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The nonlinear evolution of the interface between two miscible fluids of different densities and 
viscosities is simulated numerically for flow in a two-dimensional porous medium in which 
gravity is directed at various angles to the interface. Global velocities tangential to the interface 
are included in the analysis in addition to a normal. displacing velocity. In unstable 
configurations, the viscous lingers that result translate as they amplify when nonzero tangential 
velocities are present. The increased stabilization by tangential shearing velocities reported in 
[A. Rogerson and EL Meiburg, Phys. Fluids A 5, 1344 (1993)] affects the growth and 
wavelength selection of the emerging fingers. Tangential shearing also breaks the symmetry in 
the shape and concentration distribution of emerging fingers. In addition to the fingering 
mechanisms reported in previous studies, new mechanisms of diagonal fingering, trailing-lobe 
detachment, and secondary side-finger instability, resulting from the presence of gravity and 
tangential velocities, have been identified. These phenomena are reflected in one-dimensional 
averaged profiles of the concentration field. Also, how different density-concentration relations 
influence the interfacial evolution is investigated. When the dependence of viscosity and density 
on the concentration has different functional forms, the region of instability may be localized. 
The nature of the interfacial development is altered by varying the density relation and thereby 
changing the region of instability, suggesting that careful modeling of the density and viscosity 
relations is warranted. 

I. INTRODUCTlON 

The unstable displacement flow of two fluids in a po- 
rous medium, or by analogy in a Hele-Shaw cell, has been 
studied extensively for 40 years. With applications in areas 
such as enhanced oil recovery and groundwater hydrology, 
this problem is of practical importance as well as of interest 
from a more classical fluid-dynamical point of view. An 
excellent review of the research on this problem for both 
miscible and immiscible displacements is provided by 
Homsy.2 The unstable interface in the immiscible case de- 
velops into what is referred to as Saffman-Taylor fingers,3 
although the phenomenon was also reported by Hill4 and 
the first formal stability analysis performed by Chuoke 
et aL5 Considerably less attention has been directed to- 
wards the miscible problem even though it offers a rich 
array of interfacial dynamics. The majority of the work has 
focused on the stability and dynamics of the interface due 
to a normal displacement velocity. Tan and Homsy con- 
sidered the case of neutrally buoyant fluids in a medium of 
constant permeability with isotropic dispersion, perform- 
ing a linear stability analysis6 as well as a numerical sim- 
ulation of the nonlinear dynamics.7 In the absence of grav- 
itational forces, the dynamics of this flow is dictated by the 
viscosity contrast and the level of dispersion. The role of 
velocity-dependent dispersion on the stability of small- 
wavelength perturbations was later investigated by Yortsos 
and Zeybek.’ The numerical study of Tan and Homsy was 

extended to include the affects of anisotropic dispersion,’ 
permeability heterogeneity, lo and velocity-dependent 
dispersion. l1 Some of the tidings from these numerical 
simulations were confhmed in the first three-dimensional 
(3-D) experiment conducted by Bacri et al. l2 The effect of 
gravity was analyzed in the work of Bacri et al. but only at 
angles normal to the interface. A flow of two immiscible 
fluids that is of particular interest to our investigation is the 
one analyzed by Zeybek and Yortso~.‘~*‘~ They studied the 
dynamics of interfaces parallel to the main flow direction, 
and found both theoretically and experimentally that the 
interface supports wave motions of a solitary nature. 

The purpose of our investigation is to analyze the dy- 
namics for the miscible case under gravity, directed at var- 
ious angles with respect to the interface, and including 
global velocities tangential to the interface in addition to 
the normal displacement velocity typically taken. We focus 
on these aspects and consider the isotropic-dispersion 
constant-permeability case. The linear stability of this flow 
was analyzed by the authors.’ A new criterion for instabil- 
ity was formulated that incorporated gravitational effects 
due to density contrast. Unlike immiscible displacement 
processes, it was found that the presence of tangential 
shearing velocities increases the stability of the flow. The 
linear theory also shows that the presence of global tan- 
gential velocities results in traveling wave solutions. We are 
interested in the nonlinear evolution of these waves which 
amplify when the flow is viscously or gravitationally un- 

2644 Phys. Fluids A 5 (1 l), November 1993 0899-8213/93/5(11)/2644/l 7/$6.00 0 1993 American Institute of Physics 2644 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



concentration of fluid 1. Both the viscosity and the density 
are assumed to be known functions of the concentration 

p=lu(c), p=p(c). (4) 
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FICr. 1. Flow configuration. The interface is aligned along they axis. U is 
a global displacement velocity normal to the interface in the x direction, 
while VI and V, are velocities tangential to the interface. The angle be- 
tween the interface and gravity is denoted by 0. The domain has length L 
in the x direction and width H in the y direction. 

stable due to the normal displacing velocity. The addition 
of tangential velocities also presents the possibility for new 
fingering mechanisms and instabilities. Furthermore, the 
addition of buoyancy forces allows us to investigate flows 
where viscous effects and density effects dominate in dif- 
ferent parts of the mixing zone, creating localized regions 
of instability. 

II. FORMULATION 

A. Governing equations 

We consider the two-dimensional configuration of a 
porous medium in which two incompressible fluids of dif- 
ferent densities and viscosities are separated by a diffusing 
interface or mixing zone. We introduce a coordinate sys- 
tem with y axis parallel to the interface, and x axis normal 
to it (Fig. 1) . U represents a global displacement velocity 
normal to the interface, directed from fluid 1 to fluid 2, 
while VI and V, denote the respective fluid velocity com- 
ponents tangential to the interface. Gravity is aligned at 
various angles 8 to the interface. We assume that the me- 
dium is of constant permeability k and the dispersion is 
isotropic, with constant diffusion coefficient D. 

The governing equations for this flow are, 

v-u=o, (1) 

(2) 

ac 
Z+u-Vc=DV2c. 

The above equations express the conservation of mass, mo- 
mentum (Darcy’s law), and species, with c denoting the 
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We consider a finite domain and use the boundary condi- 
tions 

c=q= 1, u= (U,Vl) at x=0, 

c=q=o, u=(U,V2) at x=L, 
(5) 

and 

(u,c> b,y=W = (u,c) Lw=H,t). (6) 

Following Tan and Homsy, we introduce the velocity, 
length and time scales lJ, D/U, and D/U=. By furthermore 
scaling viscosity, density, and pressure by ,ul, pl, and 
p,D/k, respectively, we obtain the set of dimensionless 
equations 

v*-u*=o, (7) 

V*p* = - p*u* + Gp* (sin 8, - cos 0)) (8) 

ac* -g-+u**Vc*=V*2c*, 

with boundary conditions, 

c*= 1, u*=(l,fl) at x*=0, 

c*=o, u*=(l,e) at x*=PeA, 
(10) 

(u*,c*) (x*,O,t*) = (u*,c*) (x*,Pe,t*). (11) 

Here, G= ( plgk)/(pu, U) is a dimensionless parameter de- 
scribing the relative importance of gravitational and vis- 
cous effects, Pe=UH/D is the P&let number, and 
A = L/H is the aspect ratio of the domain. These equations 
admit the base-flow solution 

Ql(XJ) = 1, 
1 

v/)(x,t) = -- 
I4 

[v(t) +Gpdx,t)cos e], 

(12) 

PbW ) = s -2 --p&,0 +Gp&,t)sin WC+~rl(t), 
(14) 

