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The motion of small, spherical noninteracting bubbles in two-dimensional vertical flows by 
means of numerical simulations is investigated. After a discussion concerning the various bubble 
equations, bubble trajectories are calculated in a solid-body vortex, where it is found that the 
bubble motion can be described in terms of the location where the bubbles accumulate, or 
equilibrium points, and the rate of entrapment into these equilibrium points. Of importance here 
is that the rate of entrapment into the vortex has an optimum value for some value of the inertia 
parameter, or inverse Stokes number. The bubble motion in a temporally evolving shear layer is 
investigated, where it is found that the solid-body vortex model predicts the trends in the growth 
in concentration about the vortex center for the case without gravity. For the case with gravity, 
not all bubbles are captured by the vortex, and the percentage of bubbles captured increases with 
decreasing inertia parameter. Also discussed is how thesetfactors affect the generation of the 
interface between regions seeded and not seeded with bubbles. 

I. INTRODUCTION 

One of the fundamental applications of the study of 
shear flows concerns the ability to predict and model the 
transport of non-Lagrangian particles. Although much has 
been learned about the transport of heavy particles in shear 
layers, most recently through experiments by Lazaro and 
Lasheras’,’ and computational simulations of Chung and 
Troutt,3 the motion of bubbles in shear layers is less un- 
derstood. One reason for this is the complexity of the equa- 
tion of motion for bubbles. Maxey and Riley4 have derived 
an equation for the motion of small spherical particles in 
an unsteady nonuniform flow Geld by assuming unsteady 
Stokes flow. Under certain circumstances, this equation 
can be used to calculate the trajectories of bubbles. Auton 
et a1.5 have taken a different approach, where they devel- 
oped an equation for bubble motion assuming inviscid Row 
over the bubble. Despite the differences between these two 
approaches, both viscous and inviscid bubble equations re- 
sult in the tendency of bubbles to accumulate in regions of 
low pressure, e.g., the center of vortices. The entrapment of 
Stokes bubbles in vortices has been found in simulations 
with cellular flow fields by Maxey and Corrsin6 and 
Maxey.’ The entrapment of bubbles in a modified Rankine 
vortex has been investigated analytically for small Stokes 
number by Tio et aLa Similar entrapment features for in- 
viscid bubbles in isolated vortices and shear layers have 
been found in simulations by Hunt et aL9 and Thomas 
et al. lo 

ically, where an optimum entrapment rate in terms of the 
ratio of viscous to inertial forces is found. We then relate 
the characteristics found in this simple flow to bubble mo- 
tion in a temporally evolving shear layer. 

II. BUBBLE EQUATION AND DYNAMICS 

The motion of bubbles can be examined in a variety of 
different regimes, and before we begin our analysis of bub- 
ble motion, it is necessary to consider which regimes we 
wish, and are able, to pursue. We need to discuss the equa- 
tions of motion, the conditions under which they are valid, 
and their completeness. To simplify our analysis, we wish 
to consider as a first step only passive bubbles, i.e., bubbles 
that do not affect either the surrounding fluid or other 
bubbles. We would also like to consider a simple geometry 
for bubbles, namely that they are spherical and incom- 
pressible. These assumptions about the passive nature and 
geometrical properties occur in flows where the length 
scale of the bubble is small compared to the flow length 
scale, when the bubble concentration is dilute, and when a 
large surface tension exists which keeps the spherical 
shape. 

In this study, we further explore the accumulation of 
bubbles in both isolated vortices and shear layers. After 
discussing the equation for viscously dominated bubble 
motion, we examine the trajectories of these bubbles in an 
isolated vortex, namely a fluid in solid-body rotation. For 
this simple flow, the trajectories can be calculated analyt- 

The final characteristic we consider is to determine 
what role the drag forces play. There are two different 
approaches we can use here. One approach is to assume the 
flow around the bubble to be inviscid and then to add a 
drag term in the equation. This approach has been used to 
develop the equation of motion for an inviscid bubble by 
Auton et aI.’ The second approach is to consider bubbles 
which are dominated by viscous forces. Small bubbles with 
surface impurities fall into this category.” In this study we 
use the latter approach, which is discussed in more detail 
in the following section. 

A. Stokes limit 

a)Present address: Center for Turbulence Research, Stanford University, 
We shall begin by considering particles that obey the 

Stanford, California 94305. 
“Corresponding author. 

Stokes drag law using the equation for small rigid spheres 
developed by Maxey and Riley.4 This equation is applica- 
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ble to small spherical particles at low Reynolds numbers 
and is valid for a the full range of particle densities, ranging 
from aerosols to bubbles. A simplified version of this equa- 
tion which neglects the Faxen corrections for a nonuni- 
form flow field gives 

dv Du 1 d 
~p~=(mp--mf9fi-l-mf z 

Y(t) 
+T mf;i; Eu(YJ9 

---VW 1 +h-qdu(Y,t) -W> 1 

+6ra2p s 
t d(u-V)/dr 

0 Jm drp (19 

where u( x,t) is the fluid velocity, Y(t) and V(t) are the 
particle location and velocity, g is the acceleration of grav- 
ity, a is the particle radius, and mp and mf are the particle 
mass and the mass of the fluid displaced by the particle. 
Equation (1) states that the particle experiences an accel- 
eration due to, respectively, a buoyancy force, the force a 
fluid sphere of the same size would experience in absence of 
the particle, the added mass effect, Stokes drag, and the 
Basset history term. This leading order approximation, 
where Stokes flow is assumed, does not contain the Saff- 
man lift force.12 Bretherton13 has shown that under the 
assumption of Stokes flow, spherical particles cannot ex- 
hibit such a lateral motion or “migration.?’ As noted in 
Maxey and Riley’s paper it is important to differentiate 
between the two derivatives in Eq. ( 1). The derivative fol- 
lowing a fluid element is denoted as 

&=-&V, 
whereas the derivative along the particle path is 

$=;+v*v. 

In deriving Eq. ( 19, the force on the sphere was eval- 
uated by separating the flow field into two components, the 
undisturbed and disturbance flows. In order to obtain the 
force on the sphere due to the undisturbed flow, the parti- 
cle radius must be small compared to flow length scale, L, 
or a/L(l. In order to obtain the force due to the distur- 
bance flow the convective terms were neglected, implying 
Stokes flow, which requires the particle Reynolds number 
based on the slip velocity to be small: 

R,=2alu-Vj/v41, 

and in addition, 

(2) 

(39 

where Rf=UL/v is the Reynolds number for the main 
flow based on the characteristic velocity scale U. As long 
as a/L(l, Rf can be large up to 0( L/a) while Eq. (2) is 
still satisfied. We should state here that in this paper we 
consider bubbles where Eq. (3) is not satisfied. As a result 
we will modify terms in Eq. ( 1) accordingly. Along these 
lines, we can eliminate the Basset history term’ from Eq. 
( 19, as the departure from Stokes flow lessens the history 

effect. This has been documented in Mei et a1.,14 where 
they find that the kernel behaves as t-l” only for short 
times and decays faster at large time for finite Reynolds 
numbers. 

