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Direct numerical simulations are used to analyze the evolution of a temporally growing 
two-dimensional shear layer seeded with dilute concentrations of bubbles under gravity. The bubble 
concentrations are dilute enough so that bubble-bubble interactions can be neglected, but are large 
enough for cumulative effects of bubbles to influence the flow. The evolution of the bubble field is 
determined by tracking many individual bubbles, and the flow field is advanced by using the 
Navier-Stokes equations with a coupling term representing the effect of the bubbles on the dew. 
The results are interpreted in terms of the vorticity, density, and pressure fields relative to the 
one-way coupled or passive case. For the coupled case, a reduction in the magnitude of the vorticity 
and pressure gradients near the vortex center is observed. In addition to modification of the few, it 
is observed that the accumulation of bubbles is smaller and the location of the equilibrium points are 
shifted farther from the vortex center as a result of the coupling. It is explored how these changes 
are modified by different Froude numbers and bubble sizes. The differences between passive and 
coupled cases usually increase due to larger accumulations as larger bubbles are considered. 
However, for certain Froude numbers an optimum coupling is observed at intermediate bubble sizes 
due to the absence of equilibrium points for large bubbles. 

I. INTRODUCTION 

One important and common feature that occurs in a va- 
riety of fluid systems is the presence of shear layers. The 
evolution of shear layers has received much attention by re- 
searchers, due to the critical role it plays in mixing, momen- 
tum transport, and transition to turbulence. As a result, there 
have been many advances in understanding the nature of 
single phase shear layers, such as the observation of coherent 
spanwise structures that arise from Kelvin-Helmholtz 
instabihties,‘Y2 and the three-dimensional structures that arise 
when these spanwise structures become unstable.3T4 

Recently, the behavior of small particles in shear layers 
has been investigated. The applications of such studies are 
far reaching, ranging from the mixing of fuel in engines to 
the dispersion of pollutants in the environment. The nature of 
this advection depends on the density of the particles relative 
to the fluid of the shear layer. On one hand, dispersion of 
heavy or aerosol particles occurs when these particles are 
introduced into shear layers, which is observed both in 
experiment?& and simulations.7’8 On the other hand, par- 
ticles that are lighter than the carrier fluid, such as air 
bubbles in water, accumulate near the center of vortices in 
cellular flows’ and in temporally evolving shear layers.” 
One common assumption made in all the previously men- 
tioned numerical studies is to only consider dilute suspen- 
sions of particles. This assumption allows one to neglect the 
interactions between particles and the fluid and among par- 
ticles themselves. 

There have been several approaches to studying nondi- 
lute particle-laden flows. For example, Biesheuvel and 
Gorrisen” use a kinetic theory approach to derive one- 

*‘Present address: Center for Turbulence Research, Stanford University, 
Stanford, California 9430.5. 

dimensional conservation equations in their investigation of 
void fraction disturbances for the case of large bubbles at 
large void fractions. Cook and Harlow12 employed 
ensemble-averaged two-field equations with various closure 
models to investigate a bubble-laden von Kirmin vortex 
street. 

In this study, we wish to consider “weakly dilute” sus- 
pensions of bubbles, namely flows with bubbles that are di- 
lute enough so that bubble-bubble interactions can be ne- 
glected, but not dilute enough to ignore cumulative effects of 
bubbles on the flow. We also wish to do this in a direct 
fashion, to avoid making assumptions about closure models. 
A similar approach has been used for heavy particles in the 
simulations of Squires and Eaton,13 and most recently Elg- 
hobashi and Truesdell,14 who investigated turbulence modi- 
fication by particles by including a source of momentum in 
the Navier-Stokes equations which accounts for the net 
force on the particles back on the fluid. We use this approach 
for the case of bubbles, which, due to their massless nature, 
yield a different contribution to the momentum equations of 
the flow. 

In the next section, we discuss the governing equations 
for the bubble motion and then derive the momentum equa- 
tions for the flow, making use of the weakly dilute assump- 
tion in a general context. We then discuss the particular flow 
configuration we pursue in this study. A brief discussion of 
the numerical methods and methods for analysis of the data 
are presented, followed by the results of the simulations. 

II. GOVERNING EQUATIONS 

The flow we are considering concerns the motion of a 
dilute concentration of gas bubbles in a liquid, such as water. 
Our approach to this problem is to solve equations governing 
each phase which incorporate the effects from the other 
phase, resulting in a two-way coupling. Throughout this sec- 
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tion we refer to the gas bubbles as either the bubble or par- 
ticle phase and the water or liquid as the fluid phase. 

Unlike other studies, our goal is not to derive field equa- 
tions for both phases. We derive field equations only for the 
fluid phase, and calculate the bubble phase by following dis- 
crete bubbles. The equations discussed in this section apply 
to any weakly dilute bubbly flow. We specify these equations 
to our particular flow field and provide initial conditions in a 
later section. 

A. Bubble equation 

We begin by discussing the equations used to calculate 
the bubble trajectories in the fluid. Depending on the flow 
conditions around the bubble, there are several different 
equations one can use here. In this study we consider bubbles 
small enough such that they are dominated by viscous forces, 
and consider surface tension large enough to assume a 
spherical shape with constant volume. Due to the presence of 
surface impurities common in many flows of interest, we can 
further assume that the bubbles behave as solid rigid 
spheres.1”,97’G This last assumption is important in determin- 
ing the expression for the drag force. For a rigid sphere, the 
drag is given by the Stokes drag law, 67ra,uu(u,- Vi), and the 
drag force on a bubble using stress-free boundary conditions 
is given by 4~ap( zli- Vi). (In these expressions a is the 
bubble radius, 14~ is the undisturbed fluid velocity, Vi is the 
bubble velocity, and ,U is the fluid viscosity. j For bubbles that 
satisfy these assumptions listed above, we can use the equa- 
tion of motion derived by Maxey and RileyI for particles in 
general, which neglecting the Faxen corrections for a non- 
uniform flow is given by 

dVi 
“‘P dt ---- ‘(~~itf-~~lpjgS~i+mf 

+6Ta/L(LLi-Vi) 

+67ra’p 

where rllJ and inP are the mass of the fluid displaced by the 
particle and the mass of the particle. Here we have assumed 
that the acceleration of gravity g points in the negative x3 
direction. The terms on the right-hand side of Eq. (1) repre- 
sent the gravitational force, pressure force in absence of the 
particle, the added mass effects of the form given by Auton 
ct al.,” Stokes drag, and the Basset history term. In addition 
to neglecting the Faxen corrections, we also choose to ne- 
glect the Basset history term. The basis for doing so lies in 
the assumptions used to derive Eq. (l), where the Reynolds 
number based on the particle radius and slip velocity, ui- Vi, 
is zero. Departures from this condition have been determined 
to result in a more quickly decaying kernel of the Basset 
history term. l9 

