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The interface region between two fluids of different densities and viscosities in a porous medium 
in which gravity is directed at various angles to the interface is analyzed. Under these conditions, 
base states exist that involve both tangential and normal velocity components. These base states 
support traveling waves. In the presence of a normal displacement velocity, the amplitude of 
these waves grows according to the viscous fingering instability. For the immiscible case, it can 
easily be shown that the growth rate is not affected by the tangential velocities, while surface 
tension results in the usual stabilization. For the case of two miscible fluids, the stability of the 
base states using the quasi-steady-state approximation is investigated. The resulting equations 
are solved analytically for time t=O and a criterion for instability is formulated. The stability of 
the flow for times t > 0 is investigated numerically using a spectral collocation method. It is 
found that the interaction of pressure forces and viscous forces is modified by tangential shear 
as compared to the classical problem, resulting in a stabilizing effect of the tangential shear. The 
key to understanding the physical mechanism behind this stabilization lies in the vorticity 
equation. While the classical problem gives rise to a dipole structure of the vorticity field, 
tangential shear leads to a quadrupole structure of the perturbation vorticity field, which is less 
unstable. This quadrupole structure is due to the finite thickness of the tangential base state 
velocity profile, i.e., the finite thickness of the dispersively spreading front, and hence cannot 
emerge on the sharp front maintained in immiscible displacements. 

I. lNTFlODUCTlON 

Two-phase displacements in porous media or, by anal- 
ogy, in HeleShaw cells, have long enjoyed the attention of 
researchers interested in applications such as enhanced oil 
recovery. More recently, attempts to gain an improved un- 
derstanding of these flows have given rise to challenging 
theoretical and computational problems, which has led to 
their study from a more fundamental point of view. A 
comprehensive review of progress in the field is provided 
by Homsy.’ For the basic stability problem of a plane in- 
terface displaced by flow normal to it, Saffman and 
Taylor,2 as well as Chuoke et aL,3 provided quantitative 
results concerning the growth rate and the stabilizing in- 
fluence of surface tension. Tan and Homsy4 performed the 
stability analysis for two miscible, neutrally buoyant fluids 
subject to a normal displacement velocity. The analysis of 
Yortsos and Zeybek’ investigated the role of velocity- 
dependent dispersion on the stability of small-wavelength 
perturbations. More recently, Bacri et aL6 conducted 
three-dimensional (3-D) experiments, comparing the data 
to their stability analysis, which included both gravity and 
nonlinear dispersion, as well as to other numerical investi- 
gations of viscous fingering. Also, Zeybek and Yortsos7’* 
discussed the parallel flow of two immiscible fluids in a 
Hele-Shaw cell. As they point out, parallel flow develops 
in thin oil reservoirs, in relative permeability measure- 
ments, and in countercurrent imbibition. Zeybek and Yort- 
SOS conducted experiments in which the plane of the Hele- 
Shaw apparatus is oriented perpendicularly to the direction 

of gravity. They observed traveling waves of apparently 
solitary nature along the interface, which was confirmed by 
weakly nonlinear asymptotic theory. Their investigation 
raises the question as to which flow configurations give rise 
to traveling wave solutions, and what the stability charao 
teristics of such solutions are. The present study intends to 
answer this question by extending previous stability anal- 
yses and allowing for global velocities not only in the di- 
rection normal to the interface, but also parallel to it. In 
Sec. II we present the equations, base-state solution, and 
stability analysis in which both surface tension and diffu- 
sion are neglected. In Sec. III we demonstrate how these 
results are extended to include the effect of surface tension 
for two immiscible fluids. In Sec. IV we focus on two-phase 
miscible displacement, formulating the linear stability 
problem, solving it analytically at t=O, and establishing a 
criterion for instability. The solution to the stability prob- 
lem is found numerically for t > 0. In Sec. V we discuss the 
numerical method used to solve the stability problem for 
t > 0, present the results obtained, and compare these re- 
sults with those for the immiscible cases. Finally, we sum- 
marize our conclusions in Sec. VI. 

Il. TWO-PHASE DISPLACEMENT WITHOUT SURFACE 
TENSION OR DIFFUSION 

We consider the two-dimensional configuration of a 
porous medium of constant permeability containing two 
fluids separated by a sharp interface (Fig. 1). The fluids 
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FIG. 1. Flow configuration. The interface is aligned along they axis. Here 
U is a global displacement velocity normal to the interface in the x di- 
rection, while V, and V, are velocities tangential to the interface. The 
angle between the interface and gravity is denoted by 0. 

move with velocities u1 and u2, respectively, in an incom- 
pressible fashion, so that the continuity equation reads as 

v-ui=o, (1) 

for i=1,2. Pressure, viscous, and gravitational forces obey 
Darcy’s law, 

VPi’ -Pi”i+ PS, (2) 

where p denotes the dynamic viscosity divided by the per- 
meability. The fluid phases have respective densities p1 and 
p2, p denotes the pressure, and g is the gravitational accel- 
eration. At the interface, the fluids’ motion obeys the fa- 
miliar conditions of equal normal velocities and pressures. 
Our goal then is to determine under which conditions the 
system described above allows for the the existence of base 
states involving straight interfaces, and to describe the sta- 
bility characteristics of these base states. 