Rearranging terms in Eq. ( 1) and removing the Basset 
history term, we have 

(mp+imf) g= (m,--mf)g+6rap[u(Y,t9 

-VCtll+mf(~+~~), (49 

where nondimensionalizing with respect to L as length, U 
as velocity, L/U as time, and using the notation of 
Maxey7*” results in 

dv 
-g=4u(Y,t9 +W--V(t)] +R z+s yg (” ldu). (5) 

Three nondimensional parameters are introduced in 
Eq. (5): A, R, and W. The scaled particle settling velocity, 
W, is defined as 

and reflects the gravitational effects on the particle motion. 
Physically, WU is the terminal velocity of a particle in a 
still fluid. 

Also in Eq. (5) is the mass ratio parameter, R, given 
by 

R=+, 
Pp-tiPf 

which determines the type of particle, with values ranging 
from O<R<2. Aerosol particles typically exist in the range 
of O<R ~0.4, and at the other end of the range is the bubble 
limit, where R=2. 

The inertia parameter, A, is defined as 

A= 
Gn-ap L 

Cm,+5 f9U ‘m 
=;R 

0 
; ‘f- 

f 

and indicates the importance of viscous effects relative to 
the particle inertia; the smaller A the more important par- 
ticle inertia. The inverse of the inertia parameter is com- 
monly referred to as the Stokes number. Physically, the 
first term on the right-hand side in Eq. (5) influences the 
particle velocity to match the sum of fluid and settling 
velocities, or simply the fluid velocity if W -0. From Eq. 
(3) we obtain the condition that 

ASP, (99 

which in the case of bubbles leads to &9. This gives a 
criterion for when inertial effects become important, and, 
therefore, when the Stokes drag is no longer valid. This 
restriction can be relaxed by applying the empirical multi- 
plicative factor, f, , to the term A (u-V) in Eq. (5 ) given 
by Clift et al.:” 
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(10) 
which accounts for the effect of the wake behind the sphere 
on the drag and extends the range of validity to Rp < 20. 

With the nondimensional parameters in Eq. (5) de- 
fined, we will now turn attention to the physical processes 
which occur. The drag term in Eq. (5) causes the particle 
velocity to conform to the local fluid and settling velocity, 
the degree of which depends on the value of A. In terms of 
particle size, smaller particles will have a larger inertia 
parameter and a smaller settling velocity, which implies 
that smaller particles will follow the fluid more closely 
than larger particles. The remaining terms which are pre- 
ceded by the mass ratio parameter have their origin in two 
different physical phenomena. The derivative following a 
fluid element can be rewritten using the Navier-Stokes 
equation, 

(11) 

which further emphasizes that this term represents the 
force that a fluid element would experience in place of the 
particle. The fluid velocity derivative following the particle 
path comes from the added mass term. Rewriting this in 
terms of the material derivative gives 

~=~,A+v) +AW+R ,i g+i (v+ l vu . t 1 
(12) 

Note the 3/2 coefficient of the pressure term. If R = 2/3 
and if the initial particle velocity is that of the local fluid, 
Eq. ( 12) reduces to 

dvDu 
-=- 
dt Dt ’ (13) 

implying the particle moves with the fluid, i.e., the particle 
is a Lagrangian particle, regardless of the value of A. The 
viscous forces do not act since the slip velocity remains 
zero. For bubbles, where R=2, the pressure gradients are 
felt three times as much as in the case of fluid elements. 
This extra sensitivity to pressure effects plays a dominant 
role in the dynamics of bubbles, causing the bubbles to 
accumulate in regions of low pressure. 

Previously we mentioned that a particle in Stokes flow 
does not experience a Saffman lift force. More generally, 
velocity shear cannot produce any force for this linearized 
flow. However, by writing the last term of Eq. (12) as 
follows: 

i ( Vj-Uj) 2-i ( Vi-Uj) (Rif+Sij) 
I 

=i Eijk(Uj- F7jJCOk+i ( Vj-Uj)Sij, 

(14) 

where St] and Rij are the rate of strain and rate of rotation 
tensors, we do obtain forces from shearing motion. The 
tist term is an inviscid lift force based on the slip velocity, 

and the second term allows for the amplification and tilting 
of the slip velocity, in the same manner that a vorticity 
vector is stretched and tilted in the three-dimensional vor- 
ticity equation.16 The lift force in Eq. ( 14) is quite different 
from the Saffman lift, because the former is invjscid and 
proportional to the vorticity, and the later is dependent on 
viscosity and proportional to the square root of the vortic- 
ity. The presence of such terms might appear contradictory 
given the nature of Stokes flow, however, we must keep in 
mind the assumptions under which this particle equation is 
derived. Maxey and Riley show that the terms in Eq. ( 14), 
in the context of the low Reynolds number approximations 
made, are of the same order as other terms neglected in 
deriving Eq. ( 1). Put another way, in order to satisfy Eq. 
(9) the viscous forces must be dominant so as to keep the 
slip velocity small enough so that the terms in Eq. (14) are 
negligible. 

In this paper, however, we consider cases where the 
inertia and viscous effects are comparable, i.e., ‘4 - 1. We 
have modified the Stokes drag term by using the empirical 
result in Eq. (10) to compensate for this fact, however, no 
such corrections are currently available for the other 
terms. At this point, it is helpful to look at the differences 
between the governing equations for bubble motion in the 
Stokes and inviscid limits. In addition to the absence of a 
viscous force, the inviscid bubble equation differs from the 
Stokes equation in other respects. Auton et aLS showed 
that for inviscid bubbles, the added mass derivative is 
Du/Dt instead of du/dt. In addition to the added mass 
derivative, there is also an inviscid lift force which is pro- 
portional to (u-V) Xw and twice as large as the lift term 
in Eq. ( 14). In this study we make no attempt to determine 
which approach is more valid at this “intermediate” range, 
however we do attempt to gain insight into what elfect 
using different terms in the bubble equation has on the 
overall features of the bubble motion. We do this in the’ 
next section, where analytical somtions for the bubble tra- 
jectories in a solid-body vortex are obtained using both 
du/dt and Du/Dt as added mass derivatives. 

III. BUBBLES IN A SOLID-BODY VORTEX 

In this section we analyze bubble motion in steady, 
isolated vortices. In particular, we consider the motion of 
the bubbles in a solid-body vortex, where the fluid velocity 
can be expressed in polar coordinates as 

*0 
z+=- r. 2 

The reason for using this type of flow field is twofold First, 
the bubble equations simplify under such flows, which al- 
lows a closer examination of the effect of the individual 
terms in the governing equations. Second, circular vortices 
with a core of near constant vorticity can be thought of as 
an approximation to the final stages of a mixing layer. 
Also, studying the effect of a vortex on bubbles is essential 
for designing turbulence models for two-phase flows. 

For the case of solid-body rotation, the flow itself has 
no length or velocity scale. Therefore, we use T= l/we, 
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FIG. 1. Exponents for the trajectories of Stokes bubbles. Here the two 
different added mass fluid velocity derivatives are used: Du/Dt (. . . ) and 
du/dt (-). The opt imum entrapment occurs at A= 1.34 with 
Re(a,) = -0.32 when dn/dt is used as the added mass fluid derivative, 
and occurs at A=1.58 with Re(a,)= -0.21 when Du/Dt is used as the 

FIG. 2. Exponents for the trajectories of bubbles using DdDt as the 
added mass derivative and the inviscid Auton lift effect. The opt imum 
entrapment rate occurs at A,- v? with Re (a,) = - I/& For A <A, both 
exponents have the same real component given by Re(a) = -A/2. 

added mass fluid derivative. 