We nondimensionalize Eq. (1) with U and 6 (not to be 
confused with the Kronecker delta, Sij, used above in the 
_wavitational term) as the velocity and length scales, and us- 
ing the notation of Maxey’ we obtain the following equation 
for the acceleration of the particle: 

We have introduced three nondimensional parameters in Eq. 
(3, * %, ,X?, and 6 1 The settling velocity parameter, ,% ; is 
defined as 

T“= imf-m,k 
6rraplJ ’ 

and represents the ratio of gravitational to viscous effects, 
where ,3 U gives the terminal rise/settling velocity of a par- 
ticle in a still fluid. The mass ratio parameter, .R, is defined 
as 

and reflects the difference between the fluid and particle den- 
sities. The material derivative in Eq. (2) represents the effect 
of the pressure gradients on the particle motion, and there- 
fore .3? plays a crucial role in determining how particle and 
fluid element trajectories differ. The mass ratio parameter can 
cover the range of 0~.8~2. For ./%= I, the pressure has the 
same effect on the particle as on a fluid element, and corre- 
sponds to the case of neutrally buoyant particles. For .R=O, 
corresponding to heavy particles, the pressure forces have no 
effect on the particle motion. For bubbles with .R=2, the 
pressure forces are three times as important to the bubble 
motion relative to a fluid element. It is for this reason that 
heavy particles are dispersed by vortices while bubbles are 
entrapped by vortices. In this study, we consider only 
bubbles with .X=2. 

The inertia parameter, . L, is defined as 

, ../;‘= 
677apuS 

(mp + irnf, U ’ 

and is the inverse of the Stokes number. The inertia param- 
eter reflects the relative importance of viscous to inertial ef- 
fects, and in this study is large, reflecting the dominance of 
the viscous forces. 

At this point we should comment on the credibility of 
using the Stokes drag law in Eqs. (1) and (2). One requisite 
for using this expression is that the Reynolds number based 
on the slip velocity and particle diameter be small: 

ReP = 
lu-V12a 

41. 
V 

In the absence of gravitational effects this restriction is met 
for the values of .;L we consider here, but since we are in- 
terested in cases where @‘“fO this condition can be violated. 
We can correct this using an empirical coefficient based on 
ReP from Clift et al.:15 

f-1.0+0.15 Re”‘3 P ’ 

which results in the following equation: 

(3) 
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In addition to altering the drag term, the nonzero rise veloc- 
ity further justifies the elimination of the Basset-history term 
from this equation due to the finite Reynolds number effects. 

In developing Eq. (3), we have assumed that only a 
single bubble is present. But since we are dealing with a 
weakly dilute suspension of bubbles, the bubble-bubble in- 
teractions are neglected, and we can calculate each bubble 
trajectory using Eq. (3) independently. 

B. Fluid equations 

In this section we derive the governing equations that 
describe the evolution of the fluid phase. Since we are con- 
cerned with the motion of air bubbles in an incompressible 
liquid, we begin the analysis of the governing equations for 
the fluid phase with the incompressible Navier-Stokes equa- 
tions: 

f?Uj 
-0, zy 

DUi dP 
’ 

a2Ui 
Pf K =-(3x-Pfg 31 ‘3-p z +bi, 

I 
where P is the pressure and bi is the force of the bubbles on 
the fluid. We can determine bi from the equation of motion 
for a single bubble, Eq. (l), which can be restated as 

dVi 
mP dt 

_ =.p;+.;/i=o, 

where the last equality results from substituting mp=O in the 
first term. Here ,Y’; and Yi represent the net body and surface 
forces on the bubble. From Eq. (l), we obtain ;7’;=mfg&, 
and .l/i consists of all the other terms on the right-hand side 
of the equation. It is important to differentiate between these 
body and surface forces, since Newton’s third law of action- 
reaction implies that the force exerted by a single bubble on 
the fluid is simply 

Bi=-.Yi=Y’;=pfCg&, 

where C= $a3 is the volume of the bubble. The coupling 
term bi in the momentum equation exists at the bubble inter- 
face, but rather than calculate the interaction between phases 
in such a fashion we choose a more macroscopic approach. 
For N bubbles under the weakly dilute assumption, we ob- 
tain the overall force as 

C Bi=NP&gGi 2 
N 

where c is the average volume of the bubbles. This exten- 
sive quantity can then be converted to the average intensive 
force bi by dividing by the total volume: 

hi= Xpfg&ji 2 

where 77 is the global or average number density, defined as 
the number of bubbles per volume. We can also use the av- 
erage void fraction, 

E= ijc, 

in this expression: 

Kj= EpfggS3i. 

Although this force applies only at the fluid-bubble inter- 
face, for our macroscopic approach we can define the local 
force of the bubbles on the fluid as 

bi= EPfg4i 2 
where E is the local void fraction. Using this expression for 
the force per unit volume of the bubbles on the fluid, we can 
write Eq. (5) as 

DUi dP BUi 
” Dt - dXj 

--- +P ~-U-e)Pfg83i. 
I 

(61 

We can interpret the last term of Eq. (6) in terms of the 
density of the fluid-bubble mixture, which is given by 

P=Pfu-4 (7) 

From Eqs. (6) and (7), we see that the net effect of the 
weakly dilute suspension of bubbles is to introduce a buoy- 
ancy term, which is a function of the local void fraction. 