(13) 

Cb(x,t) =z erfc 
l ($) (15) 

pLl=pdd =pdxA, (16) 

pb=Pb(Cb)=Pdx,t). (17) 

Here, r](t) is an arbitrary function of time only, indicating 
that for a given flow configuration, there are infinitely 
many v-velocity base states possible. Notice that this base- 
flow differs from the one given in the stability analysis of 
this flow’ only in that here c refers to the concentration of 
fluid 1, while in Ref. 1 c refers to the concentration of fluid 
L. 
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If we now consider a reference frame moving in the x* 
direction with the uniform flow u* = 1 and in the y* direc- 
tion with the average tangential velocity v* = I$, and use 
the streamfunction-vorticity formulation 

u=1cly, v= -*;;, 

then the equations become (dropping the *s), 

~t+lCyQ-1C;cCv=C+~yy~ 

(18) 

(19) 

GYP tD=Le [(~~-v,)c~+(1c;+l)c,l-~~ P dc 
x (cos 8 c,+sin 8 c,), 

v2*= -co, 
with boundary conditions, 

(20) 

(21) 

c=l, r&=0, $X=-v,+v, at x=-t, 
c=o, lJy=o, &=-v,+ v, at x=Pe A-t, (22) 

($,c,,c> (x,-- Vd,t) = t&c> (x,Pe- V&t). (23) 

For the majority of the results presented here, we use 
viscosity and density relationships in keeping with our ear- 
lier work on the stability of the interface,’ 

p(c) =&1--c), p(c) ,8(*-c’, (24) 

yielding, 

X (cos &,-I- sin I%,), 

v2*= --cd. 

B. Numerical method 

(26) 

(27) 

The solution to Eqs. (25)-(27) is approximated nu- 
merically using a Fourier Gale&in method. The use of the 
Fourier projection requires that we cast the problem in a 
periodic setting. In the transverse direction, this is no prob- 
lem as we have already assumed periodic boundary condi- 
tions in the formulation. In the longitudinal direction, we 
follow the approach of Tan and Homsy’ and achieve peri- 
odicity by incorporating a periodic extension of the con- 
centration field on the right of the computational domain. 
We shall focus on the dynamics of the interface on the left 
for unstable parameter sets, and stop the simulation before 
fingering is influenced by the right interface which is stable. 

The Fourier expansion of the functions c, q, and w is 
M/z-l N/2- 1 

(c&w) cwt) = j=FM,2 z=--N,2 c V,$b) 

X (q,k’;,t)eikPeiGy, (28) 

where /$=2rj/PeA and kJ;=2dA?e are the wave numbers 
in the x and y directions. At the equally spaced .grid points 
given by 

x,=(PeA/M)m for m=O;**,M--1, 

y,= (Pe/N)n for n=O;**,N- 1, (29) 

the transform coefficients (and the inverse transform) can 
be obtained from fast Fourier transforms (FFTs). Fqua- 
tions (25)-(27) are recast into equivalent equations for 
the expansion coefficients. Fourier coefficients for the non- 
linear terms are found in the usual manner, by computing 
the nonlinear term at the physical grid points (x, ,y,) and 
then transforming to Fourier space. We also apply a weak 
exponential cutoff filter (cf. Ref. 15 ) to the transformed 
Poisson equation [Eq. (27)] 

n &jl 
‘jr= (k;)2+ (kf)2 dp(qJ;>, 

where 

I 

1 for 16]<6’, 

a(6)= exp[ --(r( 161 -9c)8] 

with $=2rj/M and 19?=2ri/N, 

for JY< 16 I <rr, (31) 

which provides a bit of 
control over the high modes. We take a=37, since e-” is 
the order of machine accuracy, and 6’=0.61r. The compu- 
tation is advanced in time in Fourier space using a low- 
storage third-order total variation diminishing (TVD ) 
Runge-Kutta scheme. l6 

(30) 

111. RESULTS 

In all of the cases we present, the interface is viscously 
unstable (R > 0), with a less viscous fluid (fluid 1) displac- 
ing a more viscous fluid (fluid 2). The fluids may be stably 
or unstably stratified with respect to buoyancy forces, but 
we are interested in the evolution of an interface which is, 
overall, unstable. In Ref. 1 we formulated an instability 
criterion for the interface given by 

(l+& 
R-GSsin B.g-q--gq>O, (32) 

where R=Mp2hl, S=ldp2/pl), G= (gpd/(U,d 
and 0 is the angle of inclination. 

To encourage the destabilization of the interface, a per- 
turbation is added to the initial concentration field 

ql(w> =qJ(x) +c’ky). (33) 

Since a sharp interface will induce the Gibbs phenomenon, 
a smooth error function profile is used for the base-flow 
concentration 

cb(x,fo)=~ [ l+erfc(z)+erf(z)], (34) 

where to > 0 is some initial starting time, x1 is the location 
of the front of interest and x2 is the location of the stable 
periodic front. Generally, to is chosen so that six grid 
points are between co=0.025 and co=0.975. The v-velocity 
base flow is given by 

vb(x,to) = -e -R(l-co)[~(to>+GeS(‘-C&os e], (35) 
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FIG. 2. Concentration contours for Pe= ICOO, R=3, S-O, V,= V,=O 
showing a representative horizontal lingering pattern when no tangential 
velocities are present. Frames correspond to t=100, 200, 400, 600, 800, 
looo, 1 loo ,..., 1400. 

where I is arbitrary. We select an q by specifying the 
average v velocity, Vo, with which the reference frame 
moves in they direction. Then v, and consequently ub, are 
determined from the relation 

1 

-I 

PC.4 

PeJ 0 
V,(X,t,)dX=vo. (36) 

The streamfunction is then initialized so that 

(37) 

w. ax= -vbb,tO) + v,. 

In the presentation that follows, we illustrate the in- 
terface by plotting concentration contours at levels c=O. 1, 
0.2,..., 0.9. In the interest of space, only the flowfield of 
interest will be shown, so the periodic front will not be 
displayed and some frames may be clipped more than oth- 
ers. Unless otherwise noted the results are shown in the 
reference frame moving with velocity ( U, V,) , and in some 
cases for clarity we will show 2 periods in they direction. 

A. Summary of fingering mechanisms in the absence 
of tangential shear 

When there are no buoyancy forces and no tangential 
velocities, the unstable interface evolves into horizontal fin- 
gers that interact with each other. An example of the in- 
terfacial development is shown in Fig. 2 for Pe= 1000 and 
R=3. When the fingers are first visible in frame 1, there 
appear to be approximately 17 fingers with an average 