L =r,, and U=rowo as the time, length, and velocity 
scales, where r. is the initial bubble position and w. is the 
vorticity. Using this scaling gives the nondimensional vor- 
ticity and velocity as o,= 1 and ug=r/2. 

For the case of a viscous bubble, an analytical solution 
for the bubble trajectory can be obtained if we assume a 
Stokes drag law, i.e., ft = 1. In order to illustrate the con- 
tribution, or lack thereof, of the terms in Eq. ( 14) to the 
solution, we will calculate the solution using both Du/Dt 
and du/dt as the added mass fluid velocity derivatives. For 
a solid-body vortex, the term ( Vi-ui)Sij is zero, so that 
the only difference between the two added mass derivatives 
in this case is the term $~~~kjk( Uj- Vj)Wk. This allows US to 
evaluate what effect a lift force has on the bubble motion. 
In addition, we will also briefly consider the case where 
Du/Dt is used along with the inviscid lift effect given by 
Auton et aL5 which is twice that of Eq. ( 14). For all ver- 
sions, the general solution is 

X(t) -XE=al exp(air) +az exp(a2t) +c.c., (16) 

Y(t) - YE=bl exp(att) +b2 exp(a2t) +c.c. (17) 

In terms of entrapment characteristics, the two main im- 
portant features given by this solution are the equilibrium 
points, (XE, YE), and the rate of entrapment, given by the 
real components of at and a2. The exponents ai and a2 are 
functions of A alone, and both the real and imaginary com- 
ponents are shown in Fig. 1, where solutions using the two 
different added mass derivatives are shown. In general, and 
especially for large A, the results do not depend heavily on 
which added mass derivative is used. The only large dis- 
crepancy is in the frequency of the a2 term. Since 
Re{a,) < Re{ai}, however, this frequency is associated 

with a larger decay rate and, hence, represents only tran- 
sient behavior. In addition, the period of oscillation asso- 
ciated with a2 becomes infinite for large A. Actually, when 
Du/Dt is used as the added mass derivative, there is only 
one frequency, with Im(ai ) = - Im( a,). By using the 
added mass form in Maxey and Riley, we introduce a small 
lift effect which creates an additional frequency. 

One important feature of the solutions represented in 
Fig. 1 is that the long term motion has an optimal entrap- 
ment rate, signified by the minimum in Re(at ) . When 
Du/Dt is used as the added mass derivative, this optimum 
entrapment occurs at A,= 1.58 with Re(ai) = -0.21. 
When du/dt is used as the added mass derivative, the lo- 
cation and value are shifted to A,= 1.34 and 
Re(ai) =-0.32. This difference is a result of the lift effect 
in Eq. ( 14), which causes the greater entrapment rate to 
occur at smaller A. The addition of more lift does not 
guarantee that this trend continues, which is observed if we 
use Du/Dt along with the Auton inviscid lift effect, which 
amounts to twice the lift contained in du/dt. Although the 
magnitude of the optimum entrapment is greater for this 
case than the other cases, where Re(al) =-I/V? 
- -0.71, the location occurs between the two previous 
cases, at AC=vT- 1.4. For this case the exponents take on 
a slightly different characteristic, as indicated in Fig. 2. 
This is a limiting case which for A <A, the real component 
of both exponents is the same, given by Re(a) =-A/2, 
and for A> A, there is only one frequency. However, we 
should remember that this solution is for the case where we 
use an inviscid lift term with a Stokes drag. 

The information given by the analytical solution can be 
put into context by examining typical bubble trajectories. 
Several trajectories are shown in Fig. 3 for various values 
of A. Here the local fluid velocity is used as an initial 
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FIG. 3. Stokes bubble trajectories for various A. Here &I/C& is used as the 
added mass derivative. 
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condition for the bubble velocity, and du/dt is taken as the 
added mass derivative. In cases where A is large, the vis- 
cous forces dominate and inhibit the radial motion, so that 
the larger A, the more circular the trajectories. As A de- 
creases towards A,, the radial velocity component becomes 
larger as the bubble moves more quickly towards the vor- 
tex center. However, for A <A, the bubble once again ap- 
proaches the vortex center more slowly. In addition to this 
slower asymptotic entrapment rate, there is also an initial 
“overshoot” past the vortex center. This phenomenon has 
been observed in a similar way in dispersion models for 
heavy particles in vertical flows.i7 This reflects the ten- 
dency of heavy particles to spiral out of vortices, since in 
their case R=O and therefore the pressure forces have no 
effect. The dynamics for the bubble “overshoot,” on the 
other hand, is quite different. The radial motion of the 
bubbles is dominated primarily by two forces, the inward 
pressure gradient force and the outward added mass ef- 
fects. Neglecting the drag and lift forces, the balance be- 
tween the pressure gradient and added mass effects occurs 
when V4/ug=vT3, since the bubbles are three times more 
sensitive to the pressure gradient than fluid elements. Note 
that this criterion is dependent on both the bubble and 
local fluid velocities. The drag force generally maintains 
V,/u,- 1, which results in the inward radial motion of the 
bubbles. However, for a bubble with small A, both radial 
and azimuthal bubble velocities can become large. An in- 
crease in both of these bubble velocity components contrib- 
utes to an increase in V8/u8, since as the radial bubble 
velocity becomes larger the bubble is convected into re- 
gions of smaller ug. This latter effect is dependent on 
u8( r), or the “shape” of the vortex. As a result, when ,4 
becomes small enough, Vi/u8 can exceed V3 and an out- 
ward acceleration can exist. Note that this argument ne- 
glects the effect of the lift and drag forces on the radial 
motion, however, adding these contributions does not qual- 

FIG. 4. Force balance (top) and location (bottom) of equilibrium points 
as a function of A and W for a solid-body vortex. For large A the equi- 
librium point shifts towards the horizontal axis as the balance is primarily 
between the drag and gravitational forces. For smaller A the pressure 
forces become more important as the equilibrium point moves upwards. 
For any values of A and W there always exists an equilibrium point. 

itatively affect this mechanism. It should be emphasized 
that this “overshoot” is a transient feature and is not re- 
sponsible for the smaller asymptotic rate of entrapment. 

Although the rate of entrapment is a function of A 
alone, the equilibrium points depend on both A and W. 
When du/dt is used as the added mass derivative the equi- 
librium points are defined by 

2A2w x,=--z , l+A 

2Aw 
Y,=I+A? - 

(18) 

These equilibrium points occur where there is a balance 
between the drag, gravity and pressure forces, as indicated 
in Fig. 4. For the case of the viscous added mass derivative, 
the inward pressure forces are reduced by the previously 
mentioned lift forces. Also shown in Fig. 4 are loci of 
points which indicate the location of the equilibrium points 
in terms of the parameters A and W. When W=O the 
equilibrium point lies on the vortex center, and as W be- 
comes larger the equilibrium points moves along a straight 
line away from the vortex center. The slope of this line 
depends on the value of A. For large A this line is roughly 
horizontal, indicating a primary balance between the grav- 
ity and viscous forces. For smaller values of A this line 
becomes more vertical as the pressure force become more 
important in the force balance. As with the rate of entrap- 
ment, the equilibrium points change when Du/Dt is used 
as the added mass derivative. These equilibrium points are 
given by 
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FIG. 5. Bubble radius time series without (top) and with (bottom) the 
drag modification factor. The long term decay rate is not affected by the 
drag modification. 