The next step is to determine the reference state of the 
Auid obtained by setting Ki=O and E=E in Eq. (6): 

0=-z -pOgS3i * 
f 

For cases with E=O and thus l;i=O, we obtain the familiar 
hydrostatic equation, where po=pf. However, in our case 
this procedure yields a reference density, given by 

po=pfu-a, 

or simply the average density of the fluid-bubble mixture. 
Using this relation with Eq. (7), we can define the perturba- 
tion density of the mixture as 

p’=p-po=p&E-E)* is> 

If we now make the substitution P= P”+P’, subtract the 
reference state from Eq. (6), divide by pf, and nondimen- 
sionalize Eqs. (4), (6), and (8) according to the following 
variables: 

U +=U X tu 

U’ 
x+=- 

S’ t+=T; 

p+=;, et=;, p+= 
P 

CPfU2) ; 

we obtain the following set of equations, with the f’s omit- 
ted: 

i9j 

(10) 

p’=Z(l-6). w 

In addition to including Z in this set of equations, we have 
also introduced two additional parameters, the Reynolds and 
Froude numbers, given by 

Re= USlv; .F= ul(gcTp2. 
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We should point out several features concerning Eqs. 
(9)-(11). The most obvious is that Eq. (10) is the same equa- 
tion that one obtains in a fluid of variable density under the 
Boussinesq approximation. The Boussinesq approximation 
assumes that density variations are small enough so that the 
density appears as a constant in all terms except the buoy- 
ancy term. These are the same assumptions we made when 
specifying our fundamental equations, so the fact that we 
obtain the Boussinesq equations is no surprise. The differ- 
ence between a Boussinesq fluid and our two-phase flow is 
that in the case of the former the density or temperature field 
is determined by a convection-diffusion equation, whereas 
for the two-phase flow the density field is a function of the 
void fraction, Eq. ill), which is in turn dependent on the 
equation of motion for the bubbles, Eq. (3). We should also 
point out some features that are not present in Eqs. (9)-(11). 
There are corrections due to the Reynolds stresses and effec- 
tive viscosity that also play a role in the evolution of the 
flow. These effects are present for even small void fractions, 
but are not included in the present study. The reason for their 
omission is that we wish to study fundamental mechanisms 
that occur in a two-way coupled flow. The effective viscosity 
and Reynolds stresses would make a quantitative difference 
in the mechanisms, but the overall qualitative features would 
remain unchanged. 

III. FLOW CONFIGURATION 

In the previous section we discussed the set of equations 
needed to solve for each component of a two-phase flow. In 
developing these equations we left the flow length and ve- 
locity scales, S and U, undetermined, since we wished to 
emphasize the fact that these equations are valid for any 
weakly dilute bubbly flow. Having done this, we now turn 
our attention to the specific flow we consider. 

The flow configuration we study is a two-dimensional 
shear layer initially with a parallel flow in the X, direction 
and gravity acting in the negative x3 direction. This base flow 
has a tanh velocity profile, and is perturbed using eigenfunc- 
tions corresponding to the most unstable mode of inviscid 
theory.X The velocity scale U is the velocity difference 
across the shear layer, and the length scale 6 is taken to be 
the vorticity thickness, defined as 

u 
?j= CdLlldX~),,, * 

For these scales, the nondimensional initial profile is given 
by 

rc(xs) = i tanh(2xs), 

and the initial perturbation is given with the fundamental 
wave number n=0.8892. We give this perturbation an am- 
plitude of 0.01. 

In addition to defining the flow scales, we must also 
discuss our selection of the nondimensional parameters ap- 
pearing in the final set of equations we use to solve the 
two-phase flow. This final set of equations consists of Eq. (3) 
for the bubble phase and Eqs. (9)-(11) for the fluid-bubble 
mixture. From these equations we have Re, .F, and 2 appear- 

ing in the fluid equations and. il, 5Y ; and .J? appearing in the 
bubble equation as our nondimensional parameters. The 
mass ratio parameter is fixed at .A=& and to simplify mat- 
ters we consider an overall void fraction of E=O.Ol and a 
Reynolds number of Re=lOOO in all cases. This leaves us 
with .,F, . d, and ,% 1 However, these three parameters cannot 
be chosen independently. We should recognize that both . /I 
and Re give ratios of viscous to inertial forces, likewise :@ ’ 
(actually ,P: ,Y?) and .,F relate gravitational to inertial effects. 
The difference between these two sets of parameters con- 
cerns the length scales on which these terms operate. There- 
fore, if we include the ratio of bubble to flow length scales, 
a/S, in our list of parameters, we can then express the bubble 
parameters . ,.% and lw’ in terms of the flow parameters Re 
and .Z? 

9.78 52 :$=-- - ) 
0 2Re u 

.x*=; ( ‘si2( ;-x-q $ . 
W) 

(13) 

As a result of these relations, for fixed 2, Re, and .A, we 
have only two independent parameters, and we choose these 
to be .F and either a/S or . ,A. By choosing a/6 or . .% as a 
global parameter we are restricting ourselves to simulations 
with uniform bubble sizes. However, we could easily assign 
individual values to a/S (also requiring different values for 
. % and ,;7i’) for each bubble in our simulations. 

IV. NUMERICAL SIMULATION 

The direct numerical simulation used to calculate the 
evolution of the flow is not unlike methods previously used 
in Rayleigh-Bdnard convection,“’ or more precisely the 
stratified shear-layer code of Wang and Maxey.” We use a 
pseudospectral technique to advance Eqs. (9)-(11) in our 
two-dimensional simulations on a 64X 128 grid. We simulate 
a temporal shear layer, and thus apply periodic boundary 
conditions in the x1 direction. Because we consider bubbles 
with a finite rise velocity that can affect the flow, the no 
normal flow conditions at the vertical boundaries commonly 
used in the Rayleigh-Bdnard simulations are not applicable 
here. Instead, we apply periodic boundary conditions in the 
xg direction. We do this by extending the domain in x7 so 
that flow in the center of the simulation is not influenced by 
the boundary, and then apply an additional shear layer of the 
opposite sense to the main shear layer at the boundaries to 
allow for periodicity. The shear layer at the boundary has 
twice the thickness of the real shear layer, which in addition 
to the decay of the initial perturbation away from the central 
shear layer stabilizes the layer across the boundary. The box 
size is then L =2~r/cu-7.1 in the x r direction and 2L in the x3 
direction. 

We rewrite Eq. (10) as follows: 

rjrUi Id2 at =(uxaji-g P’+2 +&$-A- PI&, 
r i i , F” 

i14 
and advance the flow field using a second-order Adams- 
Bashforth scheme on the nonlinear and buoyancy terms and 
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a second-order Crank-Nicolson scheme on the linear viscous 
terms. The pressure term and the continuity condition of Eq. 
(9) are taken care of by projecting the Fourier coefficients of 
the velocity field onto an incompressible space: 

ii= 6ij-$ Gj, 
i i 

where kj is the wave number vector. 
We initially seed the entire flow field uniformly with 

bubbles of the same size, so that the spacing between 
bubbles in both x1 and x3 directions is the same. The bubble 
locations are advanced by applying the second-order 
predictor-corrector scheme used in Ruetsch and Meiburg” 
to Eq. (3) after the flow field is advanced. This scheme re- 
quires only a first-order accurate estimate of the material 
derivative of the fluid velocity at both predictor and corrector 
steps in order to obtain an overall second-order scheme. In 
order to determine the fluid velocity at the bubble locations, 
the Hermite interpolation scheme of Balachandar and 
MaxeyZ is used. 