wavelength of A=Pe/17= 58.8. This agrees well with the 
most unstable wavelength predicted by the linear theory at 
this time, A,,,- -61.3. Later in the next section we will 
make more specific comparisons between the linear stabil- 
ity results and the growth rate of perturbations calculated 
from the simulated flow. The various mechanisms that 
characterize the dynamics of the fingers shown in Fig. 2 are 
summarized in Zimmerman and Homsy.’ Throughout the 
simulation the shielding and pairing mechanisms act to 
reduce the number of fingers and increase the lateral scale 
of the fingers. A shielding linger is one that grows slightly 
ahead of its neighbors. The concentration gradients of this 
finger steepen allowing it to advance even further ahead 
and spread, shielding the neighboring fingers and inhibiting 
their growth. Eventually, the shielded finger collapses, 
changing the width of the dominating finger as it pairs with 
the shielded one. The mechanisms of fading and coales- 
cence were first observed in the anisotropic dispersion sim- 
ulations of Zimmerman and Homsy.’ Later, Zimmerman 
and Homsy in Ref. 11 found that these mechanisms also 
occur in isotropic simulations with high Pe number. (We 
remark that Zimmerman and Homsy use the characteristic 
length L, instead of H, to define the P&let number.) These 
mechanisms are also evident in our simulations. Examples 
of fading can be seen in Fig. 2, frames 3 and 6, where a 
finger that has grown and advanced into fluid 2, fades in 
concentration as tluid 1 flows instead through the shorter 
adjacent fingers. In frame 3, the coalescence mechanism is 
also observed. Zimmerman and Homsy’ describe coales- 
cence as the tip of a finger bending into the body of an 
adjacent finger and merging with it. In frame 3, we see a 
finger that spreads at the tip and then merges with the 
adjacent finger, rather than “bend” into it, but completely 
coalesces eventually. A similar event occurs in frame 6, but 
as the tip spreads and the gradient steepens, the tip splits 
(frame 7) and only part of the finger coalesces with the 
adjacent finger. This process is repeated in frames 9 and 10. 

B. Effect of tangential shear on emerging fingers 

We now begin to investigate the effects of gravity and 
tangential velocities on the growth and development of the 
interface. In Ref. 1 we presented results from a linear hy- 
drodynamic stability analysis for this flow. In this analysis, 
we found that when there is a tangential velocity difference 
across the front, the stability of the flow is increased. Un- 
like immiscible displacement processes where the presence 
of tangential velocities does not alter the growth rate and 
affects only the phase speed of the perturbations, in the 
miscible case considered here the stability of the flow can 
be significantly increased by tangential shear. We compare 
these results with growth rates computed from the early 
evolution of the simulated flow field. By employing the 
quasi-steady-state approximation (QSSA) in the linear sta- 
bility analysis, we assumed that the rate of change of the 
base state is small compared to the growth rate of the 
perturbations. Since the rate of change of the base state is 
t13’2, we expect the theoretical growth rates to approxi- 
mate those from the simulation for times t) 1. 

In Fig. 3 the growth rates for a representative case are 
plotted as a function of time. The perturbation concentra- 
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FIG. 3. Growth rates as a function of time for R=3, S=-2, G=l, 
8=?r/2, and k=O.l5. Solid curve: theoretical QSSA results; Dot-dot 
curve: simulation results from rms concentration perturbation; Dot-dash 
curve simulation results from rms u-velocity perturbation. (a) 
V,=V,=O, (b) jV,-V,j~l--e-~, (c) IV,-V,j~2(l-e-~). 

tion is initialized as a single-wavelength cosine of ampli- 

: 
tude e=O.OOl in the y direction weighted with a Gaussian 

t in the x direction 

c’(x,y,to) = -e cos gJ ,-c=l)%4ro)* 
( ) 

The results for wave number k=2n-/Pe = 0.15 are shown in 
Fig. 3 (a) for the case with no tangential shearing, with 
Figs. 3 (b) and 3 (c) corresponding to increasingly stronger 
tangential shear strength. The growth rate at subsequent 
times is computed from both the rms concentration per- 
turbation and the rms u-velocity perturbation and is plot- 
ted along with the theoretical results from the stability 
analysis. We see that the growth rates computed from the 
simulation asymptotically approach the theoretical rates as 
time increases, validating the use of the QSSA approach. 
Growth rates for k=O.lO and k=0.20 were computed in a 
similar manner. These results are compiled in Fig. 4, show- 
ing the growth rate as a function of wave number at time 
t=20 for the three tangential shear strengths. As reported 
in Ref. 1, both the growth rate and range of unstable wave 
numbers decrease as the strength of the tangential shear 
increases. 

The increased stabilization by tangential shear affects 
the growth and wavelength selection of the emerging ti- 
gers. As an example, consider a set of simulations with 
Pe= 500, R = 3, S=O, and three sets of tangential shearing 
velocities. Figure 5 shows the fingers that begin to appear 
from an initial concentration field that has been perturbed 
with random noise of magnitude 0.1. This initial condition 

FJIG. 4. Growth rate versus wave number for R=3, S= -2, G= 1, 
8=?r/2 at time r=20. Curves correspond to theoretical results: 
V,=V,=O (solid), ~V,-V,I~l--e-R (dot-dot), IV,-V,l 
=2( 1 -CR) (dot-dash). Symbols correspond to the simulation results 
from the rms concentration perturbation: VI= V,=O 
IV~--V~IZ~-~-~ (cross), ~VI-V,l~2(1-e-R) (triangle). 

(square), 

allows the most unstable wavelength to emerge. As the 
strength of the shear increases, the flow becomes more 
stable and the growth of fingers is retarded. In addition, 
fewer fingers with larger lateral scale emerge as the shear 
increases due to the shift in the most dangerous mode to 
longer wavelengths. Both of these effects can be seen more 
clearly in Fig. 6, where a one-dimensional slice of the con- 
centration field through the front is plotted at time t= 100. 
The quadrupolelike perturbation vorticity structure that 
was found in Ref. 1 to be the cause of the increased stabi- 
lization, is also evident in our simulations. In Fig. 7, con- 
tours of the perturbation vorticity for the three cases dis- 
cussed above show the dipolelike structure for the no-shear 
case and quadrupolelike structures for the shearing cases. 
The dipolelike structure is similar to ones illustrated in the 
numerical simulations of Zimmerman and Homsy.’ In a 
different context, Manickam and Homsy” have observed 
quadrupolelike structures due to nomnonotonicities in the 
viscosity profile. 

The presence of tangential shearing velocities also af- 
fects the shape and concentration distribution of the 
emerging fingers. As an example, a series of simulations for 
Pe=250, R=3, and S=O is shown in Fig. 8 where the 
interface is perturbed with a cosine wave so that a single 
finger develops. The first row corresponds to V, = Vz = 0 
and the subsequent rows show the results for increasing 
tangential shear 1 V, - V> I= VI ( 1 -ewR), with V, in the 
+y direction. In the first column we see that when there is 
no tangential shear the finger is symmetric, and the steep- 
est part of the interface is centered about the finger tip. As 
the strength of the shear increases, the linger loses its sym- 
metry and the steepest region of the interface shifts to the 
upper side of the tiger. The concentration gradient be- 
comes steep in response to the cross-flow that stretches the 
interface. In Fig. 9, streamlines in a stationary reference 
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FIG. 5. Concentration contours for Pe=SOO, R=3, S-0 at f= 100 and t=200 for three tangential shearing velocities. (a) VI= V,=O, (b) 
[ VI - Vz I=2.5 ( 1 -e’-R), (c) I VI - V, I = S.O( 1 - emR). As the shearing strength increases, the lateral scale of the fingers increases and their growth is 

frame corresponding to time t==200 show how the region 
of stretching shifts from the center of the tip to the upper 
side of the finger as the strength of the shear increases. The 
loss of symmetry is further illustrated at later times (col- 
umns 2 and 3 of Fig. 8). The no-shear case undergoes a 
classical tip-splitting event. As Tan and Homsy discuss in 
Ref. 7, in order for the tip to split, it must spread wide 
enough to allow two wavelengths of an unstable perturba- 
tion to grow. At the same time, the front must steepen, 
amplifying the perturbations and forcing the tip to desta- 
bilize. When tangential velocities are present, the split is no 
longer symmetric. As the regions of maximum concentra- 

0.6 

I 
0 0.2 0.4 0.6 0.8 1 

FIG. 6. Concentration variation at the center of the front at t= 100 for 
the simulation in Fig. 5. v,= v,=o (solid curve), 
IV,-V,l-2.5(1-e -R) (dot-dot), I V,- V,l =5.0(1-eWR) (dot- 
dash). 