8A2 W 
x.E= -9+4iz > (19) 

(20) 

and though different from the case using the viscous added 
mass term, the characteristics are roughly the same. 

For the range of A discussed-so far, we have violated 
the condition in Eq. (9) for using the Stokes drag law, but 
we can correct this by using the empirical coefficient in Eq. 
(lo), which is dependent on the particle Reynolds number. 
The factor has a weak dependence on R,, and except for 
the cases of very small A, the characteristics found earlier 
without this factor are still valid. The particle Reynolds 
number is given by Rp= (Ud/v> ( 1 u-V 1 /U), in which 
case we must specify the additional parameter Ud/v. For a 
shear flow with a velocity scale of 1 m/set, a bubble diam- 
eter of 100 pm, and a kinematic viscosity of 10e6 m2/sec, 
we obtain Ud/v= 100, which will be used throughout this 
study. This is most likely to be a globally turbulent flow 
since the global flow scale is ,100 pm. 

We begin the analysis with drag correction for cases 
without any gravitational effects, so that the equilibrium 
point lies on the vortex center. One method of evaluating 
the difference between the cases with and without drag 
correction is to plot time series of the bubbles’ radial dis- 
tance from the vortex center. This is shown in Fig. 5 for 

0 
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A 

FIG. 6. Long term radial decay of bubbles without (top) and with (bot- 
tom) drag modification. The hollow circles represent bubbles where local 
maximum radial positions were observed, and tilled circles indicate mono- 
tonically decreasing radial position. 

different A, both with and without the drag correction fac- 
tor. Here we can more clearly see the “overshoots” for the 
case of A=03 without the drag correction, and their ab- 
sence when the drag correction is applied. For this case, 
the maximum bubble Reynolds number is R,-27 with a 
corresponding value of f 1 -2.5. We can also see from the 
slopes of the curves in Fig. 5 that an optimum entrapment 
occurs which is related to the minimum in the real com- 
ponent of (rl. This is further seen by plotting the final slope 
of the radial time series versus A in Fig. 6, again for cases 
with and without the drag correction. Here the filled cir- 
cles represent trajectories where there are no local maxima 
in the radial position, whereas the hollow circles represent 
trajectories where there is at least one local maximum in 
the radial position. The only major difference caused by the 
drag correction is whether or not an early oscillatory state 
is present, but the asymptotic state is the same. The equiv- 
alent asymptotic states are a result of the flow conditions at 
the equilibrium point. When the equilibrium point coin- 
cides with the vortex center, which is the case when W=O, 
the value of the slip velocity and therefore the bubble Rey- 
nolds number is zero, so that there is no drag correction at 
the equilibrium point. A better assessment of the effects of 
the drag correction can be shown by considering more 
transient features of the bubble motion. Such an example is 
given in Fig. 7, where the value of A for the bubble with the 
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FIG. 7. The value of A for the bubble closest to the vortex center versus 
time for bubbles without (top) and with (bottom) drag modification. 
Initially the nearly inviscid bubbles are closest due to the lack of resis- 
tance to inward motion, however these bubbles overshoot the center. The 
final state corresponds to the minimum in Fig. 6. This transition is slower 
with drag modification. 

minimum radial position is given for all times, again with 
and without drag correction. Here the final values are pre- 
dicted by the analytical solution, and correspond to Fig. 6. 
However, at earlier times the bubbles closest to the vortex 
center are those with smaller A, where the inward motion 

1 is not restrained. As time progresses, these bubbles “over- 
shoot” the vortex center and the more viscous bubbles be- 
come closest to the vortex center. This transition is quicker 
without the drag correction. W ith drag correction the 
“overshoots” for the less viscous bubbles are restrained and 
hence the minimal radial position stays longer with these 
bubbles. Thus in the early stages the entrapment rate in- 
creases with decreasing A. 

Now we consider the effect of drag correction with 
gravitational effects. In doing so, it is useful to define a 
quantity f iB as the value of the drag correction factor at 
the equilibrium point using the local fluid velocity as the 
slip velocity. Using this expression, the equilibrium points 
are given by 

2 fd2 W  
IYE=-l+(fIsA)Z9 

2AW 
YE= 

l+(f,.&’ 

FIG. 8. Rate of entrapment for cases with a rise velocity and drag mod- 
ification. The minimum in the curves shifts towards smaller A for larger 
rise velocities, due to the increased slip velocity and drag correction. 

where A and W  from Pq. ( 18 ) have been replaced by f IEA 
and W /flE, respectively. The effect this has is to move the 
equilibrium point closer to the vortex center. In addition to 
the different location of the equilibrium points, the rate of 
entrapment also differs if we include drag correction. This 
is seen in Fig. 8, where the asymptotic entrapment rate is 
given versus A for different values of W . Here we see that 
as W  increases, the maximum rate of entrapment shift to- 
wards smaller values of A. As with the location of the 
equilibrium points, this can be explained using the quantity 
flE If we were to plot the entrapment rate versus flEA, 
the curves in Fig. 8 collapse. Therefore, as gravitational 
effects become more important and the equilibrium points 
move farther away from the vortex center, the maximum 
asymptotic entrapment rate moves towards smaller values 
of A. Note that even though the drag correction allows us 
to extend the valid range of A to smaller values, this ap- 
proach still fails for very small A, and therefore for large W  
we cannot comment on the existence of a maximum en- 
trapment rate. 

IV. BUBBLES IN A SHEAR LAYER 

A. Flow simulation 

To this point we have analyzed bubble motion in 
steady isolated vortices. Before we discuss the motion of 
bubbles in a shear layer, we will briefly review the method 
used for obtaining the t ime-dependent flow field. Assuming 
the flow to be both unsteady and incompressible and the 
fluid as inviscid, the governing equations for the flow field 
are 

The instantaneous velocity field can be obtained from the 
vorticity field in a flow governed by Eqs. (22) and (23) by 
solving the Poisson equation: 
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v%= -vx (cd,), (24) 

whose solution is given by the Biot-Savart equation, 

1 
u(x,t) = -2a 

I 
(x-x’> x6@(x’,t) dx, 

(x-412 * (25) 

Although it is difficult to obtain solutions to Eq. (25) 
in general, approximations concerning the vorticity field 
can reduce Eq. (25 ) to a workable form. Such approxima- 
tions are employed in the vortex blob method, which is 
used here to solve Eq. (25) and is thoroughly described in 
Leonard” and Nakamura et aLI9 This method discretizes 
the vorticity field into vortex blobs: 

N 

O(M) = & riyi(x--xi), (26) 

where lYi is the circulation, or strength, of the ith blob and 
yi is the distribution, or smoothing function, of the vortic- 
ity about the center Xi of the ith blob. The vorticity distri- 
bution is also normalized, so 

s yi(x>dx= 1. (27) 

