axial velocity component in a Dirichlet fashion, i.e.
qz ¼ qzðRd ; 0Þ (type 2). In both versions mass is conserved by slightly modifying the axial velocity
component at the outflow boundary z ¼ Zd . This is done in the form
qzðh; r; ZdÞ ¼ q�z ðh; r; ZdÞ þ D _V � W ðrÞR
W ðrÞdA�

; ð16Þ
where qz is the axial velocity component conserving global mass, and q�z is the one obtained
from applying the simple radiation condition (Eq. (13)) at the outflow. D _V ¼

R
ðqzð0Þ�

qzðZdÞÞdA� �
R
qrðRdÞdA� is the volume flux necessary to conserve global mass. HereR

ðqzð0Þ � qzðZdÞÞdA� and
R
qrðRdÞdA� represent the difference between axial in- and outflow, and

radial entrainment, respectively. The infinitesimal areas are defined in the common way, i.e. dA� ¼
rdhdr and dA� ¼ Rd dhdz. W ðrÞ denotes the weight function governing the distribution of the
necessary axial velocity adjustments at the outflow. Typically we take W ðrÞ ¼ 1� ðr=RdÞ2. Since
this modification causes slight variations of C in the radiation condition, it has to be demonstrated
that the solution is not influenced by the choice of W ðrÞ. This will be shown in Section 5. A
significant disadvantage of this procedure is that in order to retain the global mass conservation
with q̂r ¼ qlþ1r , i.e. o/=or ¼ 0 on the radial boundary, qr has to be known a priori. This renders the
calculations employing oqr=or ¼ 0 iterative, and therefore computationally less efficient.
Boersma et al. [8], investigating the spatio-temporal evolution of an incompressible jet without

swirl, apply a so-called traction-free condition at the lateral boundary. They find that the main
advantage of the traction-free condition over a free-slip condition is that velocity across the
boundary is allowed. This important property is retained in the simpler Neumann conditions
presented above. Further they find that the traction-free boundary condition is numerically stable
only below a certain cell Reynolds number. Since swirling flows typically entrain more mass than
non-swirling jets and the application of a radial grid stretching in the present scheme we expect
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numerical stability problems, similar to those experienced by Boersma et al. [8] at the outflow for
turbulent flow. Thus the numerical scheme potentially has to be stabilized in the spirit employed
here for the Neumann conditions, rendering it iterative, and therefore computationally less effi-
cient.

4.3.3. Radiation condition

The lower computational efficiency caused by employing the homogeneous Neumann condition
in the radial direction renders the time-explicit formulation of an open radial boundary condition
attractive. Since swirling flow fields exhibit qualitatively wave-like features ([6,31,33], etc.), the
boundary conditions should simulate the propagation of waves out of the computational domain;
that is to say, they should allow the motion of outgoing flow to pass through the boundary
without being reflected, while incoming wave amplitudes should have no effect on the solution
inside the domain and hence be set to 0.
However, a detailed derivation of such radiative boundary conditions starting from the wave

equation in polar coordinates [17,19] is not pursued here, since no matching with the Navier–
Stokes equations in a mathematically exact way is possible, cf. Jin and Braza [25]. Instead we take
the condition
oqi
ot

þ Cr
oqi
or

¼ 0; ð17Þ
at the radial boundary in the spirit of the employed outflow condition, thus implicitly requiring
o/=or ¼ 0. Here Cr represents the convection velocity in the radial direction and Cr > 0 guar-
antees the properties discussed above. In Section 5 it will be shown that, similarly to the outflow
boundary, the exact value of Cr is not critical for the simulation.
In the following, we will demonstrate that simulations with open convective radial and

downstream boundaries automatically conserve global mass if Cr ¼ const: and C ¼ const: Fol-
lowing Gresho [22] the problem has to be well posed for tP 0, and impulsive starts have to be
excluded. Integration of the boundary conditions (Eqs. (13) and (17)) over time and the surface of
the domain yields
Z

A�

Z t

0

C
oqz
oz
dtdA� þ

Z
A�

Z t

0

Cr
oqr
or

� �
dtdA� ¼ 0; ð18Þ
where the first (second) term has to be evaluated at the outflow boundary z ¼ Zd (radial boundary
r ¼ Rd). Note that the derivation of the above expression requires global mass conservation at
every instant tP 0, which removes the time derivatives in the boundary conditions. The above
equation can be simplified further if axisymmetry is assumed. Under this condition, and by
employing the continuity equation (1), the surface integrals can be reduced to an evaluation of
velocity components on the boundaries
Z t