The remaining computational issue concerns the method 
for obtaining the values for the density at the grid points 
from the bubble locations. For simulations with bubbles of 
uniform volume, such as the simulations we consider in this 
study, we have the relation 

E= 77, 

where 7 has been nondimensionalized by +, and thus the 
perturbation density in Eq. (11) can be expressed as 

p’=E(l---j, 

so that we only need to establish a method of determining the 
number density at each grid point. In order to do so effi- 
ciently, we use an interpolation scheme where a bubble only 
affects the four grid points that define the cell in which the 
bubble is located. In general, the contribution of each bubble 
to these grid points is weighted according to the location of 
the bubble within the grid cell and the volume of the bubble, 
but for our uniform bubble size, this contribution is weighted 
only by the location. For simplicity we use a linear weighting 
in each direction. Thus, if a bubble is located in a grid cell 
with the bottom left corner referenced by the grid coordi- 
nates (i,j), with the fractional distance of the bubble from 
this grid point (AdKl,Ax3), then the contributions from this 
bubble to the nondimensional number density is given as 
follows: 

77i+l,jr A.~,il-Ax3)N~~1~IN~~, 

Vi+l,j+~, A~,A+NGND~NToT, 

Vi,j+l 9 (1--a,,,Ax3N~~~~IN~o~, 

where N oMo=64X 128 is the total number of grid points and 
NToT is the total number of bubbles in the flow. For an 
equally spaced grid, we can think of the number density as 
the number of bubbles/grid cell, in which case the average 
number density is given by the ratio NmTfNoaIo, and the 

local number density is determined by summing the (1 
- A,,)( 1 - Ax3), etc., terms. The ratio of these gives the 
nondimensional number density. Even for large numbers of 
bubbles, this technique creates high frequencies in the Fou- 
rier coefficients of the density field, and therefore requires 
some sort of filtering. We apply an exponential filter to the 
Fourier coefficients of the density field: 

r 1 Ikl 141 
b’=P’ exP[-y(k,,,j J’ 

where y is chosen so expi- y) gives the machine accuracy, 
and krlax is the maximum wave number in either direction. 
Since we are dealing with a flow that has a large separation 
between the wave numbers representing the flow and the 
noise generated by the projection of bubbles onto the grid 
points, the choice of the filter does not play a role in the 
results. 

Although we simulate a two-dimensional flow, the void 
fraction here represents a volumetric void fraction, which 
can be interpreted by assuming the bubble field is periodic in 
the x2 direction with the same initial spacing between 
bubbles in x2 as in x1 and x3, with the flow uniform in the x2 
direction. We would like to choose a large number of 
bubbles, which result in smoother density profiles, but at the 
same time require that E be small. Because we assume that 
there is no interaction between bubbles in our weakly dilute 
cases, we satisfy both conditions by carrying “virtual” 
bubbles along with the “actual” bubbles. The virtual 
bubbles, which are evenly spaced between the actual bubbles 
initially, serve as a means of smoothing the density profiles 
in a meaningful fashion. As a result of carrying along the 
virtual bubbles, we need to be careful in determining when to 
use the actual number of bubbles, N,, , and when to use the 
total number of bubbles in the simulation, 
NToT=NAm+NvIaT. We can obtain a smoother density val- 
ues at the grid points by summing over all the bubbles and 
normalizing by NToT, however, we determine the other pa- 
rameters of the flow based on N,,. As an example, we 
determine the bubble radius from E and N,,. In turn, the 
bubble parameters. L and ,?Y“are given by this bubble radius 
and Eqs. (12) and (13). A detailed summary of the param- 
eters for all simulations is given in Table I. 

V. ANALYSIS 

We begin our analysis of the effect of bubbles on the 
shear layer by investigating the changes that occur to the 
vorticity field. The general vorticity equation for a Bouss- 
inesq fluid with gravity acting in the negative x3 direction is 
given by 

The first two terms on the right-hand side of this equation are 
vorticity production terms resulting from vortex stretching/ 
tilting and horizontal density fluctuations being acted on by 
gravity. The last term represents the viscous diffusion of vor- 
ticity. In our case, where we are dealing with only two spatial 
dimensions, the vorticity equation reduces to 
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TABLE I. Flow and bubble parameters. 

Simulation 

I 

II 
III 
Iv 
V 
VI 
VII 
VIII 
IX 
X 
XI 
XII 
,x11 
XIV 
xv 
XVI 
XVII 
XVIII 

Re .7 a/8 .L .T i N TOTAL N ACT 

1000 Qx 0.039 5.8 0.34 0.01 294912 1152 
1000 02 0.029 10.3 0.19 0.01 294912 2048 
1000 m 0.019 23.2 0.086 0.01 294912 4608 
1000 1.0 0.039 5.8 0.34 0.01 294912 11.52 
1000 1.0 0.029 10.3 0.19 0.01 294912 2048 
1000 1.0 0.019 23.2 0.086 0.01 294912 4608 
1000 - 0.039 5.8 0.68 0.01 294912 1152 
1000 ,-n 0.029 10.3 0.38 0.01 294912 2048 
1000 
1000 1; 

0.019 23.2 0.17 0.01 294912 4608 
0.039 5.8 0.68 0.01 294912 1152 

1000 l/v7 0.029 10.3 0.38 0.01 294912 2048 
1000 llfi 0.019 23.2 0.17 0.01 294912 4608 
1000 Qs 0.039 5.8 0.085 0.01 294912 11.52 
1000 rxf 0.029 10.3 0.048 0.01 294912 2048 
1000 ‘*, 0.019 23.2 0.022 0.01 294912 4608 
1000 2.0 0.039 5.8 0.085 0.01 294912 1152 
1000 2.0 0.029 10.3 0.048 0.01 294912 2048 
1000 2.0 0.019 23.2 0.022 0.01 294912 4608 

DO 1 3p’ 1 d2W 

ol=.p~f&.rlxfy (15) 

where ti here is in the x2 direction. Therefore, for a two- 
dimensional flow, the only way the vorticity of a material 
element can change is either by diffusion or due to the cou- 
pling term as a result of the horizontal density gradients. 
Because the density field is periodic in the x1 direction, the 
net production of vorticity across the central shear layer re- 
sulting from the coupling term is zero. Therefore, diffusion is 
the only process that affects the circulation across the shear 
layer. 