(4 

tion variation shift to the upper side of the finger, the upper 
lobe is favored over the lower lobe, amplifying the pertur- 
bation there more quickly. The contrast in steepness across 
the tip is so great when Vr=2.5 (last row), that the per- 

(b) 

(4 

FIG. 7. Perturbation vorticity at t= 100 for the simulation in Fig. 5. (a) 
VI-V,=O, (b) I VI-VzI,l =2.5(1-emR), (c) I VI-V21 =5.0(1--edR). 
The no-shear case, (a), exhibits a dipolelike structure. The weak-shear 
case, (b), shows a tendency towards the quadrupolelike structure that is 
more prominent in the strongly sheared case, (c) . 
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t = 200 t = 250 t = 300 

(b) 

(4 

Cd) 

(4 

FIG. 8. Concentration contours for Pe-250, R=3, S=O, and various tangential shear strengths I VI- V,j = V,(l-evR). (a) V,=O, (b) Vl=O.25, Cc) 
I I 

VI =0.50, (d) V, = 1.25, (e) VI=2.5. Tangential velocity shear breaks the symmetry in the shape and concentration distribution of emerging fingers. 

turbation on the under side is barely observed. In this case 
a single asymmetrical finger with steep gradient on the 
upper side has developed. Notice also that we begin to see 
the steepening of the back or “root” of the linger in the 
tangential shearing cases. We will discuss this further in 
the next section. 

C. New fingering mechanisms 

In addition to the fingering mechanisms that have been 
reported before, new dynamics are possible due to the pres- 
ence of gravity and tangential velocities. In particular, with 
velocities tangential to the interface in addition to the ve- 
locity U= 1 normal to it, it seems possible to obtain diag- 
onaZJingering. Figure 10 shows an example of this situa- 
tion in which ( V1,V2)=(- 1.28,-2.73) with Pe=500, 
R=J, S=4, G= 1, and 0=0. When there are global tan- 
gential velocities, the linear perturbations on the interface 
travel with a nonzero phase speed. Unless the global u 
velocity about the finger is approximately equal to this 
phase speed, some degree of diagonal fingering will occur. 
For the case in Fig. 10, the phase speed is approximately 
-2.42. The interface in Fig. 10 is displayed in the refer- 
ence frame moving in the y direction with the average v 

velocity Ve= -2.0 so the fingers appear to be translating 
more slowly. To illustrate the diagonally directed fingering, 
streamfunction contours are shown in Fig. 11 in a refer- 
ence frame that is stationary in the x direction and moving 
in they direction with the phase speed of the perturbations. 
In this case, the v-velocity field about the tlnger is negative 
with magnitude greater than the magnitude of the phase 
speed, so the tiger grows diagonally in the -y direction. 

The presence of nonzero tangential velocities can also 
lead to secondary instabilities of the fingers. These insta- 
bilities are illustrated in Fig. 12 which shows the evolution 
of a single finger resulting from the initial concentration 
perturbation 

C’(x,y,to) = -0.1 cos 2 
( 1 

e-(x-xl)2~(4tO), (4.0) 

Two periods in they direction are shown. Here, Pe=500, 
R=3, S= 1, G= 1, 8=0 and the induced tangential veloc- 
ity is such that ( Vi, V,) = ( -4.5, -0.3). As we saw before, 
the shape of the initial linger is influenced by tangential 
velocities. The strong tangential shearing from V, = -4.5 
to V,= -0.3 results in steep concentration gradients on 
the under side of the growing perturbation (frame 1) . This 
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PIG. 9. Streamfunction contours in a stationary reference frame, along 
with the corresponding concentration contours, for Pe=250, R=3, S=O, 
and various tangential shear strengths 1 V, - Va I= Vt (1 -emR) at t=2CO. 
(a) V,=O, (b) V,=O.25, (c) V,=O.50, (d) V,=1.25, (e) ?‘,=2.5. As 
1 V, - V,] increases, the region of steep concentration gradient shifts to 
the upper side of the fmger in response to interfacial stretching. 

concentration distribution strongly favors the growth of 
the lower lobe in frame 2, which quickly shields the growth 
of the other lobe. By frame 3, a single asymmetrical finger 
has developed, with one side steeper than the other. This 
6nger develops horizontally since the u velocity about the 
finger matches the phase speed. Because the sides of the 
finger are subject to global u velocities and are exposed to 
a gravitational field, these regions of the interface may go 
unstable. In this contiguration, with both gravity and the 
displacing u velocity aligned in the --y direction perpen- 
dicular to the finger sides, the upper side is viscously stable 
and gravitationally unstable since the displacing velocity 
and gravity are directed from the heavier, more viscous 
fluid (fluid 2) to the lighter, less viscous fluid (fluid 1). 
Similarly, the under side is viscously unstable and gravita- 
tionally stable. The criterion for the overall instability of an 
interface subject to a normal displacement velocity V di- 
rected from fluid “a” to fluid “b” is 

V(Pa+Pb) (In p*--ln pa> 
-ST Sin Np,-tpb) (In pb-ln pa) >O 

(41) 

PIG. 10. Concentration contours for Pe=500, R=3, S=4, G= 1, 8=0, 
( V,, V,) = ( - 1.28, - 2.73) showing diagonally directed fingers. Frames 
correspond to f= 100, 200 ,..., 800. 

in dimensional form (cf. Ref. 1) . With respect to the finger 
sides in this example, the angle 8 is ?r/2 since gravity is 
aligned with the displacing velocity. Equation (41) then 
specifies a critical condition for instability on the finger 
sides. For the upper side, V is directed from fluid 2 to fluid 
1 and the nondimensional instability criterion becomes 

GS(l+& 
IVI<R(l+eR)’ (42) 

while the under side has V directed from fluid 1 to fluid 2 
yielding 

GS(l+& 
IVbq-Gq (43) 

for instability. In this case, the magnitude of both VI and 
V, are greater than the critical velocity 

GS(l+& 
v,,,=.(,,$)=0.0588, (44) 

so the upper side is stable while the under side is unstable. 
The first instability that we see in Fig. 12 develops at the 

FIG. 11. Streamfunction contours corresponding to the last time frame in 
Fig. 10. The reference frame is stationary in the x direction and moving in 
the y direction with the phase speed of the perturbations. 
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FIG. 12. Concentration contours for Pe=500, R=3, S= 1, G= 1, 19=0 
( VI, V,) = ( -4.5,-0.3) showing trailing-lobe detachment and side- 
tinger instability. Two periods in the y direction are displayed. Frames 
correspond to t=4C0, 600, 800, 1OCQ 1100, 1200 ,..., 1600. 

root of the finger. In frame 4, a lip forms and goes unstable 
in response to the velocity VI = -4.5, forming a trailing 
lobe. Fluid 1 fingers through this part of the interface with 
relatively small wavelength (frame 5) since the displacing 
velocity, V,, is comparatively large. The fingering quickly 
breaks through both fronts (frame 6), leaving blobs of the 
more viscous fluid to diffise into the surrounding fluid 1. 
We refer to this process as trailing-lobe detachment. Notice 
that in frame 6, the gradient of each finger side is approx- 
imately the same, while the region at the root of the under 
side has remained steep. An instability on the under side of 
the finger due to the velocity V,= -0.3 also becomes vis- 
ible (frames 6 and 7). Since V, is small, the growth is slow 
and the wavelength of the perturbation is large. As this 
secondary side-Jnger instability grows, it assists in widen- 
ing the tip of the finger (frame 8) which encourages a 
tip-splitting event (frame 9). As expected, the upper side 
of the finger is stable. In frame 10 we see another lip be- 
ginning to form at the root of the linger, and we expect that 
another trailing-lobe detachment will occur. 