0

C
CrR2d

qrðRd ;ZdÞ
�

þ qzðRd ;ZdÞ � qzðRd ; 0Þ
�
dt ¼ 0: ð19Þ
Hence Eq. (17) together with the convective outflow boundary condition (13), satisfies global mass
conservation of an axisymmetric calculation automatically if qrðRd ;ZdÞ ¼ 0 and qzðRd ; ZdÞ ¼
qzðRd ; 0Þ.
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Numerical simulations of three-dimensional cases performed during the present investigation
show that for sufficiently far removed radial boundaries, azimuthal variations along them can be
neglected. Fig. 5 depicts the global (divtotal) mass conservation, as well as the maximum local
divergence (divmax), for a three-dimensional simulation of a Grabowski profile with S ¼ 1:095 and
a ¼ 1 at the Reynolds number Re ¼ 200. Both of these divergence diagnostics remain near
machine accuracy. This flow will be discussed in greater detail below.
5. Numerical results

We shall base our discussion of the main results on two representative reference cases; one for
the Grabowski profile and one for the Maxworthy profile. Unless specified otherwise, the refer-
ence cases employ physical and numerical parameters as follows: while the Reynolds number is
uniformly set to Re ¼ 200, we take for the Grabowski profile S ¼ 1:095 and a ¼ 1:0, and for the
Maxworthy profile S ¼ 1:5, d ¼ 0:2 and a ¼ 100:0. All simulations start from an initial condition
that assumes a cylindrical flow with a velocity profile determined by the above parameters.
Occasionally, we refer to the �steady state� of a simulation. By this we mean that the velocity
components change by less than 10�6 over Dt ¼ 10.
The computational domain for both cases typically has the dimensions Rd ¼ 10 and Zd ¼ 20.

Note that Rd ¼ 10 represents the minimum requirement for the optimal radial boundary condi-
tions in order to obtain solutions independent of numerical parameters. Other boundary condi-
tions may require substantially larger domains, as will be discussed below. The reference case is
resolved by nr ¼ 61 (nR ¼ 17) grid points clustered around the axis and nz ¼ 193 equidistant grid
points in the axial direction. In the non-axisymmetric simulations nh ¼ 61 grid points are taken in
the azimuthal direction. The time step employed is typically Dt ¼ 0:025.
The grid independency has been checked by comparing the reference case (solid lines) with a

high resolution simulation (dashed lines) employing nr ¼ 97, nz ¼ 241 and nh ¼ 97 grid points, cf.
Fig. 6 for the example qh at z ¼ 5 and r ¼ 1. The constant horizontal lines, corresponding to
axisymmetric calculations, reveal a marginal difference of about 0.2%, with respect to the high
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resolution case. The oscillatory behavior of the three-dimensional simulations exhibits no
detectable difference in the period, however the maxima and minima differ by 0.2% and 1.4%,
respectively. The phase shift between the computations is caused by grid dependent round-off
errors feeding on a physical instability, which ultimately yields the oscillatory behavior of the flow
field. As additional accuracy check for the axisymmetric steady state solutions we shall compare
with the vortex breakdown results of Grabowski and Berger [20] throughout this section.
The convective velocity for the outflow is set to C ¼ 0:6. In order to establish that the numerical

solution is independent of the value of C, we conducted simulations for 0:016C6 1:1. Quanti-
tative comparisons showed maximum deviations in jDqij and jDpj of order 10�5 at the boundaries,
and even smaller in the interior of the domain.
In the following, we will discuss the results obtained with the various boundary conditions

introduced in Section 4 for both reference cases in detail. Their main properties are summarized
in Table 1.
5.1. Grabowski profile

As a typical low entrainment case, we consider the Grabowski reference profile. For the axi-
symmetric steady state, we can compare our results directly with the simulations of Grabowski
and Berger [20]. For this purpose, we follow these authors and present streamline plots projected
Table 1