In addition to the effect of the bubbles on the shear layer, 
the two-way coupling will also affect aspects of the bubble 
motion relative to the passive case. Since the deviation of 
bubble motion from fluid particles is dominated by the ef- 
fects of pressure, such as the accumulation of bubbles into 
regions of low pressure, the effects of coupling on the bubble 
motion can be examined from the equation governing the 
pressure field. This equation is obtained by taking the diver- 
gence of Eq. (14): 

a2 u2 

i -1 

d I 
z P’+, =z w4-*$ g- * 

i I 3 
(16) 

where, in addition to the nonlinear terms, the density pertur- 
bation provides an extra source to the Poisson equation for 
the pressure. It is interesting to note from Eqs. (15) and (16) 
that the horizontal gradients in the density affect the vortic- 
ity, while it is the vertical density gradients that affect the 
pressure. 

VI. RESULTS 

Throughout this section we are interested not so much in 
describing how the flow and bubble motion evolve with two- 
way coupling in absolute terms, but rather how this evolution 
differs from the one-way coupled or passive case. The idea 
here is to provide some insight into the differences between 
these two cases, which can be used to develop models that 
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predict the coupled results based on the knowledge of the 
passive state. It is for this reason that when we discuss results 
from coupled simulations, we always compare these to simu- 
lations performed with passive bubbles. The passive simula- 
tions are run by setting ,F=m, which eliminates the effect of 
the bubbles on the flow, but by keeping all other parameters, 
including 9’; identical to the coupled case. We then can 
generate spatial fields and statistics based on the differences 
between the two cases. 

Before we discuss the results from the coupled simula- 
tions and how they differ from their passive counterparts, we 
must first review some basic features of what occurs in the 
passive case. Although the density fields for the passive 
cases will vary depending on. ./: and p”; the evolution of the 
vorticity field will not change. We show a time sequence of 
the vorticity field for the passive case in Fig. 1. From this 
sequence we observe that the flow remains roughly parallel 
up to t-10, at which time we observe the formation of the 
vortex core due to the Kelvin-Helmholtz instability. During 
the latter stages of the shear layer development, we observe a 
roughly circular nature of the flow near the vortex center. 
Simple model flows reflecting this circular nature have been 
used to investigate the motion of bubbles in vertical flows. 
One such model that allows a simple analytical solution to 
bubble trajectories is that of a solid-body vortex.” Two im- 
portant features obtained from this solution are the equilib- 
rium points, or locations where the bubbles come to rest, and 
the rate at which the bubbles are captured by the equilibrium 
points. Without any drag correction, an exponential rate of 
entrapment or accumulation is observed. This entrapment is 
a function of ..a alone, and reaches an optimal value at 
. -J-l. In the present study we consider .~&l, and therefore 
the general trend we expect is for the accumulation of 
bubbles to be greater as .,ti becomes smaller. The location of 
the equilibrium points is a function of both . . ..d and @I For 
3Y=O the equilibrium point coincides with the vortex center. 
As ,?Y increases, the equilibrium point moves away from the 
vortex center along a line whose slope depends on .-&. For 
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t=20 A. X=1: Intermediate case 

t=50 

We begin our analysis for the .Y= 1 cases by considering 
the largest bubble size, corresponding to an inertia parameter 
of. fi=5.8. Up to about t=20, we observe small differences 
between the passive and coupled runs, since during this time 
the vortex core and pressure gradient have not developed to 
a point where the bubble accumulation is large enough to 
affect the flow. At t =30, however, we do observe differences 
between the two cases. A plot of the vorticity, density, and 
pressure for both passive and coupled cases is shown in Fig. 
2(a). It is helpful when comparing the coupled and passive 
cases to plot the difference between these two fields obtained 
by subtracting the two fields point by point. These differ- 
ences- are also shown in Fig. 2(a). Consistent with observa- 
tions from the passive bubble motion in a solid-body vortex, 
we observe the accumulation of bubbles (signified by a large 
negative density) to the right of the vortex center. From Eq. 
(1.51, we know that such accumulations of bubbles result in 
vorticity production on either side of the accumulation, given 
by .7 -2(dp’/dx,). To the left of the accumulation, this term 
generates negative vorticity and to the right positive vortic- 
ity, resulting in the observed decrease of vorticity in the vor- 
tex center and the increase in vorticity along the right-hand 
edge of the vortex. 

FIG. 1. Time sequence of the vorticity field for passive cases. Contour 
levels are in increments of 0.1, where solid lines represent positive and 
dashed lines negative values of vorticity. 

large . ..A, this line is roughly horizontal, corresponding to a 
force balance at the equilibrium point primarily between the 
drag and gravitational forces. 

When the slip velocity of the bubble becomes large, 
which is most noticeable for cases with rise velocities, we 
must apply corrections to the Stokes drag assumption, as in 
Eq. (3). In such cases, the analytical solution for the bubble 
trajectories discussed above is no longer valid. One impor- 
tant difference between the analytical solution for cases with- 
out drag correction and the actual bubble trajectories is the 
change in entrapment rate near the equilibrium point. The 
entrapment rate becomes a function of both. L and r$“j with 
the entrapment rate decreasing as C%“‘increases. This reduced 
accumulation rate can be understood by noting that the co- 
efficient of the drag term in Eq. (3) is f. 4, where the correc- 
tion f is a function of the slip velocity. Because the equilib- 
rium point moves farther away from the vortex center with 
increasing ‘9” the slip velocity at the equilibrium point, 
(=ui), and hence f increase accordingly. Therefore, when 
correcting for the deviation from Stokes drag, we are effec- 
tively considering an inertia parameter of . LAm=fE. d!, 
where fE is the correction at the equilibrium point. There- 
fore, we expect the bubble accumulation to vary inversely 
with both . /: and 91 