A. Base state 

We introduce a coordinate system whose y axis points 
along the interface, while the x axis has a direction normal 
to it (Fig. 1). Here U represents a global displacement 
velocity normal to the interface, while Vi and V2 denote 
the respective fluid velocity components tangential to the 
interface. If 8 is the angle between the interface and the 
direction of gravity as depicted in Fig. 1, Darcy’s law be- 
comes 

Ui=-+.V[pi+p~(-X sinB+yCOS8)]==V~i, (3) 
I 

where c$/ denotes the respective velocity potentials in the 
two fluid phases. The kinematic boundary condition of 
equal normal velocities at x=0 now yields 

(4) 

while the equal pressure constraint at x=0 results in 

~l~l+Pl~Y~~~~=ru2~2+P28y~~~~. (5) 

It is now straightforward to see that 

$l(X,Y) = ux+ VlY, Cf.51 

MX,Y > = ux + v2Y1 (7) 

satisfy the above equations and boundary conditions, pro- 
vided that 

v,& v1-gcosec)2-pI, 
P2 P2 

(8) 

Hence we recognize that for any combination of fluid den- 
sities and viscosities, and for arbitrary angles of inclination 
8, there exists a V, for every Vr, such that the resulting 
flow represents an exact solution to the governing equa- 
tions. Equation (8) merely states that the combination of 
Vr and V2 has to be such that along the interface, pressure 
gradients due to viscous forces exactly balance those due to 
gravity. Furthermore, we notice that V, and V2 are not 
affected by U, so that a valid combination of Vr and V2 
satisfies the governing equations, regardless of the overall 
displacement velocity U. We now proceed to investigate 
the stability characteristics of the above base state. 

5. Stability analysis 

If we introduce a small perturbation resulting in the 
interfacial position 

x=x’(y), (9) 

the velocity potential can be written as 

$i=$p+$j 3 (10) 

where the superscript, 0, refers to the base state derived 
above, and ’ denotes the perturbation potential. The con- 
tinuity equation ( 1) immediately yields 

V2f$[ =o, (11) 

and the condition of decaying perturbations far away from 
the interface gives 

V$i -02 as x+-~0, (12) 

V&-O, as x-++co. (13) 

We use the method of normal modes and assume 

x’ (y) =aeiky+ut2 ( 14) 

$i(X,y) =J1(x)eiky+Bt, (15) 

&(x,y) =$2(x)eiky+c’. (16) 

The boundary conditions at infinity then require 

J1 (x) =Aek”, (17) 

J2(x) = Bemkx. (18) 

The linearized boundary conditions at the interface for the 
normal velocity, 
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a# 
ax I.& 

=a"l+ y.* 
at t aY ' 

and the pressure, 

(19) 

=-P2EUX’+&(X==OY)] +pgx’ sin 8, 

then result in the growth rate, 

(20) 

0= 
kU(tL2--~1)+k(pl--pz)gsin 8 -i k( VIP1 + V?P2) 

m+1-12 Pl t/J2 Pls.ru2 * 
(21) 

Notice that the real part of the growth rate for 8=~/2 
corresponds to the result obtained for a horizontal inter- 
face subject to a normal displacement velocity U only, as 
stated by Saffman and Taylor.2 However, we now have an 
additional, imaginary component of the growth rate, indi- 
cating the existence of traveling waves. Their phase veloc- 
ity is a viscosity-weighted average of the tangential velocity 
components of the two fluids, so that the waves tend to 
travel with the more viscous phase. In particular, when 
pl=p2, the waves travel with the average velocity of the 
the two fluids, and when Vi = Y2, the waves travel with the 
same velocity as the fluids. Furthermore, we recognize that 
a vertical interface satisfying (8) without a normal dis- 
placement velocity is neutrally stable for all combinations 
of viscosities and densities, and allows for neutrally stable 
traveling waves. 

III. IMMISCIBLE DISPLACEMENT: THE EFFECT OF 
SURFACE TENSION 

If the interface between the two fluids gives rise to the 
surface tension y, the boundary condition for the pressure 
(20) has to be modified. For small perturbations, the ra- 
dius of curvature of the interface becomes inversely pro- 
portional to a2x/8y2, and the accompanying pressure jump 
across the interface leads to 

2 

= -p2[ Ux’+&(x=O,y)] +pgp sin e-ye dy2 * 
(22) 

Consequently, the growth rate becomes 

CT= 
kU(~,-~l)+k(pl--p2)gsin 0 yk3 -- 

Pl-l-P2 l-h+luz Pl+P2 

-i k( vim+ vsz) 
i4+ru2 - 

(23) 

We find that surface tension stabilizes the traveling waves 
in the same way as for the classical nontraveling waves. 
The phase velocity of the waves remains unaffected. 

A question of obvious interest concerns the evolution 
of the traveling waves if a normal displacement velocity 
causes their amplitudes to grow into the nonlinear regime. 
Along these lines, a numerical investigation employing La- 
grangian boundary integral techniques9 is currently under- 

way. Brener et aLlo have considered the selection of 
Saffman-Taylor fingers in the presence of gravity when the 
Hele-Shaw cell is rotated about the normal-flow direction, 
introducing constant tangential velocities. 