Throughout this simulation, the under side of the back 
of the finger remains a region of steep concentration gra- 
dient. Although the finger emerged with steep gradients all 
along the under side, the back end or root, like the tip, 
must undergo continued stretching to maintain the sharp 
concentration gradients. The root, like the tip, is stretched 
by local cross-flow, but the root is also subject to stretching 
from the tangentially shearing base flow. To illustrate, 
base-state streamfunction contours corresponding to this 
simulation are shown in Fig. 13 in a stationary frame of 

PIG. 13. Base-state streamfunction contours in a stationary reference 
frame where U= 1 and ( V, , Vs;) = (-4.5, -0.3). Stretching of the inter- 
face due to the base-flow velocity field causes persistent steep gradients at 
the root of the tinger. 

reference. Since the vertical cross section of these stream- 
tubes is constant, a purely vertical section of the interface 
would not be stretched by the base-flow velocity field. For 
example, the unperturbed 1-D vertical interface is not 
stretched and therefore does not steepen. However, a hor- 
izontal section of the interface or one angled diagonally 
(with positive slope), would be stretched as the cross sec- 
tion of the streamtubes taken in this direction widen from 
phase 1 to phase 2. It is this stretching mechanism that is 
primarily responsible for the steep gradients that persist on 
the under side of the root of the finger in Fig. 12. In all 
cases with sufficient tangential shear, steep gradients will 
appear at the back of the lingering interface in the vicinity 
of the base-flow tangential velocity transition. The side that 
steepens depends on the direction and relative magnitudes 
of V, and V, and can be explained by simply considering 
the stretching of the interface by the global velocity field. 

PIG. 14. Concentration contours for Pe=500, R=3, S=O, and no tan- 
gential velocity shear, V, = V,= 0. The horizontal fingering pattern illus- 
trates the shielding, pairing, fading, and coalescence mechanisms. Frames 
correspond to t = 100, 200 ,..., 1100. 
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PIG. 15. Concentration contours for Pe=500, R=3, S=O, and moderate 
tangential shear, 1 Vi - V, I=2.5 ( 1 - ewR). Two periods in they direction 
are displayed. Diagonal fingering results in complicated interfacial folding 
that traps blobs of more viscous fluid in phase 1. Frames correspond to 
t=300,500,600,700,900,1100,1300,1500. 

D. Comparison of long-term interfacial evolution with 
varying tangential shear 

The presence and strength of tangential velocities 
strongly influences the overall evolution of the interface. 
As we demonstrated earlier, the growth and width of the 
emerging fingers are affected and new dynamics are possi- 
ble. We would now like to illustrate how the presence of 
tangential velocities, through the fingering mechanisms de- 
scribed above, affects the long-term development of the 
interface. 

Consider again the set of simulations shown in Fig. 5 
at early times, in which Pe=500, R = 3, and S=O. Figure 
14 shows the long-term evolution of the interface when 
there are no global tangential velocities. This simulation is 
characterized by horizontal fingers that interact through 
the mechanisms of fading (frame 5) and coalescence 
(frame 1 l), as well as shielding and pairing. 

The dynamics of the interface changes dramatically 
when tangential shearing velocities are present. The simu- 
lation corresponding to ( V, , V,) = (2.5,O. 125) is shown in 
Fig. 15. Two periods in the y direction are displayed. In 
frame 1 we see that five fingers per period have developed 
as a result of shielding and spreading. By frame 2, coales- 
cence has assisted in reducing the number of fingers to 
three. As one finger spreads and partially coalesces with 
the dominant finger (frame 5), the smallest finger fades 
(frames 3 and 4). The orientation and steepness of the 
interface near the fading linger, however, results in diago- 
nal fingering due to the displacement velocity 
(U, Vi) = (1,2.5). This fingering not only pushes through 
the remains of the fading finger (frame 5) but also through 
the under side of the dominant finger (frame 6)) trapping 
a pool of fluid 2 in the upstream diagonal lobe. Another 

FIG. 16. Concentration contours for Pe=500, R=3, S=O, and strong 
tangential shear, 1 Vi - V, I=5 ( 1 -e-“) . Two periods in the y direction 
are displayed. Notice the repeated detachment of trailing lobes and the 
development of a secondary side-finger instability. Frames correspond to 
t=500,700,900, UMO, 1100, 1200, 1400, 1600, 1700, 1800. 

coalescing of the front into the horizontal tlngers occurs 
(frame 6), while the diagonal fingering continues to 
progress, producing an interface which is quite compli- 
cated. Meanwhile, a lip at the end of the diagonal lobe is 
created, and a smaller trailing lobe forms and detaches due 

‘to Vi (frames 6-8). The folding of the interface and ad- 
vancement of the diagonal fingers results in another pocket 
of fluid 2 trapped in the upstream diagonal lobe (frame 7). 
The diagonal fingering then splits, with one stream of fluid 
1 replenishing the horizontal finger which has almost 
pinched off (frame S), while the other stream begins to 
break through the diagonal lobe. We assume that this 
stream will then isolate the diagonal lobe in fluid 1, and 
contribute to the growth of the horizontal fingers as the 
tangential velocity transitions from the high velocity V1 to 
the relatively small velocity V,. 

Figure 16 shows the evolution of the interface for 
stronger tangential shearing, ( Vi, V,) = (5.0,0.25). Again, 
two periods in the y direction are displayed. By frame 2, 
shielding and pairing have left two dominant fingers and a 
lip has formed at the root of one. Diagonal fingering di- 
rected at this part of the interface begins to choke (frame 
3) and then replenish (frame 4) the smaller finger. Mean- 
while, a trailing lobe is formed and quickly detaches due to 
the large velocity Vi = 5 (frames 3 and 4). The replenished 
finger coalesces with the other (frames 5 and 6) to form 
one dominant finger that then grows diagonally. The sec- 
ondary side-finger instability sets in on the upper side of 
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PIG. 17. y-averaged concentration proiiles for the simulation shown in 
Fig. 14 (Pe=500, R=3, S=O, V,=V,=O). The profile is typical of 
horizontal tingering patterns. Profiles shown correspond to times t= 100, 
200,400,6M), 800, 1000. 

the finger (frame 7) since this side is viscously unstable to 
the velocity V, which is directed in the f-y direction. As 
we saw before, the side-finger instability leads to a widen- 
ing of the tip which consequently splits (frames 7 and 8). 
As the perturbations on the finger side amplify, the finger 
continues to grow and another tip-splitting event begins 
(frame 10). Meanwhile, the diagonal fingering at the back 
repeatedly replenishes the dominant finger and detaches 
blobs of more viscous fluid at the root. 