Having reviewed these characteristics of the passive 
bubble motion in a solid-body vortex, we now proceed to 
discuss the results of the two-way coupled simulations of a 
bubbly shear layer. In the following sections we group our 
results according to different Froude numbers, varying the 
bubble size within each section. 
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At later times, such as in Fig. 2(b), we observe a greater 
change in the vorticity between the passive and coupled 
cases. Similar to earlier times, the vorticity near the center is 
reduced while the vorticity near the edge of the vortex is 
increased. Unlike earlier times, we note that the magnitude 
of this difference is greatest near the vortex core, and a 
weaker but more voluminous (positive) difference surrounds 
the vortex. Statistically, this difference is observed in the 
PDF of the vorticity difference, Aw, shown in Fig. 3. In this 
figure, where the vorticity difference is normalized by its 
RMS value, Ao’, we observe, in addition to the large contri- 
bution to the PDF from small values of the vorticity differ- 
ence, a small peak of negative vorticity difference occurring 
at --1OAo’. It is these values that correspond to the large 
vorticity differences near the center of the vortex. There are 
two reasons for the occurrence of the intense negative vor- 
ticity difference and the absence of a similar region of posi- 
tive vorticity difference. The first is due to the shape of the 
accumulation region. This region has a sharper gradient on 
the left side, near the center of the vortex, than on the right 
side. Although this accumulation region produces no net vor- 
ticity, the negative vorticity resulting from the density gradi- 
ent is more concentrated. The second reason for the absence 
of a large positive vorticity difference results from the dif- 
ference in the locations of the equilibrium point of the 
bubble field and the stagnation point of the flow field. Al- 
though the location of bubble accumulation remains approxi- 
mately stationary throughout the flow evolution, the produc- 
tion of vorticity due to this accumulation applies to material 
elements of the fluid. The stagnation point in the vortex core 
occurs to the left of the accumulation region, and therefore 
the negative vorticity production occurring here is applied to 
the same fluid elements, resulting in the large negative vor- 
ticity difference near the vortex core. To the right of the 
vortex core the positive vorticity production affects different 
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PIG. 2. Vorticity, density, and pressure fields for the coupled and passive cases, along with their differences, at (a) t=30 and (b) t=50 for .T=l and. Ir=S.8. 
The solid lines indicate positive values and the dashed line negative values. The increment between contour levels is given in each figure. At t=30, the 
accumulation is not large enough to produce substantial changes from the coupling, however, at t =50 we observe differences in all fields, most notably the 
reduction in vorticity, pressure gradient, and bubble accumulation near the vortex center. 

fluid elements as they are swept past the accumulation. This 
sweeping results in a smaller vorticity difference applied to a 
larger area. 

In addition to the effect of the bubbles on the flow, the 
modification of the flow has an effect on the entrapment of 
bubbles. This is more clearly seen at later times, for example, 
in Fig. 2(b). The difference in the density field can be attrib- 

Aw/(Aw:, 

FIG. 3. PDF of relative vorticity between passive and coupled cases at t=50 
for .F=l and, La5.8. The small peak at large negative values indicates the 
intensity of the vorticity difference near the vortex center. 
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uted to the reduction in the magnitude of the pressure at the 
vortex center. The smaller pressure gradients affect both the 
location and the entrapment rate into the equilibrium points. 
The entrapment rate is reduced, and the location is shifted 
away from the vortex center. 

Up to this point, we have discussed the basic mecha- 
nisms concerning the modification of both flow and bubble 
fields resulting from two-way coupling for a single set of 
parameters. As we change the bubble size, and in later sec- 
tions the Froude number, we observe approximately the same 
behavior. We therefore focus more on the quantitative 
changes rather than qualitative features resulting from differ- 
ent parameters. When discussing how different parameters 
affect the results, we must first discuss what effect the 
change in parameters has on the passive simulations, and 
then proceed to the coupled simulations and their difference 
relative to the passive case. 

We now consider smaller bubbles with .;%= 10.3 and 23. 
In order to keep .F constant, this increase in . .*i” is accompa- 
nied by a decrease in %/. For the case of passive bubbles in 
a solid-body vortex we know that the effect of the bubble 
size on the entrapment rate is twofold. On one hand the 
entrapment rate decreases with increasing. 7% for the range of 
. ...4 considered here. However, we also observe greater accu- 
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FIG. 4. Vorticity, density, and pressure fields for the coupled and passive 
cases, along with their differences, at t=Sll for X=1 and . 4=10.3. For 
these smalIer bubbles we observe reduced accumulation and hence weaker 
coupling. 

mulation rates when $9 ’ decreases, since the effective inertia 
parameter near the equihbrium point is fE. 4, and fE de- 
creases with <Y%? In addition to the effect of bubble size on 
the entrapment rate, we also observe a shift in the location of 
the equilibrium point toward the vortex center as the bubble 
size decreases. We can clearly see these two effects in Fig. 4 
for passive bubbles. The accumulation is closer to the center 
of the vortex relative to the passive case in Fig. Z(b). How- 
ever, in spite of the reduction of the effective inertia param- 
eter due to the smalier drag correction, we observe a reduced 
accumulation rate, apparent from the minimum in the p’ 
field. The reduction in drag correction does not offset the 
change in .,$. 

Similar to the case of .,(“;=S.g, we observe that the ac- 
cumulation is smaller and occurs farther away from the vor- 
tex center for the coupled simulation than in the passive 
simulation for these smaller bubbles. However, the degree to 
which this occurs decreases with smaller bubbles. This dif- 
ference is quantified in Fig. 5, which shows time series of 
both the maximum and minimum number densities for all 
bubble sizes in both passive and coupled simulations. (The 
minimum in p’ corresponds to the maximum in 7.) From this 
figure we see that the accumulation decreases with bubble 
size for the passive and coupled cases. In addition, the dif- 
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FIG. 5. Time series of maximum and minimum number density, 7, for 
, A=5.8 (top), 10.3 (center), and 23 (bottom). All cases have X=1. The 
solid lines represent two-way coupled and dashed lines passive simulations. 
These time series show that the accumulation of bubbles decreases with 
bubble size (larger. i). Note that for. /(=5.8 the maximum accumulation 
for the coupled case becomes smaller as bubbles are released from the 
equilibrium points. 

ference between the passive and coupled cases also decreases 
with bubble size. This is what one expects, the largest differ- 
ence between passive and coupled cases occurs when the 
density gradient and hence accumulation is largest, which in 
turn occurs for the larger bubbles. Note that at later times for 
the case where .&=5.8, the reduction of vorticity is so great 
that the vortex becomes unable to hold all the bubbles it 
previously entrapped, and as a result the number density de- 
creases, as shown in Fig. 5. As a result, the density minimum 
for c &=5.8 is only slightly larger than for. A= 10.3, which at 
the last time frames show a roughly equivalent maximum 
vorticity difference. 