IV. MISCIBLE DISPLACEMENT: THE EFFECT OF 
DIFFUSION 

If the two phases are miscible; diffusion between the 
fluids represents an important physical mechanism in the 
evolution of instability waves. As Tan and Homsy4 show in 
their stability analysis of rectilinear miscible displacements 
without the effect of gravity, it is diffusion that prevents the 
unbounded increase of the growth rate with the wave num- 
ber by damping short waves. These authors employ a 
quasi-steady-state approximation (QSSA), i.e., they calcu- 
late the instability growth rates under the assumption that 
the time scale for the growth of instability waves is much 
shorter than the one governing the base flow. Their quan- 
titative results are in good agreement with initial-value cal- 
culations and predict the spacing of experimentally ob- 
served viscous fingers reasonably well, thus lending 
support to the validity of the QSSA. Consequently, we will 
in the following employ the QSSA to investigate the sta- 
bility of miscible displacement processes involving inclined 
interfaces. After presenting the governing equations and 
scaling them in the appropriate fashion, we will formulate 
the stability problem on the basis of the QSSA. Subse- 
quently, we will solve the stability problem analytically at 
t=O. In Sec. V we discuss numerical results to the stability 
problem for t > 0. 

A. Governing equations and base state 

We assume incompressible flow in a homogeneous me- 
dium of constant permeability, as sketched in Fig. 1. In a 
reference frame moving in the x direction with average 
displacement velocity U, the equations governing the mo- 
tion of two fluids subject to a constant diffusion coefficient 
D are 

v*u=o, (24) 

VP= -pu(u- ue,) +pg, (25) 

The above equations express the conservation of mass, mo- 
mentum (Darcy’s law) and species, with c denoting the 
concentration of fluid 2. Both p and p are assumed to be 
known functions of c, 

p=pFL(c), p=p(c>. (27) 

Following Tan and Homsy, we introduce the velocity, 
length, and time scales U, D/U, and D/U2. Furthermore, 
by scaling viscosity, density, and pressure by ,ul, pl, and 
pl D, respectively, we obtain the set of dimensionless equa- 
tions, 

(28) 
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$--p(ufl)+Gpsin8, (29) 

ac ac ac a2c a2c 
at+" z+v &j's+@, (31) 

where 

(32) 

is a dimensionless parameter describing the relative impor- 
tance of gravitational and viscous effects. This system of 
equations admits the base-state solution, 

uo(x,t) =a (33) 

vo(W> = -; [v(t) +Gpo(x,t)cos 01, (34) 

x PO(W) = s [ -~o(Cst> +Gpo(L&h W&G-+yq(t), 
(35) 

co(x,t) =- 1 [ l+eq$)]~ _ (36) 

Po=clo(co) =po(x,tL (37) 

po=po(~o) =poW), (38) 

where v(t) is an arbitrary function of time only. The ex- 
istence of 77(t) reflects the fact that there are infinitely 
many velocity profiles vo(x,t) resulting in base state solu- 
tions, a fact that lirst became obvious in Sec. II, where we 
found infmitely many combinations of Vl and V,. The 
actual vo(x,t) selected is determined by the imposed pres- 
sure gradient at infinity. Notice, also, that the base flow 
velocity profile v,(x,t) depends on the viscosity- 
concentration and the density-concentration relationships, 
which are, as yet, unspecified. 

B. Stability analysis 

We now introduce small perturbation quantities, de- 
noted by primed variables, into the flow field. After sub- 
tracting the base flow and linearizing, we obtain a set of 
equations governing the evolution of these small perturba- 
tions, 

ad ad 
z+ay=Q 

w ax= -pL’-~out + Gp’ sin 8, 

apt -&== -p’u()-poll’ - Gp’ cos 8, 

ad ace ad a2d a2d 
Jpu'~+voay=&T+dy2' 

(39) 

(4.0) 

(41) 

(42) 

4 p’ =z c’, dP p’=-& c’. (43) 

By eliminating p’ and u’ from the above equations and 
expanding the perturbations into Fourier modes with wave 
number k in the y direction, 

(u’,c’) (x,y,t) = (Q,‘u) (x,t)eiku, (44) 

we obtain two coupled partial differential equations for Q, 
and Y, 

i 

a2 1 ape a 
Q+,,zax-k2 @ ) 

+G-!-$ (ikcos 82)]*, 

a a2 
z-g+k2+ikvo ace Y=--5 a. 

(45) 

(46) 

We now employ the QSSA, thereby following Tan and 
Homsy,4 who also give a brief discussion of the validity of 
this approach. In essence, the QSSA treats the base flow as 
time independent, i.e., as being frozen at time to. We then 
assume that perturbations grow or decay exponentially at a 
quasisteady rate, 

(@,W C-W = (4,+> (x,tO>e”(to’t, (47) 

where 4, 4, and (T are complex valued. The real part of the 
eigenvalue, cr,., is the growth rate of the perturbations while 
-oi/k is the phase speed of the traveling waves. 

Equations (45 ) and (46) are then reduced to ordinary 
differential equations, yielding the eigensystem 

D+?! D-k2 
PO dx 

tGLdP(-k2sinf3+ikcos8D) 
PO dc 

+Gi$ (ikcosB$)]$, (48) 

(#-~-k2-ikvo)$=~ rj, (49) 

where D=d/dx. The boundary conditions that u’ and c’ 
vanish at infinity become 

(b,JI-0, as x--*&co. (50) 

We are interested in determining the eigenvalue rela- 
tion a(k) for various base state profiles in order to analyze 
the stability characteristics of the flow. 

A. Rogerson and E. Meiburg 1347 1347 Phys. Fluids A, Vol. 5, No. 6, June 1993 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



C. Viscosity and density relationships 

To solve Eqs. (48) and (49), we have to know the 
functional dependence of viscosity and density on the con- 
centration. These relationships will strongly influence the 
dynamics of the flow. In particular, when these functional 
forms are different, one can obtain situations in which den- 
sity effects and viscosity effects dominate in different parts 
of the mixed region, thereby introducing different scales 
into the problem. For example, it appears possible to ob- 
tain a local region unstable to the viscous fingering mech- 
anism embedded in a flow field globally stabilized by den- 
sity effects. 