Overview of the discussed lateral boundary conditions

Lateral boundary condition Global mass conservation Numerical efficiency

Free slip Automatic Explicit

Neumann (1) Weight function Iterative

Neumann (2) Weight function Iterative

Radiation Automatic Explicit
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onto a meridional plane, cf. Fig. 7. The present results obtained with a free-slip or simple radi-
ation condition at the radial boundary display good qualitative agreement with Grabowski and
Berger�s original work, although their simulation is not as well resolved spatially. A quantitative
comparison between the present results with the above two boundary conditions yields maximum
differences on the order of 10�3 for jDqij and jDpj. A variation of the numerical parameter Cr

(Cr ¼ 0:1 for the simulation shown) in the range 0:016Cr 6 1:1 results in a maximum difference of
10�7 for these quantities.
In order to determine which of the above radial boundary conditions allows for the smallest

control volume, we compare results for a domain size of Rd ¼ 2, cf. Fig. 7(d). Although the radial
boundary clearly affects the solution in both cases, the free-slip condition alters the bubble much
more dramatically, by forcing the streamlines to be parallel to the radial boundary. In contrast,
the radiation condition produces a somewhat larger bubble that nonetheless resembles the one
obtained for the larger domain Rd ¼ 10 significantly better.
As an example of a more detailed validation with Grabowski and Berger�s [20] results, Fig. 8

displays the axial velocity component along the axis for the present reference case (a), along with
their original results (b). Note that due to the staggered grid qz is not evaluated directly on the axis
(r ¼ 0) so that the data shown are taken at the radial position closest to the axis. Both radial
boundary conditions deliver nearly indistinguishable results, which agree well with the classic
work.
In order to determine the effect of different radial boundary conditions on the temporal

development of the axisymmetric flow, we consider time traces of velocity components at several
positions throughout the computational domain. Fig. 9 shows such data for the axial velocity
Fig. 7. Streamlines of the Grabowski reference case at steady state. Comparison of the free-slip (a) and the radiation

condition with Cr ¼ 0:1 employed at Rd ¼ 10 (b). The original streamlines obtained by Grabowski and Berger [20]

(reprinted with the permission of Cambridge University Press) are shown in (c). Finally, (d) displays streamlines

obtained with the free-slip (no arrows) and radiation condition (Cr ¼ 0:1, arrows) applied at Rd ¼ 2.



Fig. 8. Axial velocity component closest to the axis. (a) Present simulation: the solid and dashed lines represent the free-

slip and simple radiation (Cr ¼ 0:1) condition, respectively. (b) Simulation of Grabowski and Berger [20] (reprinted with
the permission of Cambridge University Press): the dashed line applies to the swirl parameter value S ¼ 1:095 employed
in the present simulations.
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component closest to the axis. No discernible differences are observed between the free-slip (open
squares) and simple radiation (filled circles) lateral boundary conditions.
Correspondingly similar behavior is also observed for three-dimensional simulations of the

reference case. Fig. 10 displays streaklines at times t ¼ 50 and 750 obtained with the simple
radiation condition. A transition from a quasi-steady axisymmetric bubble breakdown state to a
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helical type is observed. The same transition occurs, at the same time, with the free-slip boundary
condition.
If the swirl is increased to S ¼ 1:3, with all other physical and numerical parameters left un-

changed, a double-helical breakdown mode emerges from a quasi-steady axisymmetric bubble
state (Fig. 11). These highly unsteady, three-dimensional results obtained with a fixed inflow
profile are quite similar to the simulation data presented by Breuer and H€anel [11], Breuer et al.
[12] and Spall and Gatski [43] for lateral pressure-based boundary conditions.
The application of any of the homogeneous Neumann conditions discussed above at the radial

boundary is found to require a computational domain larger than Zd ¼ 20 and Rd ¼ 10, in order
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Fig. 11. Double-helical breakdown type as observed for the Grabowski reference case with higher swirl S ¼ 1:3.
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to render results independent of the weight function W . Since, as shown above, free-slip and
radiation conditions yield satisfactory results for smaller domains, we thus do not pursue
homogeneous Neumann conditions any farther here.
5.2. Maxworthy profile

In contrast to the low entrainment case, the lateral boundary for a high entrainment case
generally does not approximate a stream surface, unless it is positioned at very large radial dis-
tances. To avoid the additional computational effort associated with such a large domain, it is
advantageous to allow for mass and momentum transport across the boundary. This issue is
clearly demonstrated in Fig. 12, which presents results for the axisymmetric, steady state Max-
worthy profile.
Fig. 12(a) demonstrates that a free-slip boundary condition applied at the reference position

