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Abstract. Vortex breakdown of nominally axisymmetric, swirling incompress-
ible jets and wakes issuing into a semi-infinite domain is studied by means of
direct numerical simulations, as well as local and global linear stability anal-
yses. A two-parametric low entrainment velocity profile for which the steady,
axisymmetric breakdown is well studied (Grabowski W J and Berger S A 1976
J. Fluid Mech. 75 525–44) is selected to discuss the role of the applied swirl in
the existence and mode selection of vortex breakdown. As the swirl parameter
is increased, bubble, helical and double-helical breakdown modes are observed
for the moderate Reynolds number applied. It is shown that a local transition
from super- to subcritical flow, as defined by Benjamin (Benjamin T B 1962
J. Fluid Mech. 14 593–629), accurately predicts the swirl parameter yielding
breakdown. Thus the basic form of breakdown is axisymmetric. A transition
to helical breakdown modes is shown to be caused by a sufficiently large pocket
of absolute instability in the wake of the bubble, giving rise to a self-excited
global mode. Preliminary axisymmetric results of a global linear instability anal-
ysis agree favourably with the direct numerical simulation and thus encourage
extension of the global analysis to helical modes.
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1. Introduction

Vortex breakdown of swirling flows is characterized by an abrupt structural change of
the nominally axisymmetric core of a swirling jet, forming an internal stagnation point.
Experimental evidence manifests the existence of three distinct breakdown modes: bubble,
helical and double helical. Despite extensive theoretical, experimental and numerical research
for over 40 years, a general explanation for the existence and mode selection of vortex breakdown
is still elusive.

To shed light on the mechanism determining the existence and mode selection of vortex
breakdown in incompressible, laminar flow in an unconfined domain, a numerical investigation [4]
is undertaken. The obtained axisymmetric and three-dimensional results are discussed in light
of classical wave theory, recent local absolute/convective instability results and global linear
instability results.

2. Discussion of results

We shall limit ourselves to a low entrainment velocity profile [1] which is assumed at each axial
position at time t = 0 and is kept constant at the inflow boundary as the flow evolves. However
we wish to point out that, for the moderate Reynolds number considered, a similar dynamical
evolution is obtained for pronounced top-hat profiles modelling recent water tank experiments
[3]. The velocity components vr, vθ, vz in radial, azimuthal and axial directions are defined by
the parameter combination S and α. The swirl parameter S represents the ratio of azimuthal
velocity at the core edge r = R and axial velocity at infinity, i.e. S = vθ(R)/vz,∞. The coflow
parameter α represents the ratio of the axial velocity at the axis to the axial velocity in the
free stream, i.e. α = vz,c/vz,∞. Setting α greater or less than one yields jet or wakelike profiles,
respectively. The profile is nondimensionalized by the characteristic core radius R and the free
stream axial velocity vz,∞. The properties of the Grabowski profile are sketched in figure 1.

To simulate a spatially and temporally evolving jet, the outflow and lateral boundaries
employ radiation conditions. Allowing for mass and momentum flux through the radial boundary
permits the selection of relatively small radial domain sizes without artificially confining the flow.
Despite the additional mass exchange over the radial boundary, Ruith et al [4] show that the
obtained flow field is solenoidal within machine accuracy for arbitrary time.

2.1. Existence of breakdown state

Several theories have been proposed to explain the existence of vortex breakdown; however,
none has been generally accepted. One school of thought relates breakdown to the existence of
standing axisymmetric waves on the vortex core. Standing axisymmetric waves exist only on
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Figure 1. (a) Axial velocity profiles: solid line α = 1.0, dashed curve α = 2.0,
dash–dot curve α = 0.5. (b) Azimuthal velocity profiles: solid curve S = 0.5,
dashed curve S = 1.0, dash–dot curve S = 1.2. The radial velocity component is
zero.

subcritical velocity profiles, while supercritical profiles exclusively support downstream travelling
waves. Assuming a steady, axisymmetric and inviscid vortex, Benjamin [2] derives a criticality
condition
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φc = 0, (1)

starting from the Squire–Long (Bragg–Hawthorne) equation. v̄θ and v̄z represent the azimuthal
and axial velocity components of the columnar (∂/∂z = v̄r = 0) base flow. Further, Benjamin
points out that the homogeneous, linear equation (1) delivers the ‘test function’ φc completely
except for an arbitrary, constant multiplier. Thus, following Reyna and Menne [5], we choose the
boundary conditions to be φc(r = 0) = 0 and dφc(r = 0)/dr = 1, where the latter is arbitrarily
chosen to exclude the trivial solution.

Considering Sturm’s fundamental comparison theorem, Benjamin and later Mager [2, 6]
show that a necessary and sufficient condition for the existence of standing waves of finite length
(i.e. for a subcritical state) is that φc has to vanish at least once in the interval 0 < r < 1, i.e.
between the axis and the characteristic vortex core radius. Applying this analysis to the inflow
profile, Grabowski and Berger [1] find no correlation between the occurrence of breakdown and
the super- and subcriticality of the inflow profile.

We extend this analysis by applying the criticality condition (equation (1)) to velocity
profiles obtained at different axial positions of the axisymmetric, steady state solutions. This
is demonstrated in figure 2 for α = 1.0 and Reynolds number Re = 200 based on the core
radius. The left-hand column displays projected streamlines obtained at various swirl numbers
S. The right-hand column shows the corresponding criticality character of the velocity profiles
as a function of the axial coordinate z by means of a critical radius rcrit. The critical radius
rcrit is equal to the radial position where the test function φc vanishes. Thus, with the above
definition, the flow is subcritical if rcrit < 1 and supercritical if rcrit > 1.