Here we assume the simple relationships, 

y(c) =eRc, p(c) =e’“. 

Equations (48) and (49) then become 
(51) 

d+R$D-k2 

co sin 0) +ikGS(S-R)eCSFR’“o 

Xcos B$?+ik(RvO+GSe(S-R)cocos 0)D tj, (52) 
1 

(d-cr-k2-ikv,)$=z 4, (53) 

where the base state profiles co and u. are given by 

co(x,to)=~ [ l+erfc(&)], (54) 

vo(x,to) = -e -Rcq7jQ)) +Gcos ePq, (55) 
and 4 and tC, are subject to the boundary conditions, 

w-0, as X*&W. (56) 
Notice that m(k) depends parametrically on R, S, G, 8, 

co(x,to), and vo(x,to). The analytical solution to this sys- 
tem at time t=O is presented next. For times t > 0, a nu- 
merical solution is required. In the following section we 
discuss our approach to the numerical solution of Eqs. 
(52) and (53) for t > 0 and the results we obtain from this 
investigation. 

D. Solution at f=O 

For the solution to Eqs. (52) and (53) at time t=O, 
we follow the procedure used by Tan and Homsy.4 At t=O, 
the concentration and v-velocity base-state profiles are 

0, x-co, 
co= 1, x>o, I 

(57) 

VI, x<o, 
u”= v,, x>o, I 

(58) 

so that dco/dx=S(x). Away from x=0, Eqs. (52) and 
( 53 ) become 
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i#-#)c$-= [k’(R-GSsin 6~) 

+ik(RV1+GScos e)D]$-, (59) 

( D2-cr-p--ikV,)$-=O, (60) 

for x < 0, and 

(@-k2>~$+=[k~(R-GSe(‘-~) sin 0) 

+ik(RV2+GSe(S-R)cos8)D]~+, 

(p-o-k2-ikV2)$+=0, 

for x > 0. Applying the boundary conditions, 

4$-0, as X-+&M, 

we obtain the solution for x#O, 

7+b+ =zleeM, 

Cps =z2emkr+z3emnx, 

7$-=s1&, 

+-=92ek”+A?3ePx, 

where 

a2=a+k2+ikV2, 

$=o+k2+ikVl, 

and 

z3=h [k2(R-GSeCSPR) sin f3) 

-ika(RV2+GSeCSmR) cos f3)], 

A!=,= (P2Tk2) [k’(R-GSsin f3) 

+ikb’(RVl+GScos e)]. 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

The conditions of continuous perturbation concentration, 
u velocity, and pressure at the interface further require 

91=z1, (72) 

9,=$& [ -R($+~)+GSsinB($+;) 

eR(a-k) 
+ak(a2-k2) 

(k+PeR) 
A2-f3k($-k2) A1 ’ 1 (73) 

22=$9 [ -R($+;)+GSsin B(f+f) 

(keR+a) (8-k) 
-ak(a2-k2) A2+flk($-k2) A1 ’ 1 (74) 

where 

Al=[k2(R-GSsin 8)+ikp(RVl+GScos f3)], (75) 
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AZ= [k2(R-GSecSmR) sin 6) 

-ika(RV2+GSecSdR) cos 13>]. (76) 

Integrating Eq. (53) at time t=O over the interface, 

I O+ (D2-a-P--ikvo,+ dx= O’ 6(x)(8 dx, (77) 
0: s 0- 

yields a relation for a, 

k f(d = (a+P) +m [ -R($+;) +GS 

eRA2 Al 
+ak(a+k)+flk(fi+k) =” I 

(78) 

where 

a’=a+k2+ikVz, (79) 

P2=a+k2+ikV1, (80) 

Al=[k2(R-GSsin8)+ikD(RV1+GScos8)], (81) 

AZ= [k’(R-GSeCSmR) sin 0) 

-ika(R V2+ GSeCSmR) cos 0) 1. (82) 

We can solve Eq. (78) for o(k) analytically when 
V, = Vz. -4ccording to Eq. (55)) VI and V, are given by 

VI==--((r+Gcos8), (83) 

V.=--e -R(q+Gcos tk?), (84) 

yielding 

Vl=Vz=-Gcos8 
(l-3 
(1-eR) ’ (85) 

when q=Gcos f3(eR-eS)/(l-eR). Then 

f(a) =2a-T+ a(zk) +i&=op (f-w 

where 

LR-GS sin 0 
(l+2> 
(l+eR’> ’ 

(l-9 Q=G(S--R)cos 0 c~+~R>, (88) 

resulting in 

a(k) =p [(R-k) -i(s+2V1) - k2+2k(R--iG>]. 

(89) 

The restriction V, = VZ does not necessarily produce a 
constant u-velocity base state at times t > 0. From Eq. (55) 
we see that a constant v. requires either G=O, S=O, R=S, 
or 8=n-/2. In each of these cases, Q=O, and we can easily 
extract the growth rate, 
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a,(k) =E [(g-k) - J-1 

k 
=- 

[( 
R-GSsin ,(l+kS)--k 

2 (l+eR> 

R-GSsine(l+eS) 
(l+eR> )I (90) 

(l-9 
q(k)=-kvo=kGcos 8 (I-eH) . 