Rd ¼ 10 produces an unphysical recirculation region near the outflow boundary. Increasing the
radial dimension of the computational domain to Rd ¼ 16 eliminates this undesirable behavior, at
the expense of additional grid points. A similar behavior, even though less pronounced, can be
seen for the homogeneous Neumann condition type 2. Application of the radiation (b) or the
homogeneous Neumann condition (type 1) (c) yields flow fields that deliver almost indistin-
guishable results in both domains Rd ¼ 10 and 16. It should be kept in mind that in the far field
the velocity values are so small that even minute changes can significantly alter the streamline
shapes. The maximum differences jDqij and jDpj for cases (b and c) are less than 1% of the velocity
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scale. A more detailed look at the near field at Rd ¼ 10 is provided in Fig. 13. All boundary
conditions yield qualitatively nearly indistinguishable results, with the largest deviation exhibited
by the free-slip and Neumann type 2 condition.
We wish to point out that increasing the swirl parameter to S ¼ 1:7, with all other parameters

left constant, gives rise to a two-celled bubble structure (Fig. 14). This result is similar to the
numerical simulation data of Breuer and H€anel [11] and Spall et al. [44], and it indicates that the
fixed inflow conditions employed in the present investigation do not prevent the existence of two-
celled structures, as has been suspected by Spall et al., among others.
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structure.



M.R. Ruith et al. / Computers & Fluids 33 (2004) 1225–1250 1245
5.3. Mass conservation

As seen above, the use of different boundary conditions can lead to quantitative changes in the
flow field. In part, this is due to the distinct ways in which global mass is conserved for each of
the boundary conditions. The free-slip condition requires the radial flux to be 0 (qr ¼ 0) over the
whole axial extent of the radial boundary (Fig. 5a). Thus, the requirement qrðRd ;ZdÞ ¼ 0 for
global mass conservation (cf. Section 4) imposed by the outflow condition is satisfied trivially,
while the free-slip condition on the radial boundary allows qzðRd ; ZdÞ to adjust freely. This is
shown in the right detail insert in Fig. 15(c), which demonstrates that qzðRd ;ZdÞ 6¼ qzðRd ; 0Þ ¼ 1:0.
The simple radiation condition enforces global mass conservation by means of additional

constraints on the velocity components at the boundaries, cf. Section 4.3.3. Applying it at the
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radial boundary requires qzðRd ;ZdÞ ¼ qzðRd ; 0Þ, cf. the detail inserts of Fig. 15(c). On the other
hand, applying the radiation condition at the outflow boundary requires qrðRd ; ZdÞ ¼ 0 in order to
satisfy global mass.
Both types of the homogeneous Neumann boundary condition conserve global mass through

modifying the outflow boundary condition by means of the weight function W . This removes the
limitations concerning qzðRd ;ZdÞ and qrðRd ; ZdÞ. While the resulting normal velocity profiles at the
boundary have qualitatively different shapes, the quantitative differences are well below one
percent of the characteristic velocity. They produce essentially indistinguishable velocity distri-
butions in the interior of the domain, cf. Fig. 15(b) and (d).
In particular we wish to point out that the application of a Neumann condition which differs

from type 1 only by employing qhðRdÞ ¼ qhðRd ; 0Þ instead of oqhðRdÞ=or ¼ 0 exhibits indistin-
guishable results from type 1, even at the boundaries.
The results obtained with the homogeneous Neumann boundary conditions are insensitive to

the particular choice of the weight function W . This has been confirmed for the Maxworthy
reference case by a qualitative comparison of the streamlines obtained for the weight functions
W ðrÞ ¼ 1� ðr=RdÞ2, W ðrÞ ¼ 1 and W ðrÞ ¼ ðr=RdÞ2. A quantitative comparison of each of these
cases with a reference case that employs the radiation boundary condition exhibits maximum
values of jDqij and jDpj on the order 10�3.
Fig. 16 discusses the quality of mass conservation for both reference cases by means of the

maximum local divergence in the flow field as function of time. For the Grabowski profile (Fig.
16a) the dashed line represents a case with radiation boundary condition, while the solid line
represents corresponding data for the free-slip condition. It is demonstrated that the local
divergence values are comparable for the free-slip and the simple radiation conditions.
The Maxworthy profile is discussed in Fig. 16(b). Here the radiation boundary condition is

represented by the solid line, exhibiting comparable maximum local divergence values with the
Grabowski case. Application of the homogeneous Neumann condition without enforcing global
mass conservation leads to a dramatic increase of local divergence values (dashed line) in time,
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while enforcing it keeps the maximum divergence around machine accuracy (dash-dotted line).
The figure shows that the maximum divergence in simulations employing the radiation boundary
condition is well below those using the Neumann condition. The reasons for this are explained in
detail below.