In this study a Gaussian distribution of vorticity is used, 
i.e., 

Yi(X-X;>=(l/T~) exp(- IX-xi12/uf), (28) 

where ai is the core radius of the ith blob and indicates the 
concentration of the vorticity. For a shear layer simulation, 
vortex blobs with equal lYi and ai are evenly spaced on the 
x axis and then given a small initial sinusoidal perturbation 
to the circulation Ii used to initiate the Kelvin-Helmholtz 
instability. This perturbation is periodic in the fx direc- 
tions with period 1. Although the vorticity field is dis- 
cretized into many blobs for computational purposes, 
physically one must consider their collective effect. If the 
spacing between blobs is small, such a configuration with 
blob distributions given by Eq. (28) yields the velocity 
profile 

u0(y) =f erfWui). (29) 

In this study ri is chosen so that AU,= 1, and uj so that 
the maximum slope thickness, 

C&=AU, = 1.0. 
max 

(30) 

This also corresponds to an initial maximum vorticity of 
1.0. Substituting Eqs. (26) and (28) into Eq. (25) then 
gives the velocity field due to the infinite series of vortex 
blobs. However, by considering all images except the clos- 
est image of a blob as point vortices, where yJx) =6(x), 
and only the closest image of a blob as having the distri- 
bution given in Eq. (28), the following analytical expres- 
sions are obtained for the velocity fields:” 

U(W) = j, ‘5 r [ 2rr -(-2) 

rj sinh[&dy---yJ 1 
-21{cosh[ko(y-yi)]-co&(x-xi)]} ’ (31) I 

N 

v(x,y)= C 
i=l 

l?iSill[ko(X-Xi)] 

-2Z{cosh[ko(y-yi)]-cos[ko(x-Xi)]} ’ (32) 1 
where ri= 1 x-xi ] and k. = 2?r/Z. For each i, the last term 
on the right-hand side of Eqs. (3 1) and (32) represents the 
velocity induced from the ith vortex and its periodic im- 
ages as if they were point vortices, and the first term on the 
right-hand side is the vortex blob correction for the nearest 
image. This “hybrid” scheme combines the smooth, or 
nonsingular, characteristics of the vortex blob, when 
needed, with the simplicity of the point vortices, which 
allows the use of the analytical expression for the effect of 
all the images. 

The temporal evolution of the flow is obtained by cal- 
culating the velocity at the blob centers, using Eqs. (3 1) 
and (32)) and using a second-order predictor-corrector 
scheme to advance the blob centers. In the shear layer flow, 
where we simulate the trajectories of many particles, it is 
important to develop an efficient method of calculating the 
bubble trajectories. A detailed explanation and accuracy 
analysis of this method is given in the Appendix. To sum- 
marize, one must be careful how the fluid velocity deriva- 
tives from the added mass and pressure gradients are eval- 
uated in order to maintain accuracy and do so efficiently. 
Using a first-order forward Euler scheme at the predictor 
step and a first-order backward Euler scheme at the cor- 
rector step to calculate the fluid velocity derivatives results 
in an overall second-order accurate scheme. In addition, 
the fluid velocity at the bubble location is not directly cal- 
culated using the Biot-Savart law, but instead the fluid 
velocities are calculated on a grid, and then a 2-D fourth- 
order Lagrange polynomial is used to interpolate the ve- 
locity at the bubble locations. This grid is initially 50X 50 
and occupies a region of IXl. 

B. 

of 

Bubbles in a shear layer without gravity 

We now turn our attention to the study of the motion 
viscous bubbles in a temporally evolving shear layer. 

This shear layer, simulated using the vortex method dis- 
cussed in the previous section, is given an initial perturba- 
tion to the blob circulation which corresponds to the most 
unstable mode obtained from stability theory.20 The initial 
condition given to the bubbles is to seed the upper half of 
the shear layer with 12 000 bubbles equally spaced, result- 
ing in a uniform concentration, and placed from the center 
of the shear layer out to 38,,. These bubbles are given an 
initial velocity equal to that of the fluid. We consider four 
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FIG. 9. Vorticity contours, pressure gradient field, and bubble positions 
at r= 10. The solid lime in the bubble figures represents the material line 
that was initially the centerline. Each graph represents one period in each 
direction. 

FIG. 10. Vorticity contours, pressure gradient field, and bubble positions 
at t= 18. Here the stronger pressure gradients cause the accumulation of 
bubbles at the vortex center. 

different values of A, ranging from A =0.5 to A =5. For all 
cases we use Eqs. (5) and ( 10) with Ud/v= 100 to calcu- 
late the bubble trajectories. 

into 20 radial shells where the thickness of each shell is 
e,~‘lO. Using this method we obtain bubble concentra- 
tions above 100 times the initial concentration. 

The vorticity contours and bubble positions, along 
with the pressure gradient field, at time t= 10 are shown in 
Fig. 9 and for time t= 18 in Fig. 10. In addition to the 
bubble positions, a solid line representing the the material 
line which was initially at the centerline is displayed. In 
Fig. 9, the shear layer is still predominantly parallel. Dur- 
ing this parallel shear stage, the pressure gradients are 
small, and the bubbles closely follow the fluid elements. We 
see that the material line and edge of the bubble field cor- 
respond well here. However, at t= 18, when the vortex is 
well developed, the material line and bubble field do not 
correspond as well. As expected, this difference is most 
pronounced where the pressure gradients are large, at the 
vortex center. In addition to the accumulation of bubbles 
at the vortex center, there is a depletion of bubbles all 
along the material line, even near the stagnation point be- 
tween vortices, or in the “braid” region. This can also be 
explained in terms of the pressure gradients, even though 
the pressure gradients are weak in this region. For a bubble 
traveling parallel to the material line in the braid region, 
the vectors u and -VP are roughly colinear. Therefore, the 
bubble is being acted on by a uniform pressure gradient 
over a longer length scale than bubbles elsewhere in the 
flow. 

By measuring these radial concentration profiles, we 
can easily compare results in the shear layer calculation to 
those obtained in the isolated solid-body vortex. If we seed 
a solid-body vortex with a uniform bubble concentration 

100 100 

10 10 
0” 0 

‘us .$ 

1 

O.l- 0 O.lC..- ___.__ -~_----__~ 
1.5 3 

r/k, r/@* 
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The accumulation of bubbles into the vortex center can 
be measured by calculating the bubble concentration in 
circular shells around the vortex center. Such radial con- 
centration profiles are shown at different times in Fig. 11. 
Here the concentration is calculated by sorting the bubbles 

FIG. 11. Radial concentration profile for A =OS, 1,2,5 bubbles at various 
times. The radius is normalized by the maximum-slope thickness, 0,, . 
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FIG. 12. Time series of the concentration in the innermost bin of Fig. 11. 
This bin corresponds to a radius of 8,,/10. During the time when the 
vortex core exists, exponential growth is observed. The straight lines in- 
dicate the exponential growth in terms of 10X. 

Cc, then the concentration within some small circle about 
the vortex would grow exponentially for an exponential 
rate of entrapment. We therefore expect an exponential 
increase in bubble concentration about the vortex in the 
shear layer. The time series for the concentrations of the 
innermost bin from Fig. 11 are shown in Fig. 12. Here we 
see, after an initial period of slow growth during the par- 
allel shear stage, an approximately exponential growth in 
the bubble concentration. In agreement with the solid-body 
case, we see that at an intermediate value of the inertia 
parameter there is an optimum growth rate in the concen- 
tration. After this exponential growth, the curves level off 
since the flow was only partially seeded with bubbles. The 
leveling off can be eliminated by either seeding bubbles 
further out or by using a smaller bin size. 