Equation (90) indicates that there will be growing modes 
for R > 0, with the cutoff wave number, k= R/4. Therefore 
when v. is constant, the criterion for instability is 

(l+a 
R=R-GSsin8 (l+eR)>O, 

which in dimensional form is 

(92) 

X (In p2-ln pi) > 0. (93) 

For the no-gravity case, G=O or S=O, and vo= 0, we 
obtain the growth rate found by Tan and Homsy,4 

~=a,= (k/2) (R-k- ,/m), (94) 

indicating that the flow is unstable whenever the more vis- 
cous fluid is displaced by the less viscous fluid, i.e., R > 0. 

When the viscosity and density have the same func- 
tional form (R=S) there is a constant tangential velocity 
base state, 

vo=-Gc~~O, 

and the criterion for instability becomes 

(95) 

R(l-Gsin f3) >O. (96) 

Figure 2(a) shows the initial growth rates in this case for 
R=S=3, G= 1, and various angles of inclination 8. For a 
vertical interface (f3=0), we can see from Eq. (90) that we 
obtain the Tan and Homsy result (94), even though the 
two fluids have different densities and a nonzero tangential 
velocity. As 8 increases from zero to r/2, ( 1 -G sin 0) 
decreases, and the flow configuration becomes more stable 
as gravity is aligned with the normal displacement velocity 
and is directed from the lighter fluid, fluid 1, to the heavier 
fluid 2. As 0 decreases from zero to -7r/2, ( 1 - G sin 19) 
increases, and the growth rate increases. Here the flow 
configuration becomes more unstable as gravity is directed 
from the heavier fluid to the lighter fluid. Since G= 1 for 
the results shown in Fig. 2(a), the perturbations are neu- 
trally stable at time t=O for 8=7-r/2. 

When the interface is horizontal (0=~/2) and v,=O, 
we get instability when 

Cl+@? 
R-GS(l+e~)>0. (97) 
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0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 
(4 

0.25 s=o 
--.-.-. - -.-. $1 

--------- s=2 
-..-__-..--. s&j 

----- S=-l 
. . . . . . * . . szw2 

FIG. 2. Effect of density stratification on the initial growth rate for 
V,= V,. (a) R=S=3, G= 1, I+,= -Gcos 6’. A vertical interface (0=0) 
yields the same growth rate as Tan and Homsy find when uc=O. Since 
pt < pZ, the stability is increased when O<B<?r/Z, since gravity is directed 
from fluid 1 to fluid 2 while for --?r/2<&0, the configuration is more 
unstable. (b) Horizontal interface (8=7r/2), R=3, G=l, and u,,=O. 
Here S=O corresponds to the no-gravity case (,q = pz). Since gravity is 
directed from fluid 1 to fluid 2, the fluids are stably stratified when S> 0 
( pt < p2) and unstably stratified when S < 0. 

Figure 2(b) shows the growth rate for 8=?r/2, R =3, and 
G=l for various values of S. For G= 1, Eq. (97) indicates 
that there will be unstable modes for S <R. Here S= 0 
corresponds to the no-gravity case since p1 = p2. For S < 0 
the growth rate increases since p1 > p2 and gravity is di- 
rected from fluid 1 toward fluid 2, while 0 <S < R corre- 
sponds to a more stable configuration with gravity directed 
from the lighter fluid to the heavier fluid. 

For V,#V,, a(k) is obtained from Rq. (78) using a 
standard iterative root-finding technique. For these more 
general v-velocity base-state profiles, we find that although 
the cutoff wave number and maximum growth rate vary 
with ( VI, V,), we always get a band of unstable wave num- 
bers when ‘I$. (92) is satiseed. This suggests that the in- 
stability criterion derived for constant v,, 

(98) 

also holds for more general v-velocity base states. This will 
be illustrated in Sec. V, where we further discuss the influ- 
ence of nonconstant tangential velocities on the stability of 
the flow. 

V. NUMERICAL SOLUTION TO MlSClBLE STABILITY 
EQUATIONS 

Tan and Homsy” and Yortsos and Zeybek5 have solved 
eigenvalue problems similar to the system described by 
Eqs. (52) and (53) for the case where there are no tan- 
gential base-state velocities. Both of these studies used the 
shooting method to obtain the eigenvalues and eigenfunc- 
tions of the system. In this study we will, instead, use a 
Chebyshev spectral method (cf. Ref. 11). A mapping is 
used to map the physical domain x= ( - rig, CO > to the 
Chebyshev domain g= [ - 1, I], therefore a collocation 
method is implemented. 

We are interested in obtaining the complete spectrum 
a(k) for various parameter sets ( R,S,G,f3,co,vo). Since co is 
a step function for t=O, the method described here will 
only be used to compute the spectrum at times t > 0 when 
the profiles are smooth. 