5.4. Numerical efficiency

The design of an efficient numerical scheme generally favors non-iterative algorithms. Towards
this end, we combine the pressure correction variant of the fractional-step method with a direct
Poisson solver based on trigonometric expansions. The temporal discretization of the radiation
conditions (Eqs. (13) and (17)) allows us to maintain the non-iterative character, as it employs an
explicit Euler scheme in order to obtain the velocities at the boundaries before the factorized
momentum equation (Eq. (5)) is solved for each temporal substep. In this way, simulations
employing either the free-slip or the radiation condition at the lateral boundary can be carried out
in a non-iterative fashion.
In contrast, application of the homogeneous Neumann condition (Eq. (15)) yields an iterative

scheme. This is due to the fact that the radial flux qlþ1r ðRdÞ at the lateral boundary cannot be
determined before solving the momentum equation (Eq. (5)). Consequently, it is impossible to
determine the required mass flux D _V lþ1ðqlþ1r Þ to conserve global mass at the new time level, on the
basis of the data at the old time level l. As a result, one initially has to take D _V lþ1ðqlrÞ, which
generally does not conserve global mass, and iterate on the resulting qlþ1r ðRdÞ value until global
divergence is lower than 10�10. We limit the number of iterations to a maximum of three per
temporal substep. Due to this limitation on the number of iterations, the divergence (global as
well as local maximum) is typically higher than for radial free-slip or radiation boundary con-
ditions (Fig. 16b).
6. Summary and conclusions

The present article discusses direct numerical simulations of spatially evolving, unsteady
swirling laminar jets exhibiting axisymmetric and three-dimensional vortex breakdown phe-
nomena. For realistic inflow profiles leading to both low and high entrainment, the inception and
selection of different breakdown modes are observed, independent of the numerical simulation
parameters. Towards this end, the incompressible Navier–Stokes equations are solved in cylin-
drical coordinates with second-order accuracy all the way to the axis. This approach avoids the
artificial perturbations in the azimuthal direction that had been encountered in earlier simulations
employing Cartesian coordinates. The time discretization is accomplished by means of a gen-
eralized fractional-step method for which we discuss the appropriate intermediate velocity
boundary condition that is required to maintain the second (first) order accuracy for velocity
(pressure) in time.
A particular challenge lies in the formulation of appropriate conditions at the open radial and

outflow boundaries, so that the evolution of swirling jets with vortex breakdown in semi-infinite
domains can be simulated. Towards this end, various radial boundary conditions were imple-
mented and tested: a free-slip condition, two types of homogeneous Neumann conditions, and a
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radiation condition that is similar to the one employed at the outflow boundary. It was shown
that global mass is conserved automatically in the free-slip and simple radiation case. In contrast,
the Neumann condition requires some iterative modification at the outflow boundary, based on a
weight function W , in order to conserve mass. However, the results are insensitive to the specific
form of W . While all boundary conditions lead to maximum divergence values around machine
accuracy, the homogeneous Neumann conditions result in the largest divergence values, due to a
limit on the number of iterations. In addition, their iterative nature reduces the computational
efficiency. The homogeneous Neumann (type 1) and the radiation condition yield nearly indis-
tinguishable flow fields for identical radial domain sizes, while the free-slip and type 2 conditions
require a larger domain. Taking into account all of the above findings, the straightforward
radiation condition emerges as the optimal lateral boundary condition for the high entrainment
jet.
For the low entrainment case, the lateral boundary approximates a streamsurface even at fairly

small radial distances. Under these circumstances, the free-slip and radiation conditions produce
almost indistinguishable results, as long as the radial boundary is placed at a sufficiently large
distance. However, the radiation condition approximates the true physical solution even if the
radial boundary is as close as two characteristic core radii from the axis, while for this extreme
situation the free-slip condition significantly underpredicts the bubble size. Consequently, the
radiation condition emerges as the best choice for both high and low entrainment jets.
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