Aside from the two-dimensional contour plots of the 
density fields and the time series of the maximum and mini- 
mum number density, another useful quantity to examine is 
the vertical profile of the density field, obtained by averaging 

2664 Phys. Fluids, Vol. 6, No. 8, August 1994 G. Fi. Ruetsch and E. Meiburg 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



Passive 
14.1 

N 7.0 

:- 0 

14.1 

N 7.0 ~- 0 
-0.01 0 0.01 

P’ 

Coupled 

L.i 

4 

I 
-0.01 0 0.01 

P’ 

Passive-Coupled 

L.-L -0.01 0 0.01 
P’ 

FIG. 6. Vertical density profiles averaged over horizontal slices at t =SO for 
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observe how the accumulation and difference between coupled and passive 
cases decrease with bubble size. 
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the density over horizontal slices. The advantage of these 
profiles over the full 2-D fields is that the differences be- 
tween the passive and coupled density fields due to the shift 
in the equilibrium point is eliminated, since this shift is pri- 
marily horizontal. These profiles also provide more informa- 
tion than the time series of the extremum density values. 
Such profiles for passive, coupled, and the difference fields 
for all bubble sizes are shown in Fig. 6. Here we observe that 
as the bubble size decreases the spike representing accumu- 
lation of bubbles decreases and becomes broader. More strik- 
ing is the reduction in the difference profile with decreasing 
bubble size. 

FIG. 7. Time series of maximum and minimum number density for. 1;‘=5.8 
(top), 10.3 (center), and 23 (bottom). All cases have X=2. The solid lines 
represent two-way coupled and dashed lines passive simulations. The re- 
duced gravitational effects result in much larger accumulations for both 
passive and coupled cases than for the ./== 1 cases. 

be attributed to the smaller correction to the Stokes drag due 
to the proximity of the equilibrium points to the vortex cen- 
ter. 

B. .F=2: Weak gravity 

If we now consider larger values of .:F, we reduce the 
gravitational effects on the flow and bubbles. In terms of the 
bubble parameters, for the same bubble sizes as in the pre- 
vious section we maintain the same values of I -8, but have 
smaller values of W. The effect these smaller rise velocities 
have on the accumulation of bubbles in the passive case is to 
move the equilibrium points closer to the vortex center and 
to increase the entrapment rate, as seen in Fig. 7. The in- 
crease in entrapment rate is most noticeable for the larger 
bubbles, with .,&=5.8, where the maximum number density 
reaches values of -209. These large accumulation rates can 

In the coupled simulations with Y=2, we also observe a 
larger accumulation of bubbles than in the coupled simula- 
tions with .P”=l. One might have expected that the large 
accumulations, especially in the ,,6=5.8 case, would alter 
the pressure field to the extent that the accumulation rate 
would be drastically reduced, even to the point where the 
accumulation itself decreases, as in the latter stages in the 
.F=l and .J=S.8 case. However, when comparing simula- 
tions with different Froude numbers, we must remember that 
the effect of bubble accumulation on the pressure and vortic- 
ity fields is dependent not only on the magnitude of the den- 
sity gradients, but also in the Froude number through the 
.r2 coefficient. As a result, although we see a greater accu- 
mulation of bubbles for the .F=2 case than in the .F= 1 case, 
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FIG. 8. Vorticity, density, and pressure lields for the coupled and passive 
cases, along with their differences, at t=50 for X=2 and. /=X3. For this 
larger Froude number and hence smaller rise velocity, the bubbles accumu- 
late more toward the vortex center with an enhanced accumulation rate. 

the pressure gradients for the X=2, . %=5.8 case, shown in 
Fig. 8, are affected less by the bubble accumulation than in 
the .9= 1 case of Fig. 2(b). From Fig. 8 we notice that the 
change in the vorticity field between passive and coupled 
cases is larger in magnitude than for the .F=l case, although 
the difference is confined to a smaller region. Therefore we 
have a large difference in vorticity near the vortex center, but 
elsewhere the vorticity field is not affected. 

As we look at smaller bubbles for the .F=2 case, the 
accumulation rate decreases for both passive and coupled 
cases. Although v,,,~~ is greater here than in their .P= 1 coun- 
terparts, the smaller coefficient of the density gradient terms 
in the vorticity and pressure equations begins to take effect, 
resulting in very small differences between the passive and 
coupled cases, as seen in Fig. 9. In addition to the small 
differences in the vorticity and pressure fields, we also ob- 
serve similar trends in the density fields between passive and 
coupled cases. In fact, the large difference in the density field 
between the passive and coupled cases in Fig. 8 is attributed 
primarily to the slight shift in the equilibrium point. We  can 
get a better view of this by examining the vertical density 
profiles in Fig. 10. Here we see that although the density near 
the equilibrium points is much smaller than in the .F=l case 
(note the different horizontal scale in Fig. 6 and Fig. lo), the 
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FIG. 9. Vorticity, density, and pressure fields for the coupled and passive 
cases, along with their differences, at t=50 for .7=2 and X=10.3. Al- 
though the accumulation is greater than for the same sized bubbles with 
.F= 1, due to the .7’ coefficient the coupling effects are smaller. 

difference between the passive and coupled simulations for 
all bubbles sizes is much smaller for Y-2. 

C. X=0.707: Strong gravity 

One might expect from the results with .F=2 and 1 that 
as we consider .YCi, where gravitational effects are larger, 
we would observe smaller accumulation rates but with en- 
hanced vorticity production. In the previous sections the co- 
efficient of the vorticity production term, .12’, was for the 
most part dominant over the changes in the accumulation 
rate of bubbles. Although we do see the accumulation of 
bubbles decreasing with increasing rise velocity, we observe 
another phenomenon which reduces vorticity production. 
This is depicted in Figs. 11(a)-11(c). At time t=30, we ob- 
serve the accumulation of bubbles similar to the cases with 
large Froude numbers, but at times t=40,50 the bubbles 
leave this accumulation region as they advect with the fluid 
and rise. velocities. The pressure gradients near the vortex 
center are smaller at these later times, and as a result the 
vortex is no longer able to trap bubbles. Note that this occurs 
in both passive and coupled cases, and therefore is not a 
result of the two-way coupbng between phases. A similar 
phenomenon was observed in passive bubbles rising through 
steady-state Stuart vortices.” In the Stuart vortex flow for 
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FIG. 10. Vertical density profiles averaged over horizontal slices at r=50 for 
, L-5.8 (top), 10.3 (center), and 23 (bottom). All cases have .F=2. The 
passive-ax&d column clearly shows the weaker coupling effects relative 
to Fig. 6. 

cases without equilibrium points there exists a point that is 
least unstable and allows bubbles to be retained by the flow, 
but not trapped. The motion of bubbles in our unsteady flow 
results from both the disappearance of the equilibrium point 
and to a lesser extent the retention of bubbles near a least 
unstable point. As the bubbles are released from this region, 
they form streaks that advect with the fuid and rise veloci- 
ties. 