A. Numerlcal method 

The Chebyshev polynomials are defined on the interval 
[- l,l], while the stability problem is defined on the do- 
main x= ( - r~), CO >. One way to handle this is by truncat- 
ing the physical domain to a=[- L, L] and mapping this 
linearly onto [ - 1, I]. Although Zeybek and Yortsos (and 
presumably Tan and Homsy as well) use a truncated do- 
main for their computations, there is no need for us to do 
this since we can map the infinite domain directly onto 
[- l,l]. To maintain spectral convergence of the scheme, 
we use the algebraic map,” 

x=f-‘ca=a&-p (99) 

g=m) =-pi 9 (100) 

where a is the length scale of the map. Using expansions in 
Chebyshev polynomials to approximate # (5) and $(c), 

WI =#I f-m = j. &m5L (101) 

w> =IcIlI f-v3 I= j. ILW~L (102) 

we recast the system (52) and (53) as a complex general- 
ized eigenvalue equation in the 6 coordinates, 

Pe, = aQq, (103) 

at the Gauss-Lobatto collocation points, 

<j=cos(~j/N), for j=O ,..., N. (104) 

Here P and Q are (2Nf2) x (2Nf2) matrices, and 
Q, = ($0 ,..., #N ,& ,..., rjN). The boundary conditions (4,$> 
= (0,O) at <= f 1 are implemented by modifying the ma- 
trices P and Q,12 
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jjj= I 
6 ij, for I’=O,N,N+ 1,2N+ 1, 

P.* (105) 
v ’ otherwise, 

and 

&= 
I 

1, for i=j=N+2 ,..., 2N, 

0, otherwise, (106) 

so that &,N=O and 1,6a,~= 0 are enforced directly. This new 
system, 

Ap=&, (107) 

is then solved using a standard QZ factorization routine. 
The results presented in the next section were computed 
using N=48 Chebyshev modes for t> 1 and N=96 modes 
for t < 1, and a map length scale of a = 10 for k > 0.1 and 
a=25 for k < 0.1, yielding converged values for w to six 
significant figures. 

B. Results 

We begin by first comparing our results with those of 
Tan and Homsy for the no-gravity case.4 For G=O (or 
S=O> and no tangential velocity, va=O, the equations sim- 
plify to those solved by Tan and Homsy in which u is real 
valued, 

(108) 

(109) 

Figures 3(a) and 3 (b) show the dispersion relation for 
R = 2 and R = 3, respectively, at times t= 5,10,20 compared 
with the results of Tan and Homsy. We see that the results 
agree very well. Dispersion provides a cutoff wave number 
and the spreading of the interface produces a growth rate 
that decays with time while shifting the cutoff wave num- 
ber and most unstable mode to longer wavelengths. These 
general features are seen in all the cases we have investi- 
gated in which tangential velocities and gravitational forces 
also exist. 

Next we consider the case in which a constant tangen- 
tial velocity, vo, is present. We take R =S and 17 =0 so that 

vo=-Gcos 0. (110) 

The eigensystem then becomes 

( 
D2+Rz D-k2 $=[k2R(l-Gsin@]$, (111) 

1 

(~-cr--k2-ikvo)~=~ 4. (112) 

Since the first equation is real valued, the second equation 
yields 

ai= --kvo, (113) 

indicating that the waves travel with the velocity of the 
fluid as expected. For fixed R, the growth rate, o,, de- 
creases to zero as ( 1 -G sin 0) -+O and increases as ( 1 
-G sin 0) increases. Figure 4 plots growth rates for R =S 

(4 

FIG. 3. Growth rate comparison with the results of Tan and Homsy 
(dashed line) corresponding to G=O and no tangential velocity, us=O, at 
times t=S, 10, and 20; (a) R=2, (b) R=3. 

= 3, G= 1, and various values of 8, at time t= 5. For 8=0 
when the interface is vertical, we obtain the same growth 
rate as in the no-gravity vo=O case. The constant tangen- 
tial velocity does not affect the growth rate of the pertur- 
bations but does allow them to travel with the fluid veloc- 
ity. As we found in Sec. IV D for time t=O, the growth 
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FIG. 4. Growth rate versus wave number for constant tangential velocity, 
us= -G cos 0, and various angles of inclination. Here R=S=3, G= 1, 
and t=5. A vertical interface (0=0) yields the same growth rate as the 
no-gravity us=0 case. Since pi <p2, for 0<&~/2, the fluids are stably 
stratitied with respect to buoyancy forces, while for -7r/2<&0, the 
fluids are unstably stratified. 
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rate varies with 8 due to the density stratification. As the 
angle of inclination increases to 8=?r/2, the Aow configu- 
ration becomes more stable since gravity is directed from 
the lighter fluid, fluid 1, to the heavier fiuid, Auid 2. As 0 
decreases from zero to --r/2, the growth rate increases, 
since gravity is directed from the heavier fluid to the lighter 
fluid. 

We now consider a case in which a tangential velocity 
shear exists at the interface. If we let S=O (i.e., p1 =pz), 
the eigensystem becomes 

&j-R 2 D-#)g=(k2R+ikRvoD)$, 

(#-cr-kL-ikvo)$=~ (p. 

(114) 

(115) I 

Since both fluids have the same density, the equations are 
independent of the angle of inclination 8 and the parameter 
G. The induced v-velocity base state is 

vo= --I? +~(r]+Gcos O), (116) 