In addition to the accumulation of bubbles in the vor- 
tex center, there are features of the bubble motion which 
are important in the context of mixing. One such charac- 
teristic concerns the effect of the fluid motion on the “in- 
terface” between regions of fluid seeded with bubbles and 
regions of fluid without bubbles. For our two-dimensional 
case, the growth of this “interface” takes the form of the 
arclength of bubbles along the centerline. Since the bubbles 
in the shear layer were introduced as a rectangular grid, we 
can also measure the growth of the arclength’of bubbles at 
a variety of vertical locations. Due to the passive nature of 
the bubbles assumed in this study, the different layers of 
bubbles are not affected by one another, and therefore the 
results for an internal layer of bubbles would be the same 
as if this layer defined the “interface.” In this way we can 
calculate the optimum vertical location of bubble injection 
which results in the maximum growth of the interface. 

O-;--s o!i-T-riv5 t t 
FIG. 13. Time series of Z for material elements and bubbles that are 
initially placed along the centerline. in addition, Z for bubbles introduced 
above the centerline is also shown. 

For Lagrangian elements, the arclength of a material 
line grows fastest when this line initially coincides with the 
centerline of the shear layer. We will compare our results 
for bubbles against the growth of this material line. The 
growth of the several bubble lines are plotted in Fig. 13 for 
the four different. cases of the inertial parameter. 

First we will consider the cases of the bubble lines 
which initially coincide with the centerline. The arclength 
of bubbles”initially along the centerline, denoted by 
Z,(y=b), compared to the arclength of fluid or material 
elements initially along the centerline, denoted by 
ZF(y=O), is determined by two features which can be 
related to the bubble motion in a solid-body vortex, namely 
the accumulation of the bubbles in and the azimuthal bub- 
ble velocity about the center of the vortex. The accumula- 
tion of the bubbles into the vortex center causes the spiral 
structure of the bubble line to shrink, resulting in smaller 
values of Z,/Z,. From Fig. 1 we know that relative to 
fluid elements, the bubbles have a greater frequency about 
the vortex center, which tends to increase Z,/Z,. The 
importance of these two features depends on the value of 
the inertia parameter, A. However, for all values of A the 
long-term behavior is dominated by the accumulation fac- 
tor, resulting in ZB/ZF < 1 observed at long times in Fig. 
13. Also in agreement with Fig. 1 we observe that the final 
value of Z, in Fig. 13 is smallest for the case where 4 = 1, 
which corresponds to the largest accumulation rate ob- 
served in Fig. 12. We also see that regions where 
Z,/Z,> 1 occur near the beginning of the evolution of the 
vortex cores. From Fig. 1 we expect this to be most prom- 
inent at small A, which is confirmed by Fig. 13. The above 
features can be observed in the time series of bubble and 
fluid lines in Figs. 14 and 15. For the case where A = 5, the 
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FIG. 14. Snapshot of material line (-) and bubble line (..*) at three 
different times for A =5. Both lines were initially placed on the centerline. 

small difference between the fluid and bubble lines’ wrap- 
ping about the vortex center is negligible compared to the 
effect of the entrapment of bubbles into the vortices. How- 
ever, for A =0.5 in Fig. 15 the differential rotation rate is 
more pronounced, resulting in a larger Z for bubbles than 
fluid elements soon after the vortex center develops. 

Although the accumulation of bubbles into the vortex 
center results in Z&=O)/Z,(y=O) < 1, this same fea- 
ture can cause the opposite behavior for lines away from 
the vortex center. This is seen in Fig. 13, where for the 
smaller inertia parameter cases Z,(y= 1) > Z,(y=O) at 
the final time step. In all cases, even the initially displaced 
bubble line cannot achieve a larger Z than the material line 
initially at the centerline. 

t=13 t-15 

1 1 

-T/H 

/ -T--. -- ---7 i; -.-I 

t=17 

1 
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FIG. 15. Snapshot of material line C---j and bubble line (...) at three 
different times for A=05 

C. Bubbles in a shear layer with gravity 

In this section we now consider the effects of gravity on 
the entrapment and mixing characteristics of bubbles in a 
shear layer. This situation, where we combine gravitational 
effects and a finite vortex, is quite different than the situa- 

‘tions discussed so far. The cases of an infinite solid-body 
vortex and a finite vortex without gravity guarantee that 
equilibrium points exist, and eventually all bubbles are cap- 
tured at these equilibrium points. In this section, however, 
the existence and effectiveness of the equilibrium points 
needs to be established. Before we do this, the initial con- 
dition must be changed from the previous case to accom- 
modate the effect of gravity and provide meaningful re- 
sults. The initial conditions used in this case are to 
introduce the bubbles below the shear layer in a region 
where the flow field is roughly uniform and to give the 
bubble an initial velocity equal to that of the local fluid 
velocity plus the rise velocity, W. 

The ability of the fluid motion to capture bubbles in- 
troduced below the shear layer depends heavily on the 
stage of temporal development of the shear layer when the 
bubbles pass through the shear layer. As we have seen in 
the previous section, there is little effect of the shear layer 
on the bubbles when the flow is roughly parallel. It is only 
during the stages when the vortex core develops or has 
already developed that the bubble motion deviates from the 
fluid motion. The distance below the shear layer at which 
we introduce the bubbles then becomes an important pa- 
rameter. To eliminate this parameter in our investigation, 
we will study the bubble motion in a steady flow. Although 
this can be done using static frames from the temporal 
shear layer above, a more efficient method is to use an 
analytical representation of the flow. Here we use a peri- 
odic row of Stuart vortices21 for this purpose. Nondimen- 
sionalized by the maximum vorticity and the velocity dif- 
ference between streams, the streamfunction for the Stuart 
vortices is 

$=i (s)ln[cosh(2sy)-pcos(Z&$x)], 

(33) 
where p is a parameter which can be used to represent the 
evolution of the shear layer. When p =0, Eq. (33) gives a 
parallel flow, and when p = 1, Eq. (33) gives the solution 
to a periodic row of point vortices; The use of a time de- 
pendent 

2f 
in Eq. (33 ) has been used by Meiburg and 

Newton to model passive particle dynamics in a viscously 
decaying shear layer. Some analytical work concerning the 
motion of heavy particles and bubbles in steady Stuart vor- 
tices is reported in Tio et al.= In this study we will use 
p=O.25, which has been reported by Browand and 
Weidmanz4 to represent the large-scale behavior of mixing 
layers, and has been used by Ga%n-Calvo and Lasheras 
to study heavy particle dynamics in a free shear layer. The 
streamfunction, velocity profile through the vortex center, 
and the initial randomly placed bubble locations are shown 
in Fig. 16. In order to obtain analytical features of the 
equilibrium points in the flow, we will not be using the drag 
correction factor applied in the case without gravity. How- 
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CJ(‘Y) Bubbles 

FIG. 16. The streamfunction, velocity profile taken through the vortex 
center, and initial bubble locations for the simulation of bubble motion in 
a periodic row of Stuart vortices. The abscissa represents one period given 
by I=rr( 1 +p)/(l -p) where p=O.25, and the ordinate represents 21. 

ever, as the previous section has shown, the effect of this 
drag correction did not qualitatively affect the results when 
compared to the results of the solid-body vortex without 
this factor. 