The effect of these streaks on the maximum bubble con- 
centration is shown in Fig. 12. For the largest bubbles, the 
maximum number density only reaches -1SG. After t-30 
the maximum number density actually decreases for both 
passive and coupled cases. Because of these small accumu- 
lations, we see from Figs. ll(,a)-I l(c) that there is little dif- 
ference between the vorticity and pressure fields of the pas- 
sive and coupled simulations. As a result, the number density 
fields of both passive and coupled simulations are roughly 
the same. Note that unlike cases with stable equilibrium 
points, the vorticity production in this case occurs along the 
streaks of bubbles and not near the vortex center. 

As we consider smaller bubbles at the same Froude 
number, the decrease in rise velocity accompanying the dif- 
ference in size results in the reappearance of the equilibrium 
point during the latter stages. As a result, we observe larger 
accumulations of bubbles, with greater differences between 
passive and coupled cases, as demonstrated in Figs. 12 and 
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13. However, once the rise velocity is small enough to create 
an equilibrium point, as in the case for. /= 10.3, then as we 
move to smaller bubbles and thus rise velocities, such as 
those with , ,L=ZO, we once again find that the accumulation 
decreases due to larger drag, and the difference between pas- 
sive and coupled cases becomes smaller. This suggests that at 
some intermediate bubble size there is an optimum coupling 
effect. For large bubbles, there is no equilibrium point and 
hence no large accumulation, and for small bubbles the ac- 
cumulation rate into the equilibrium point is so small that 
large density gradients are not produced. The reason no such 
trend was observed for larger Froude numbers is due to re- 
striction on bubble size needed to satisfy our assumptions. 

VII. DISCUSSION AND CONCLUSIONS 

Through direct numerical simulations we have obtained 
information regarding the effect of two-way coupling of bub- 
bly flows with dilute concentrations of bubbles. In general, 
we are interested in how the two-way coupled simulations 
affect both bubble and flow motion relative to the passive 
case. To summarize the results of the previous sections, we 
find that the vorticity near the center of the vortex is reduced 
as a result of the accumulation of bubbles, and that the pres- 
sure gradients near the vortex center are also reduced, result- 
ing in a smaller accumulation for the coupled simulations 
relative to the passive case. We have explored how the 
bubble size and Froude number affect these changes. In gen- 
eral, we notice smaller coupling effects for smaller bubbles, 
since the accumulation rate decreases with bubble size. For 
most of the the simulations considered here, the effect of the 
Froude number on the results is dominated by the .F2 co- 
efficient in the vorticity production and pressure equations 
rather than the effect of the Froude number on the accumu- 
lation rate. 

Although we have only considered the bubble size and 
Froude numbers as parameters in this study, the information 
we obtained from this can explain how changes in other pa- 
rameters affect the results. We have used a constant void 
fraction in this study, but if we substitute the equation for the 
perturbation density into the momentum equation, we see 
that the coefficient of the coupling terms can be expressed as 
Z/.@. Thus, changes in the global void fraction can be ex- 
plained directly from the previous results. Moderate changes 
in the Reynolds number do not effect the flow greatly, but 
would alter the values of. .G and ,9 ’ via Eqs. (12) and (13). 

In addition to the effects of different parameters on the 
simulations, we should also consider how different contigu- 
rations may affect the results. In this study we have only 
presented material corresponding to Rows uniformly seeded 
with uniform bubble sizes. We have also run simulations 
with variable bubbles sizes, ranging the entire scope of 
bubbles considered in this study. In general, the results are 
similar to what is observed for uniform bubbles sizes, except 
that the accumulation region is not as compact and the 
changes in the pressure and vorticity fields not as great due 
to the smaller density gradients. 

Regardless of the values of the parameters, one recurring 
theme in the simulations is that in most cases an equilibrium 
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i I .., -j ; + ,. ,/1’ 

---“’ 
,‘-, “. p.. 

Coupled-Passive 

/ A-o.05 FIG. 11. Vorticity, density, and pressure fields for the coupled and passive 
~cases, along with their differences, for. A=52 and X=0.707 at (a) t=30, 
(b) t=40, and (c) t=SO. Although we see the accumulation of bubbles 
similar to previous cases at t =30, at later times the pressure gradient is not 
large enough to entrap bubbles, and as a result we observe streaks of bubbles 
that are produced from a least unstable point replacing the equilibrium point. 
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FIG. 13. Time series of maximum and minimum number density for 
. ixS.8 (top), 10.3 (center), and 23 (bottom). AI1 cases have .7=0.707. The 
solid lines represent two-way coupled and dashed lines passive simulations. 
The larger gravitational effects result in smaller accumulations, most notice- 
able in the . i-S.8 case, where there is no equilibrium point for the bubbles 
at later times. 

point exists in the flow where bubbles accumulate. The pres- 
ence of such a point might seem contrary to the assumption 
of a dilute bubbly flow. We have chosen a small void fraction 
and small enough bubbles in the hopes of avoiding violation 
of the dilute assumption, and we now determine how valid 
this assumption is. A violation of the weakly dilute assump- 
tion would imply that bubbles are close enough that bubble- 
bubble interactions become important. Although we know of 
no precise minimum cutoff for the bubble separation to ex- 
clude any such interaction, we can easily calculate the mini- 
mal bubble separation occurring in the flow at any time sim- 
ply from the knowledge of the maximum void fraction or 
number density. The separation between bubble centers, As, 
is given by 

As -----= 
a 

Passive 

I 

14.1 

N 

7.0 

i. 0 
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I- 
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- 
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FIG. 13. Vertical density profiles averaged over horizontal slices at t=SO for 
/=S.8 (top), 10.3 (center), and 23 (bottom). All cases have .7=0.707. This 

suggests that there is an optimum bubble size in terms of bubble accumula- 
tion for cases with small .X For the smallest bubbles (bottom) the accumu- 
lation rate is small, but for large bubbles (top) the rise velocity is SO large 
that equilibrium points do not exist. 

At the beginning of the simulations, with e=l, we have a 
uniform separation of As/a-7.4. For all but one simulation, 
the maximum void fraction is -S, giving As/a=4.3. Al- 
though there will be interaction among bubbles in these 
worst case scenarios, the fact that these regions represent 
equilibrium points where the absolute and relative bubble 
velocities are small suggests that the qualitative nature of the 
flow will not be greatly affected by the interaction. 
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