where 7 is arbitrary. Growth rates for R=3 and various 
tangential base-state velocities at time t=5 are shown in 
Fig. 5(a). As 1 vI-v2/=(1-e-R)] VI] increases, the 
growth rate and the range of unstable wave numbers de- 
creases, indicating that a tangential velocity difference 
across the interface has a stabilizing effect. Even though 
the stabilizing effect can be substantial, our analysis for 
time t=O (Sec. IV D) indicates that a tangential velocity 
shear cannot completely stabilize a flow that is otherwise 
unstable. Figure 6 plots the initial growth rates for very 
strong tangential shearing velocities, obtained by solving 
Eq. (78) for this case (S=O) and a more general param- 
eter set. Since we always get a band of unstable wave num- 
bers, the criterion for instability we derived in the no-shear 
case [Eq. (92)] still holds. The influence of tangential ve- 
locity shear on the growth rate is in marked contrast to the 
results for the immiscible case with and without surface 
tension, for which the growth rate is independent of the 
tangential velocities V, and V,. The physical mechanism 
for this will be discussed in more detail below. Further- 
more, the phase speed, -uJk, in immiscible displacement 
is given by the viscosity-weighted average of V, and V2. 
This is also not the case for miscible flow, as shown in Fig. 
5 (b ) , where the viscosity-weighted average result, 
ai= -k(pl VI +,u2V2)/(p1 +~2), is also plotted for com- 
parison. We see that the magnitude of the phase speed 
increases as the strength of the tangential shear increases 
but that the phase speed is not approximated by the 
viscosity-weighted average of VI and V2. Clearly, the 
phase speed of the traveling waves has some other func- 
tional dependence on the tangential velocities and viscosi- 
ties of the two phases, and also depends, as illustrated later 
in this section, on the densities of the fluids. The temporal 
evolution of the growth rate is depicted in Fig. 7 for 
k=0.2. The numerical results obtained for t> 0 asymptot- 
ically approach the analytical solution for t=O, which is 
plotted as well. For times t> 1 we see that for all cases the 
growth rate decreases with time due to the dispersive 
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FIG. 5. Effect of tangential velocity shear on growth rate and phase speed 
for two fluids of the same density. Here S=O, R=3, t=.5, 1 V, 1 = 1,2,5, 
and V2=~-RVl; (a) growth rate versus wave number showing increased 
stabilization as 1 V,- V,l increases. (b) CT~ versus wave number. Solid 
symbols correspond to the miscible QSSA results; hollow symbols corre- 
spond to viscosity-weighted average phase speed. O,V,= 1; A,V,=2; 
q ,v,=s. 

spreading of the front. However, when a strong tangential 
shear is present, there is initially a short period of increas- 
ing growth rate, resulting in a maximum at time t > 0. We 
remark that the QSSA employed in this analysis approxi- 
mates the actual growth rate only for large times when the 
base-state flow changes slowly, and therefore the short pe- 
riod of increasing growth rate with time illustrated here 
may or may not have any physical relevance. 

The stabilizing effect of tangential shearing velocity 
can be understood by examining the perturbation vorticity 
equation. The equations governing the perturbation pres- 
sure are 

w 
z=--P’-pou’+Gp’ sin 8, (117) 

w 
a~= +vo--you’ - Gp’ cos 6. (118) 

By eliminating the pressure, we obtain the equation for the 
perturbation vorticity, 
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FIG. 6. Initial growth rates for strong tangential shearing velocities. A 
band of unstable wave numbers persists, indicating that the tangential 
shear cannot completely stabilize the flow. (a) S=O, R=3, 
1 F’,-VzI=q(e-R-l), and q=lOO, 500, 1000. (b) S=2, R=3, G=l, 
8=7/6, IV,-V,l=q(e~~-l)+GcosB(~-~-l), and v=lOO, 
500,1000. 

FIG. 7. Growth rate versus time for S-O, R=3, L0.2, 
1 V, 1==0,1,2,3,5, and V,=evRV,. The analytical solution at t=O is plot- 
ted with the numerical solution for t=O.l, 0.25, 0.5, 1, 2 ,..., 10. For strong 
tangential shearing velocities, the maximum growth rate shifts away from 
t=o. 

FIG. 8. Total vorticity, w’=R[(&‘/dy) - (&&flx)v’], for the no-shear 
case, @x)=0. Here R=3, S=O, t=S, and k=0.2. 

or, in terms of the parameters R and S, 

dc’ ace ac’ ---v’-- vo-c’ - 
ay ax ax 

For comparison with the preceding results, consider the 
case of constant density (S=O), so that 

ad ac, ad 
--- v’-.-- Q-C’ - 
ay ax ax (121) 

where the’ last two terms are due to the presence of a 
tangential shear. For the representative set of parameter 
values R=3, t=S, and k=0.2, the vorticity in the case of 
no shearing velocity, v,,(x) =O, is shown in Fig. 8. We can 
compare this with the vorticity field produced when a 
shearing velocity does exist. Figure 9 (a) shows the contri- 
butions from the first two terms of Eq. ( 121) for the tan- 
gential velocity base state v. = 2eRCo. While the tangential 
shear clearly breaks the symmetry present in the no-shear 
case, its effect is merely a slight deformation of the vortic- 
ity contours, which cannot be the cause of the drastic 
growth rate reduction described above. Even inclusion of 
the shear-related term, 

-; p’ $ -Rc’ 2, (122) 

which represents vorticity slightly out of phase with the 
contribution of the first two terms, results only in a slight 
shift of the contours in the direction parallel to the inter- 
face [Fig. 9 (b)], so that it cannot account for the increased 
stabilization either. However, by also including the term 

i apf ad -- - 
PO ax 

v,,= -R dx vQ, (123) 

we notice that the previous dipolelike structure of the over- 
all vorticity changes to a less unstable quadrupolelike 
structure, representing the apparent reason for the in- 
creased stabilization of the flow [Fig. 9(c)]. Separate in- 
spection of the expressions -R (dc’/LJx) and v0 further 
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FIG. 9. Separate vorticity contributions for flow with tangential shearing 
velocity, C,,(X) = 2emRq. Here R=3, S=O, t=5, /c=O.2. (a) 
o:=R[(ac'/ay)-((acdax)u']. (b) o;=R[(Bc’/ay) - (&-&3x)u’ 
-c’(&&~x)]. (c) Total vorticity, o'=R[(&'/dy) - (&,/&)v' 
- (ac'/ax)uo-c'(auf)/ax)]. 