We begin our analysis of bubble motion in a periodic 
row of Stuart vortices by examining the conditions under 
which equilibrium points exist. The existence of equilib- 
rium points for bubbles in a Stuart vortex is discussed in 
detail by Tio et aZ.,“3 and here we only present a brief 
discussion. One can determine whether or not and where 
the equilibrium points lie by flnding the solution to Eq. (5) 
with dV/dt-V=O. The solutions for the force balance in 
the x and y directions for various A and W are shown in 
Fig. 17. Here the dashed lines represent the points where 
the x-force equation is balanced, and the solid lines repre- 

A= 1 A=6 
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FIG. 17. Equilibrium points in a Stuart vortex exist where the lines which 
represent the balanced forces in the x direction (. . . ) and y direction (-) 
intersect. Note that for W=O there is a stable equilibrium point at the 
stagnation point in the vortex center and an unstable equilibrium point at 
the stagnation point in the braid region. Each graph represents one period 
in each direction. 

sent the points where the y-force equation is balanced. The 
intersections indicate the locations of the equilibrium 
points. For W=O there are two equilibrium points, one at 
the stagnation point in the vortex center which is stable 
and one at the stagnation point in the braid region, which 
is unstable. As we increase W from zero, the lines associ- 
ated with the y-force balance change and form a closed 
loop, and the intersections between this loop and the 
x-force balance line are displaced from the stagnation 
points. As W increases further, this loop becomes smaller 
and at some point disappears. Physically this corresponds 
to the case when there is no point in the flow where the 
combination of viscous and pressure forces can balance 
the gravitational effects. However, even before the y- 
momentum loop vanishes the equilibrium point can vanish, 
as indicated in the case where W=O. 15 and A = 1. Here 
there are no intersections and thus no equilibrium points, 
even though there are locations where the individual com- 
ponents are balanced separately. These situations, espe- 
cially where the loci almost intersect, have an interesting 
effect on mixing, and will be discussed later. 

Although the location of the equilibrium points is not 
given in closed form for this flow, we do observe similar 
trends to the case of the solid-body vortex. In both cases as 
W increases the equilibrium point moves away from the 
vortex center, and as A increases the vertical location of the 
equilibrium point is lower. 

Now that we have discussed the existence of equilib- 
rium points, we will examine the ability of these points to 
capture bubbles. We begin by looking at the effect of the 
inertia parameter on the entrapment of bubbles by the Stu- 
art vortex. Several snapshots of bubble positions for vari- 
ous A and times and constant W are shown in Fig. 18. In 
the first row of Fig. 18 the average vertical bubble location 
is near the vortex center. In agreement with the previous 
sections, we find that at this time the population of bubbles 
in a small circle around the equilibrium point is largest for 
A = 1 of the cases shown. For A=03 the bubbles near the 
equilibrium point “overshoot” the equilibrium point. How- 
ever, in terms of the percentage of bubbles trapped by the 
vortex, the last time frame indicates that the smaller value 
of A traps the most bubbles. The ability of the vortex to 
capture bubbles is not determined by the motion of the 
bubbles near the equilibrium point, but rather the effect of 
the flow on the bubbles in the entire domain. The number 
of bubbles that are captured reflects the ability of the bub- 
ble velocity V to deviate from the fluid and rise velocities, 
u+ W. This deviation is more pronounced for smaller val- 
ues of A, resulting in the overall entrapment characteristic 
that the percentage of bubbles trapped increases with de- 
creasing A. A plot of the total percentage of bubbles cap- 
tured by the vortex for various A is shown in Fig. 19, where 
the effect of A on the capturing of bubbles is more clearly 
seen. This is done for several values of W. (Note: this does 
not imply that smaller bubbles are less likely to be cap- 
tured. A - l/a” but W-a’, and the entrapment features 
are more sensitive to changes in W.) As expected, the 
larger W becomes the fewer bubbles are captured because 
the bubbles spend less time in a region influenced by the 
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FIG. 18. Bubble locations at different t imes for various A and W=O.l. 
Although the concentration in the first row about the equilibrium point is 
larger for A= 1.0 than A =OS, the percentage of captured bubbles at later 
t imes is larger for A=O.S. The abscissa represents I and the ordinate 
represents 21. 

vortex. This can be seen in Fig. 20, where A is held con- 
stant and W  is the variable. Note that the times are scaled 
by W  so that the bubbles with different W  rising in a still 
fluid would travel the same vertical distance at a time tW. 
Once again, we see from the later time that the percentage 
of bubbles captured by the vortex increases with decreasing 
W . 

From Fig. 20 we see that for W=O.2 no bubbles are 
trapped, in agreement with the results of Fig. 17. On the 
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FIG. 19. Percentage of bubbles captured versus A for different W  in a 
Stuart vortex. 
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FIG. 20. Bubble locations for different W  and A= 1. As expected, for 
W=O.2 no bubbles are trapped. At longer times, no bubbles are captured 
for W=O.15, however, the least unstable point in the flow efficiently 
retains bubbles and creates the line of bubbles emanating from this point: 

other hand, from Fig. 20 one might conclude that for the 
case of W= 0.15 some bubbles are captured, even though 
from Fig. 17 we know that the equilibrium point does not 
exist. In running the simulation further we do see that no 
bubbles are captured for A = 1 and W=O. 15. The loci in 
Fig. 17 are close enough: however, so that there is a sig- 
nitlcant restraining effect of bubbles. This restraining effect 
is responsible for the long streaks generated at this least 
unstable point. In the context of mixing, such points in the 
flow generate large interfaces between the flow seeded with 
bubbles and the flow without bubbles. If U, is the 
freestream horizontal velocity and c= W /u,, then the an- 
gle these bands make with the horizontal direction can be 
expressed as 8= tan-‘({) and the distance between these 
bancls:is given by d = Ic/ m. The length of the bands 
depends on how close the loci in Fig. 17 are. 

V. DISCUSSION AND CONCLUSIONS 

In this paper we investigated the motion of small 
spherical bubbles in a variety of vertical flows. In particu- 
lar, we are interested in describing the phenomenon of bub- 
ble accumulation in vortices. 

In our initial investigation concerning bubble accumu- 
lation we utilize the solid-body vortex flow field. We  find 
that the accumulation can be described by two features: the 
equilibrium point and the rate of entrapment of the bubbles 
into the equilibrium point. The location of the equilibrium 
point is a function of both the bubble rise velocity W  and 
the inertia parameter A, and is located at the vortex center 
when W-O. Since the vortex extends to infinity, an equi- 
librium point exists for any combination of A and W . The 
rate of entrapment was found to depend only on A (assum- 
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ing the drag correction term, f, , is not used), and more 
importantly was found to have an optimum value at some 
A. 