The lowest swirl considered (S = 0.85) exhibits no internal stagnation point, and the
velocity profile remains supercritical everywhere. Increasing the swirl parameter to S = 0.8944
an internal stagnation point is observed. This is in agreement with the results of Grabowski
and Berger. The flow becomes subcritical upstream of the stagnation point and recovers its
supercritical character downstream. Although the columnar assumption is clearly violated
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Figure 2. Projected streamlines (left-hand column) together with the criticality of
the vortex core (right-hand column) for a swirl number exhibiting no breakdown
(S = 0.85) and higher swirl S = 0.8944 displaying an internal stagnation point.
Vortex breakdown is connected to a supercritical/subcritical transition.

around the stagnation point, breakdown is connected to a supercritical/subcritical transition as
advocated by Benjamin. Finally we wish to point out that experimental investigations (e.g. [7])
confirm that breakdown represents a transition from supercritical to subcritical flow.

2.2. Transition to different breakdown modes

As pointed out by Escudier et al [7], the key to understanding the existence of the wide range
of experimentally observed breakdown modes lies in the consideration of the stability towards a
discrete spectrum of helical disturbances of the flow field created by the vortex breakdown itself.

For the incipient breakdown state (S = 0.8944) discussed above, a stable, axisymmetric state
is obtained (not shown here). At larger swirl values (S = 1.095), an axisymmetric quasi-steady
state develops that displays a pronounced swelling in the wake of the bubble (upper frame in
figure 3). The visualization employs streaklines of different colour, consisting of particles which
are released close to the axis at the inflow plane. Here an azimuthal instability develops, which
ultimately yields a helical breakdown (lower frame in figure 3). By increasing the swirl number
to S = 1.3, the single helix is replaced by a double-helical breakdown mode (figure 4). The
interested reader is referred to the online version of Ruith and Meiburg [8] for an animation of
the temporal evolution.

Recently, the formation of a sufficiently large pocket of local absolute instability has been
advocated as a possible mechanism causing the transition to the helical breakdown modes.
Delbende et al [9] and Olendraru et al [10, 11] present local absolute/convective instability
results for the viscous and inviscid Batchelor vortex, respectively.

Figure 5 displays the regions of stability (S), absolute (AI) and convective (CI) instability.
These regions are bounded by solid (viscous) and dashed (inviscid) curves indicating the
absolutely unstable wavenumbers m. Assuming that the present velocity profiles at any axial
position can be approximated by a Batchelor vortex, we obtain a locus (red curve with filled
circles) in the α − S (a − q) parameter space. For S = 1.095 (displayed case) two noses reach
into the AI region, one corresponding to the bubble, the other to the swelling in the wake of the
bubble. The latter starts to reach into the AI region exactly when the transition to a helical
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Figure 3. Streaklines at S = 1.095. A quasi-steady state (upper frame) at earlier
times is superseded by a helical breakdown mode (lower frame).

Figure 4. Streaklines at S = 1.3 showing a double-helical breakdown structure.

Figure 5. AI/CI transition curves for a Batchelor vortex in the α − S (a − q)
parameter space for azimuthal modes m = ±1,−2,−3. Solid curves: viscous
study of Delbende et al [9]. Dashed curves: inviscid study of Olendraru et al
[10, 11]. Red curve with filled circles: present simulation with S = 1.095.
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Figure 6. Amplitude of azimuthal velocity vθ as a function of time at different
axial positions for S = 1.095
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Figure 7. Normalized vθ-eigenfunctions taken directly from the numerical
simulation for S = 1.095.

mode is first observed, cf also [12]. Hence, the breakdown mode selection seems to be determined
by the existence of local absolute instability, giving rise to a global mode.

This argument is strengthened further by global instability properties obtained directly from
the non-linear simulation, cf figure 6. The time dependent, three-dimensional, azimuthal velocity
component vθ,3D(t) settles towards the quasi-steady (qs), axisymmetric bubble breakdown state
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3 Linear Instability

DNS

Figure 8. Normalized vθ-eigenfunction of axisymmetric, linear global stability
analysis (top) compared with results obtained directly from the nonlinear
simulation (bottom).

vθ,qs. Shortly after time t = 400 an exponentially growing global instability takes over, ultimately
leading to a helical breakdown mode.

Figure 7 displays the corresponding global vθ-eigenfunctions at two instances during the
exponential growth period. The invariant shape of the eigenfunction reveals a spiralling character
which begins around the swelling of the streamtube in the wake of the bubble, confirming local
AI/CI results.

Clearly a linear global stability analysis has to deliver corresponding results. We use
the word ‘global’ to stress the fact that the present analysis assumes the base flow and the
eigenfunctions to be dependent on the radial and axial coordinate. Thus, in contrast with
classical stability analyses, no axial periodicity is assumed. A preliminary result is presented
in figure 8 which considers eigenfunctions obtained for an axisymmetric perturbation. The
eigenfunctions of the weak damping obtained with the linear global stability analysis (top) and
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the nonlinear simulation (bottom) agree very well.

3. Summary and conclusions

We have presented results of linear and nonlinear, axisymmetric and three-dimensional numerical
simulations of vortex breakdown. Assuming supercritical inflow profiles it has been shown that
the initiation of vortex breakdown corresponds to a transition from supercritical to subcritical as
defined by Benjamin [2]. Further, it has been demonstrated that the breakdown mode selection
is governed by the formation of a sufficiently large pocket of absolute instability in the wake of
the breakdown bubble, giving rise to a global mode.
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