In these examples we have demonstrated how the pres- 
ence of global tangential velocities has lead to new charac- 
teristics of the interfacial evolution. In addition to the 
mechanisms of shielding, pairing, fading, coalescence, and 
tip splitting, we now have the possibility for diagonal fin- 
gering, secondary side-finger instability, and trailing-lobe’ 
detachment. These new mechanisms further complicate 
the development of the interface that is often characterized 
by a greater degree of coalescence and interfacial folding, 
and by the repeated detachment and isolation of fluid blobs 
in the other phase. 

E. One-dimensional averages 

We can characterize the fingering in a one-dimensional 
profile by averaging the concentration field in the trans- 
verse direction. Figure 17 shows the y-averaged concentra- 
tion at various times for the simulation shown in Fig. 14. 
Because this simulation is one in which there are no tan- 
gential velocities, the y-averaged profile displays the same 
characteristics typical of horizontal fingering patterns. As 
discussed in Refs. 7, 9, and 11, initially we see small devi- 
ations from the purely diffusive proiile as the interface de- 
stabilizes. As fingering begins, peaks corresponding to the 
fingers are evident in the profile. These localized peaks vary 
as time progresses, reflecting the competitive growth and 
nonlinear interaction of the fingers. At the final time, there 
are two dominant humps on the downstream side of the 

0 I 2 3 4 

FIG. 18. paveraged concentration profiles for the simulation shown in 
Fig. 15[Pe=5OO,R=3,S=O, 1 V,-V~~=2.5(1-e~R)].Interfacialfold- 
ing results in local maxima near the center of the front while the detach- 
ment of trailing lobes is represented by the trough at the back of the 
protile. Profiles shown correspond to times t=2OO, 400,...,14CO. 

interface, corresponding to the two fingers in the last frame 
of Fig. 14. The sharp drops in the prolile on the down- 
stream side of each hump illustrate the fact that there are 
steep gradients at the finger tips. 

In Fig. 18, the y-averaged profiles are displayed for the 
simulation shown in Fig. 15 in which tangential shearing 
velocities are present. At later times, the downstream part 
of the profile shows the single dominant hump character- 
izing the horizontal finger in Fig. 15. As we saw in Fig. 15 
however, diagonal fingering due to nonzero tangential ve- 
locities created an interface in which blobs of more viscous 
fluid became encircled by the less viscous displacing fluid. 
This is reflected in the y-averaged profiles by the local max- 
ima and minima present on the upstream half of the pro- 
file. The local maximum near the center of the front grows 
as time increases, representing the advancement of fluid 1 
(with concentration c= 1) diagonally through the mixing 
zone.while the diagonal downstream lobes, composed of 
low-concentration fluid, fade. We can also see the mark of 
the trailing-lobe detachment, represented by the trough at 
the back of the protile. 

The troughs corresponding to the trailing-lobe detach- 
ment are even more evident in Fig. 19, showing the 
y-averaged profiles corresponding to the strong tangential 
shearing simulation in Fig. 16. Also notice, however, that 
the profile no longer exhibits a single dominant hump, even 
though only one finger is present on the downstream end of 
the simulation flow. Instead, the downstream ridge of the 
y-averaged profile, representing the single finger, shows os- 
cillations. This is a result of the side-finger instability, and 
indicates how the average concentration across the finger 
varies due to the amplifying perturbation on the fmger side. 

A quantity of interest is the measure of the region 
where the two fluids mix. Although the length of the mix- 
ing zone can be defined in a number of ways, we choose to 
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FIG. 19. y-averaged concentration profiles for the simulation shown in 
Fig. 16 [Pe=500, R=3, S=O, 1 V,- V,] =5(1-e-n)]. The side-finger 
instability is evident as oscillations on the downstream ridge of the profile, 
while multiple troughs at the back represent the repeated trailing-lobe 
detachments. Profiles shown correspond to times t=200, 400,...,1800. 

simply compute it from the y-averaged concentration pro- 
file. Specifically, we take 

A?tix=~x(c=0.975)-x(c=0.025)~. (45) 
The mixing length for a stable front has a tl” dependence 
since 

1 
‘d&t) =lj erfc (46) 

As Zimmerman and Homsy” point out, the mixing length 
for an unstable front may also behave initially as t*‘2 even 
when fingering is visible, provided the initial perturbation 
is small. As the fingering takes hold and progresses, the 
mixing length increases linearly with time and grows at a 
nearly constant rate. Zimmerman and Homsy’ also found 
that, at high P&let number, the rate of growth of the mix- 
ing zone is independent of the P&let number. For a vis- 
cosity contrast corresponding to R = 3, they found this as- 
ymptotic mixing rate to be approximately 1.5. In a later 
investigation, Zimmerman and Homsy” quantified the in- 
tuitive result that well-developed fingers grow more 
quickly when the viscosity contrast increases by demon- 
strating that the mixing rate increases monotonically with 
R. For the flow we are considering, the effect of density 
contrast, angle of inclination, and tangential velocities on 
the mixing rate is also of interest. We first focus on the 
effect of tangential shearing velocities. Figure 20 shows 
mixing lengths for a variety of simulations as a function of 
time. Each of the simulations represented corresponds to 
either S=O or 8=0 to isolate the effect of the tangential 
velocities. For each case, R =3 and Pe== 500 but the tan- 
gential shear strength varies. In cases where the tangential 
shear is strong, the dispersive behavior continues for longer 
times since the growth of fingers is slowed due to the in- 
creased stabilization of the flow. In some cases, competi- 
tion between fingers results in multiple fading events and 

FIG. 20. Mixing lengths vs time for a variety of simulations correspond- 
ing to R=3 and Pe=500. (Solid curve) S=O, 1 V,- V,l =O. (Dot-dot) 
S=O, 1 V,- V,l =2.375. (Dot-dash) S=O, 1 V,-V,[ =4.75. (Dot-dot- 
dash) 0=0, 1 VI- V,l=4.2, (S=l, G= 1). (Dot-dot-dot-dash) 6=0, 
1 VI-V,l =1.45, (S=4, G=l). (Dash-dash) 0=0, 1 VI-V,l =O.l, (S 
= - 1, G= 1.5). Despite the variation in tangential shear strength, the 
same asymptotic mixing rate, 1.5, is achieved. 

the growth of the mixing zone is temporarily slowed some-. 
what. However, the mixing’length eventually increases at a 
nearly constant rate. Despite the variation in tangential 
shear strength and the new fingering dynamics that are 
introduced, the same rate of growth is achieved. This as- 
ymptotic mixing rate is approximately 1.5, in agreement 
with the rate found by Zimmerman and Homsy for R = 3 
when there are no global tangential velocities. 

To study the influence of buoyancy on the asymptotic 
mixing rate, we consider a horizontal interface with gravity 
directed from fluid 1 to fluid 2 (8=7r/2), and consider the 
no-shear case Vi = V2 = 0. Taking G= 1, the instability cri- 
terion formulated in Ref. 1 and given in Eq. (32) reduces 
to 

&s$-+>o. (47) 

This flow becomes more stable as S=ln( p/pi ) increases 
and is neutrally stable for S= R. In Table I the asymptotic 
mixing rates for a series of simulations with various buoy- 
ancy conditions are cataloged. The increased stability of 

TABLE I. Asymptotic mixing rates for various buoyancy conditions. The 
flow becomes more stable as S increases and the growth of the mixing 
zone is slowed. Pe=SCO, R=3, G=l, 6=lr/2, VI= V,=O. 