We have also examined the motion of bubbles in a 
temporally evolving shear layer. Without gravitational ef- 
fects we find that the bubbles accumulate in the vortex 
center, once it develops, which is consistent with the solid- 
body vortex model. We also find that the time series of the 
bubble concentration about the vortex center grows expo- 
nentially once the vortex core develops, and the trends in 
growth rates for different 14 agree with the rate of entrap- 
ment dependence on A for the solid-body vortex model. 

We have modeled the bubble motion in a shear layer in 
the presence of gravity by using Stuart vortices. For this 
case, where we have a gravitational influence and finite 
vortex size, equilibrium points do not always exist. Even 
for cases when equilibrium points do exist, not all of the 
bubbles are captured by these points. The percentage of 
bubbles captured does not follow the trends in the rate of 
entrapment in the previous cases, where an optimum rate 
in terms of A is observed, but rather is determined by the 
ability of the bubbles to deviate from the local fluid and rise 
velocities. This ability is greatest when A is smallest, and 
therefore the largest percentage of bubbles captured by the 
vortex occurs when A is smallest. 

The stretching of material and bubble lines was also 
examined in this study, which is useful in determining how 
bubbles can be injected into the flow so that the interface 
between the portion of the flow seeded with and without 
bubbles obtains the largest value. In all cases, the bubble 
interface is smaller than the material line initially placed on 
the centerline of the mixing layer. This reflects the domi- 
nance of the accumulation mechanism, which results in the 
spiral structure of the bubble interface being compressed 
towards the vortex center. However, due to the increased 
frequency of the bubbles about the vortex for small A, as 
the shear layer begins to form vortices the bubbles can 
temporarily achieve a larger interface than the material 
line. 

Throughout this study, the accumulation of bubbles 
into equilibrium points is a repeated feature. Because of the 
predominance of this accumulation, we must comment on 
the violation of one of our assumptions due to this feature. 
As we have seen in the temporally evolving shear layer, the 
concentration in the vortex center can reach very high val- 
ues, in which case the assumption of a dilute concentration 
of bubbles is violated. Therefore, to accurately represent 
the bubble and fluid flows at the latter stages, one would 
have to account for the effect of the bubbles on each other 
and the fluid. 
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however, the problem arises in approximating the fluid ve- 
locity derivatives, ( DdDt) and (du/dt) . The goal here is 
to obtain overall a second-order accurate particle tracking 
scheme, as is done with the vortex blob evolution, with the 
minimum computational effort. In a steady flow field, one 
can take an arbitrarily small time step to calculate these 
terms. For unsteady flows, as is the case here, one would 
have to advance the flow field to this intermediate step in 
order to take into account the temporal effect on these fluid 
derivatives. It would be more efficient to utilize the existing 
flow-field data. 

This work is supported by the Office of Naval Research Since a corrector step is applied to the derivatives in 
and the National Science Foundation. Eq. (37), first-order accurate estimates of ( LWDt) and 

APPENDIX: BUBBLE SlMULATlON SCHEME AND 
ACCURACY 

In this section we discuss the method for calculating 
particle trajectories, where the particle acceleration dv/dt 
is given by Eq. (5) : 

dv z=A~U+W-v~+R(~+;~). IAl) 

Since we are concerned with the particle location and not 
only the particle velocity, Eq. (5) actually represents a 
system of two ODE’s, the first being Eq. (5) and the sec- 
ond 

(A21 

The method used here to solve Eqs. (5) and (A2) is a 
second-order predictor-corrector method. The predictor 
step uses a first-order forward Euler scheme: 

and the trapezoidal rule is applied during the corrector 
step: 

v”“=v+$ [(q+ (g)n+i*], 
(A4) 

The application of Eqs. (36) and (37) in general is 
straightforward, but we have yet to determine how the 
particle acceleration, Eq. (5), is approximated. The com- 
putational form of Eq. (5) is relatively simple: 

=A(ll$~,.+w-v”+‘*) +R 
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(du/dt) should yield the desired overall accuracy, al- 
though these first order schemes must be chosen carefully. 
Using a forward Euler scheme for both the n and n+ l* 
steps, as well as a backward Euler scheme for both steps 
results in an overall first order scheme. However, if at the 
nth step we use a forward Euler scheme: 

(u 
n+l 
(Y”+u;,At) -u&)/At, 

n+l 
(~(~n+~n~~) --u&)/At, 

(A61 

and at the nt l*-st step a backward Euler scheme: 

fi n+l 
t-1 

n+l 
Dt = yn+1* 

(Uyn+,*-Un (y”+l* -a ntl yn+,&))‘At 

(-47) 

= (U~~~~*-~~y~.+,*_vn+~*hf~)/At, 

then the overall scheme is second order. In calculating 
each fluid derivative, note that the velocities must be eval- 
uated along a single particle/fluid path at both 12 + I*-st 
and nth time. 

In this section we prove the second-order accuracy of 
the scheme discussed above. We will do this for the equa- 
tion: 

(A81 

where the viscous/inertial terms in Eq. (5) are left out 
since the accuracy for these terms is straightforward. In 
this section we will abbreviate our notation by dropping 
any n superscripts and Y” subscripts, and also use the sub- 
scripts x and t to indicate differentiation, with respect to 
space and time. Also, u* represents u at step n+ 1 and 
location Y”+‘*. We will only consider one dimension in 
space. 

To begin the analysis we first determine the n+ 1-st 
particle velocity in terms of a Taylor series about the nth 
time step: 

Vn+‘= Vn+RAt u,+uu,+; (u,+ Vu,) 
( 

(At)’ 
-l-RF ~tt+w;+ (u+ nu,,+ V(uJ2 

+ W+; Cuti+ V,u,+2Vu,,+ V2u,) +O(At3). 

(A9) 

In order for our numerical scheme to be second-order ac- 
curate, the scheme must reproduce the terms in Eq. (A9). 
In order to do this we must obtain approximations to the 
velocities in Eqs. (A6) and (A7) in terms of Taylor series 
about z&, . Up to second order, the expressions for Du/Dt 
are 

n+’ At2 
u,+,,t-u+At(u,+uu,)+2 (utt+2uuxt+u2uxJ, 

(A101 

At2 
u;::,*-u+At(ut+ Vu,) +2 (u,,+2vuxt+ v2u,), 

(All) 
n 

‘(P+l*-u*At) --u+At( Vu,--uu,) 

At’ 
+- [ -22u,u,-222&22vuu, 

2 

+w2+u2>u,1 
and for du/dt are 

(A121 

At2 
4&t--++t(u,+ Vu,> +T (u,,+2Vu,,+ V2u,), 

(Al3) 
n 

U(y"tl* - V+‘*At) -u-A?( Vtu,). (-414) 

Substituting these expressions into Eqs. (A6) and (A7) we 
obtain the following expressions for the derivatives: 

At 
-~t+~~,+~ (~tt+2uu,t+u2u,), (A15) 

At 
--u,+uu,+2 (u,+2Vu,+2u,u, 

+ 2 vu;+ 2 vuu, - u2u,), C-416) 

(A17) 

n+l At 

yn+1* 
--ut+ vux+y (u,+2vu,+ Pu, 

+2v,u,). (A181 
Note that the derivative approximations are only first- 
order accurate, however, when substituted into Eq. (A4) 
we obtain the Taylor series of Eq. (A9), which implies an 
overall second-order accurate scheme. 
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