FIG. 10. Term responsible for quadrupole vorticity structure. Here 
U&X) = 2eeRQ, R=3, S=O, t=5, and k=0.2. A combination of (a) 
-R(&'/&) and(b) v,, produces a dipolelike structure on the upstream 
side of the interface. (c) -R(&'/~x)u~. 

illustrates the role of this term (Fig. 10). While 
-R (&Y/%X) itself exhibits a quadrupolelike structure 
with maxima and minima on opposite sides of the y axis, 
weighting with the base-flow velocity profile v. [Fig. 10(b)] 
effectively annihilates the contribution from y > 0, thereby 
leaving a dipolelike distribution centered on the upstream 
side of the displacement front [Fig. IO(c)]. This field, when 
added to remaining terms, results in the quadrupole struc- 
ture of the overall vorticity field. It is this strong variation 
of v,(x) across the concentration front, i.e., the strong 
tangential shear, that is ultimately responsible for the in- 
creased stabilization of the flow. Furthermore, the above 
discussion also explains the fundamental difference be- 
tween miscible and immiscible displacements. In the im- 
miscible case, the front remains sharp while the miscible 
flow case has a widening front. It is the dispersive spread- 
ing of the miscible front that supports the quadrupolelike 
vorticity structure. This structure cannot emerge in the 
concentrated vorticity sheet produced by immiscible dis- 
placement. 

#+R 2 D-p $= [k2(R-GSe(S-R)c”) 
1 

+ikl%Dl$, 

(D’-o-k2-iku,)$=z. 

(124) 

(125) 

with v-velocity base state, 

uo= -e-Rcoq. (126) 

We vary the density difference by holding 
G= (plg)/(pl U) fixed (i.e., p1 fixed) and varying S 
(varying p2=$ip1). Figure 11 (a) plots growth rates for 
R=3, G=l,and V,=l(V,=eBR) attimer=5forvarious 
values of S. As we found in Sec. IV D for t=O, when S > 0 
the growth rate is reduced since gravity is directed from 
the lighter fluid, fluid 1, to the heavier fluid, fluid 2. Con- 
versely, for S<O, there is an increased growth rate since 
fluid 1 is heavier than fluid 2. Plots of Ui vs k in Fig. 11 (b) 
show that the phase speed increases as S decreases. If the 
two fluids have the same density, we denote the phase 
speed of the perturbations by y. For p1 < p2 (S>O) we 
get a slower wave speed, y < p, while for p1 > pZ (S < 0) a 
faster wave speed, y> y, results. Since F’, > V2 we tind 
that although, in general, the waves tend to travel with the 
more viscous phase, there is also a tendency for the per- 
turbations to travel with the denser fluid. This suggests 
that the phase speed may be weakly dependent on the 
density-weighted average of VI and V,. 

We have seen that the presence of tangential velocity 
shear at the interface has a stabilizing effect for two fluids 
of the same density. When the phases have different den- 
sities, the growth rate is further reduced or enhanced when 
the fluids are stably or unstably stratified with respect to 
buoyancy forces. For simplicity, consider a horizontal in- 
terface, with g aligned with the normal displacement ve- 
locity (6=7r/2), resulting in the equations 
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FIG. 11. Effect of density stratification in addition to tangential velocity 
shear. Here R=3, G=l, t=5, ) V,l =l, V2=emR, and S=2,1,0,-2; (a) 
growth rate versus wave number. For S> 0, the fluids have a stable den- 
sity stratification, yielding a reduced growth rate. For S < 0, the unstable 
density stratillcation enhances the growth rate. (b) o, versus wave num- 
ber showing increasing phase speed as S increases. 

VI. CONCLUSIONS 

We have extended previous studies on the stability of 
two-phase porous media flows by allowing for the simulta- 
neous presence of velocity components both normal and 
tangential to the interface. We  find that the traveling waves 
observed experimentally and analytically by Zeybek and 
Yortsos7.’ for the case o f immiscible fluids and tangential 
velocities only, can grow or decay under the additional 
influence of a normal displacement velocity, in accordance 
with the well-known viscous fingering instability. For the 
case of immiscible fluids, the growth rate of the waves is 
unaffected by the presence of tangential velocity compo- 
nents, while surface tension acts to stabilize the displace- 
ment process. Miscible fluids, however, display a funda- 
mentally different behavior. Here, tangential shear 

increases the stability of the displacement process. We  ex- 
plain this unexpected effect by analyzing the perturbation 
vorticity equation, which exhibits a less unstable quadru- 
pole structure instead of the dipole structure known from 
the classical case. This quadrupole structure is a result of a 
shearing tangential velocity profile across the finite thick- 
ness front, and explains why the increased stabilization 
cannot occur for the immiscible case, where a sharp front 
is maintained. Furthermore, we find that in the miscible 
displacement case, the phase speed of the waves is not 
given by the viscosity-weighted average of the tangential 
velocities, as it is in the immiscible case. The above findings 
lead us to conclude that miscible and immiscible two-phase 
porous media flows, which behave similarly in the absence 
of tangential velocities, might give rise to quite different 
nonlinear dynamics in the presence of tangential velocity 
components. Full nonlinear simulations are required to ob- 
tain further interesting insight of use for practical applica- 
tions, such as reservoir modeling. 
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