Mixing rate, 

s $Wmi.) 
0.0 1.50 
1.5 1.16 
2.0 0.76 
2.5 0.50 
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the flow due to stable density stratification, like that due to 
the tangential shearing velocities, slows the emergence of 
fingers. However, Table I shows that unlike the tangential 
shear case increased stabilization by buoyancy effects does 
lower the asymptotic mixing rate. 

In summary, the new mechanisms that arise from the 
presence of tangential velocities alter the cartoon of the 
average fingering profile but do not affect the asymptotic 
mixing rate. Although the efficiency of the displacement 
cannot be improved by tangential shear, increasing the sta- 
bility of the interface by favorable density stratification 
does reduce the rate of growth of the mixing zone. 

F. Nonexponential density-concentration 
relationships 

In the results we have presented so far, we have as- 
sumed the viscosity and density relations, 

p(c) =&--cl, p(c) =ap-c). (48) 
In an effort to isolate the effect of tangential velocities, we 
have often considered the constant-density case (S=O) in 
our simulations of the nonlinear dynamics. Nonetheless, 
the functional relationships of the viscosity and density 
with respect to the concentration are of fundamental im- 
portance to both the stability and dynamics of the interfa- 
cial evolution. Our purpose here will be to illustrate the 
differences in the evolution of interface when the functional 
dependence of concentration on density is varied. We still 
take the viscosity to be exponentially varying 

p(c) =8(*-c’, (49) 
but consider four density relations, 

p,(c) =es(‘-), (50) 

pz(c) = (es- 1) ( 1 -c) + 1, (51) 

p,,(c)=(~-1)(1-c)“+1, (52) 

p,(c)=(~--P--l)(l-c)“+P(1-c>+l. (53) 

The coefficients for the exponential, pe, linear, pr, and 
algebraic, pa1 and pa,, relations have been selected so that 
in all four cases, 

p1=p(c=l)=l, (54) 

p2=p(c=O) =8, (55) 
keeping the densities of the two tluids constant as we vary 
the density in the mixed region. 

For simplicity, consider the case of a horizontal inter- 
face, with 8=?r/2, so the flow is gravitationally stable 
when p1 <p2. When the density varies exponentially, 
p = pe , this flow is unstable when 

(I+8) 
R-GsQTPj’o ($6) 

or 

R>S for G=l. (57) 

01 0 I 
02 0.4 0.6 0.8 1 

FIG. 21. Exponentially varying viscosity and four density relations as a 
function of concentration for R=3 and S=2.5. Exponential viscosity, 
p(c) =8”-” (solid curve), exponential density, p,(c) =.81-C) (dot- 
dot), linear density, PI(C) = (es- 1) (1 -c) + 1 (dot-dash), algebraic 
density case 1, p.,(c) = (8 - 1) ( 1 - c) u + 1 (dot-dot-dash), algebraic 
density case5 p,(c) = (8 - 6)(1 - c)” + 5(1 - c) + 1 (dot-dot- 
dot-dash). 

We consider the case R=3, S=2.5 (with G=l, 8=?r/2, 
Pe=500), and focus on the effect of the density distribu- 
tion by considering only the zero tangential velocity case. 
The viscosity and four density relations for R =3 and 
S=2.5 are plotted in Fig. 21 as a function of the concen- 
tration. In the algebraic cases, we have taken a= 12 and 
p= 5. As we can see from Eq. (20), it is the variation of the 
density, dp/dc, in comparison with that of the viscosity, 
dp/dc, that dictates the stability and dynamics of the flow. 
The magnitude of these functions is plotted in Fig. 22. In 

FIG. 22. 1 d,/dcl and I +/&I versus concentration for R=3 and 
S=2.5. Exponential viscosity, p(c) =8(‘-‘) (solid curve), exponential 
density, p,(c) =di(‘-c) (dot-dot), linear density, 
pi(c)= (es-- 1)(1-c) +l (dot-dash), algebraic density case 1, p,,(c) 
= (e’s - 1) (1 - c)” + 1 (dot-dot-dash), algebraic density case 2, 
p,(c) = (es- 6)(1 -c)l’+ 5(1 -c) + 1 (dot-dot-dot-dash). 
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FIG. 23. Concentration contours for exponential density relation, 
p(c)=p,(c), for which the flow is globally unstable. Pe=5CO, R=3, 
S=2.5, G=l, &7-r/2, I’,= V,=O. Frames correspond to t=200, 
400,...,1600. 

this configuration and with an exponential density relation, 
the flow is neutrally stable for R=S, so that Idp/dc 1 
= 1 d,u/dc) . When S is less than R, as in Fig. 22, and the 
density relation is exponential, then I dp/dc I < 1 dp/dc I 
for all values of c. Since the instability criterion is satisfied 
throughout the mixed region, we refer to this flow as glo- 
bally unstable. However, when the density varies linearly 
with the concentration, I dp/dc I < I dp/dc I for only some 
values of c, O<c CO.56 in this case. This flow is locally 
unstable since density effects tend to stabilize the flow at 
high concentration levels. In Figs. 23 and 24 concentration 
contours for the evolution of the interface are shown for 
the exponential and linear density relations, respectively. 
The interfacial evolution corresponding to the exponential 
case, p(c) = p,( c) , exhibits characteristics typical of the 
horizontal fingering we have seen before when there are no 
tangential velocities. Perturbations at the interface amplify 
at all concentration levels and macroscopic fingers emerge. 
A dominant iinger develops, with steep concentration gra- 
dient at the tip. As this finger grows, it spreads at the tip, 
shielding adjacent fingers. In contrast, Fig. 24 correspond- 
ing to the linear case, p(c) = pr( c) , shows quite a different 
scenario. Since this flow is only locally unstable for low 
concentration levels, or mixtures composed mostly of fluid 
2, the growth of perturbations is localized to the down- 
stream half of the interface. The upstream side, which is 
linearly stable, maintains a nearly one-dimensional profile 
even as macroscopic fingers emerge. At later times, the 
linearly stable region is perturbed by strong nonlinear ef- 
fects due to the presence of well-developed fingering. The 
stability of the upstream half of the interface can be further 
illustrated by calculating the upstream and downstream 
mixing lengths. We define these mixing lengths as 

PIG. 24. Concentration contours for linear density relation, p(c) = p,(c), 
for which the flow is locally stable on the upstream half of the interface. 
Pe=5CO, R=3, S~2.5, G= 1,0=7r/2, Vi= V,=O. Frames correspond to 
t=200, 400 ,..., 1600. 

~~i,=IX(C=0.975)-x11, (58) 

Y&= IX,-X(C=O*O25) 1) (59) 

where x1 is the initial location of the center of the front. As 
can be seen in Fig. 25, the upstream mixing length Y& 
follows the base-flow behavior of 2 (2t) “‘. The presence of 
this locally stable region also affects the fingering in the 
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FIG. 25. Mixing lengths for simulation shown in Fig. 24 with linear 
density relation, p(c) =pl(c). Base-state behavior 2(2t)‘” (solid curve), 
.5P,,=LT~i,+Y8,ir (dot-dot), downstream component Y”,, (dot- 
dash), upstream component YiiX (dot-dot-dash). 
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PIG. 26. Concentration contours for the tlrst algebraic density relation, FIG. 28. Mixing lengths for simulation shown in Fig. 23 with exponential 
p(c) = pO, (c), for which the flow is locally stable in a small region on the density relation, p(c) =p,(c). Base-state behavior 2(2t)t’* (solid curve), 
downstream edge of the interface. Pe=500, R=3, S=2.5, G= 1,19=?r/2, A’mix=9&x+-Y& (dot-dot), downstream component A?@“,, (dot- 
V, = VI-O. Frames correspond to t=200, 400 ,..., 1600. dash), upstream component A@,& (dot-dot-dash). 

unstable region. The stable region acts to prevent the pen- 
etration of fluid 1, resulting in fingers that are more diffuse 
and grow slower. These more diffuse fingers have a weaker 
associated cross-flow, so the dominant linger in Fig. 24 
does not spread as readily, and shielding of adjacent fingers 
is inhibited. Weakened by the stable region upstream, the 
extent of finger interactions is reduced and the overall ev- 
olution of the interface is simplified. 

The development of the interface when the density var- 
ies algebraically with the concentration is shown in Fig. 26 
for the first algebraic case, p(c) = pa,(c). Figure 22 shows 
that in this case ) dp/dc I < I dp/dc I except for values of c 
near zero, representing mixtures composed mostly of tluid 
2. Because the range of c for which the flow is linearly 
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FIG. 27. Mixing lengths for simulation shown in Fig. 26 with algebraic 
density relation, p(c) = p,,(c). Base-state behavior 2(2t) I/z (solid 
curve), Y~ix=Y&+L?& (dot-dot), downstream component y;;lix 
(dot-dash), upstream component 2,$x (dot-dot-dash). 
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stable is relatively small, we do not readily see a stable 
region in the nonlinear simulation shown in Fig. 26. How- 
ever, the evolution of the interface still differs from what 
we would expect when the instability is global. Because the 
difference between I dp/dcI and I dp/dcI in the unstable 
region is greater in this case than in the exponentially de- 
pendent case (Fig. 21), the interface destabilizes more 
quickly and more flngers emerge. If the interface were glo- 
bally unstable we would expect the fingers in frame 3 that 
have edged out in front to grow explosively and quickly 
shield the neighboring lingers. Instead, the modest barrier 
created by the stable region downstream inhibits the 
growth of the fingers. Fluid 1 does flow preferentially 
through one of the fingers, steepening the concentration 
gradient, but the selected finger is discouraged from ad- 
vancing rapidly ahead of its neighboring fingers. This effect 
can be seen in the mixing lengths, L?&;i, and L?,, plotted 
in Fig. 27. The fact that the downstream mixing length 
L?,, is reduced to that of L?‘,& for this case, should be 
contrasted with the behavior of the globally unstable expo- 
nential case, shown in Fig. 28, where the rapid growth of 
the flngers into the second phase is reflected in a larger rate 
of expansion of the downstream mixing zone. (We note 
that the combined mixing length, -4fmix, for these simula- 
tions does not grow at the rate 1.5 even though R =3 siwe 
gravitational forces increase the stability of the flow.) In 
more extreme cases, with a larger downstream region of 
stability, we might expect the fingering into fluid 2 to be 
severely limited, with the opposite effect of that shown in 
Fig. 24. 

The last case we consider is that of the second algebra- 
ically varying density relation, p(c) = pa,(c) . As Fig. 22 
shows, in this case I dp/dc I < I d,u/dc I foran intermediate 
range of concentration levels so that the flow is locally 
stable in two small regions on the upstream and down- 
stream edges of the interface. As with the first algebraic 
case, these small regions of stability are not evident in the 
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PIG. 29. Concentration contours for the second algebraic density rela- 
tion, p(c) = p,(c), for which the flow is locally stable in two small 
regions on the upstream and downstream edges of the interface. Pe= 500, 
R=J, S=2.5, G=l, &IT/~, V,= V,=O. Frames correspond to t=200, 
400,...,1600. 

nonlinear simulation shown in Fig. 29. In comparing this 
simulation with that for the first algebraic case (Fig. 26), 
we see that the early evolution is somewhat similar but the 
“back fingering” seen in Fig. 26 is inhibited in this case by 
the locally stable region upstream. Fingering is discour- 
aged both upstream and downstream by the locally stable 
regions. The corresponding mixing lengths in Fig. 30 show 
-(ipzx > --cz*;i, as both downstream and upstream mixing 
lengths are reduced. Overall, the algebraic cases illustrate 
that even small regions of localized stability can signifi- 
cantly alter the evolution of the interface. In both cases, 
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FIG. 30. Mixing lengths for simulation shown in Fig. 29 with algebraic 
density relation, p(c) = p,(c). Base-state behavior 2(2t)“2 (solid 
curve), -EBmix= Y&+-T&u (dot-dot), downstream component .4p,$ 
(dot-dash), upstream component ~~~~ (dot-dot-dash). 

lingers are discouraged from advancing quickly into the 
second phase, so the shielding mechanism does not take 
place as easily. The shielding mechanism plays a funda- 
mental role in finger interactions so there is less interplay 
in Figs. 26 and 29 than we would expect when the flow is 
globally unstable. Once a preferred finger is selected, the 
primary mechanism by which the number of lingers is re- 
duced in these locally unstable cases is diffusion. 

In these few examples, we have illustrated how the 
nature of the interfacial evolution can be altered by varying 
the density-concentration relation. Both the degree of in- 
stability and the region of instability can change, resulting 
in a variation in the number of fingers that emerge, the 
mechanisms by which they develop, and the level of finger 
competition. Given the results presented here, it is clear 
that further investigation would be of interest to study the 
interfacial dynamics for nonmonotonic density relations as 
well as nonexponential viscosity relations. Studies of non- 
monotonic viscosity profiles for the neutrally buoyant case 
have recently produced some very interesting results.17 

IV. CONCLUSION 

Our results indicate that the nonlinear evolution of the 
interface possesses new characteristics when global tangen- 
tial velocities are present. Tangential shearing not only al- 
ters the wavelength and growth of the emerging fingers, as 
predicted by the linear stability analysis, but also affects the 
shape and concentration distribution of the fingers. In ad- 
dition to the linger mechanisms of shielding, pairing, fad-- 
ing, coalescence, and tip splitting, we have identified the 
new mechanisms of diagonal fingering, trailing-lobe de- 
tachment, and secondary side-finger instability. The dy- 
namics resulting from these new mechanisms often lead to 
a more complicated interfacial evolution than previously 
reported. On the other hand, we find that the asymptotic 
mixing rate does not vary with tangential shear strength, 
although initially the mixing zone spreads more slowly as 
the strength of the tangential shear increases. The mixing 
rate can be reduced, thereby increasing the efficiency of the 
displacement, by increasing the stability of the flow 
through buoyancy effects. 

We have also performed a preliminary study that illus- 
trates how the dynamics of the interface is sensitive to the 
density-concentration relation, particularly when the re- 
gion of instability is localized. In the cases we have con- 
sidered, the degree of finger interaction is reduced when 
the flow is only locally unstable, simplifying the overall 
evolution of the interface. However, we feel that other 
combinations of density and viscosity relations should be 
studied to further explore the influence of these relations 
on the stability and dynamics of the flow. We hope that the 
results we have presented on the influence of gravity and 
tangential velocities will encourage experimental work and 
enable the verification of our conclusions. We also hope 
that these effects will be included with those arising from 
permeability heterogeneity and anisotropic dispersion in 
future research efforts. 
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