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A parametric study is conducted in order to investigate the influena@)ofelocity dependent
dispersion, andb) concentration-dependent diffusion on the stability of miscible porous media
displacements in the radial geometry. Numerical solutions for the base concentration profile
demonstrate that velocity induced dispersion dominates for short times and large Péclet numbers.
For large times, the growth rates approach those obtained when only molecular diffusion is taken
into account. Concentration-dependent diffusion coefficients are seen to modify the mobility profiles
of the base flow, and to shift the eigenfunctions into more or less viscous environments. This results
in a destabilization for nearly all Péclet values and mobility ratio20©4 American Institute of
Physics [DOI: 10.1063/1.1775431

I. INTRODUCTION to have two main effects. First of all, it will modify the

concentration profile of the base flow. Second, it will affect

Past theoretical investigations have addressed many agse |ocation of the perturbation eigenfunction within the base
pects of the linear stability problem arising when one fIU|dﬂOW as well as its shape and growth rate

displaces another one of larger viscosity in a Hele—Shaw cell The issue of velocity induced dispersion has been ad-

ordpolrous medfllum. For the S'tlfl_at'on 0:; T:Sﬁ_']ble ﬂll“ds N 34ressed for rectilinear displacements by Yortsos and Zéybek
radial source Tiow geomgtry, an an ormsymploy a nd by Zimmermann and Hom&yThe former authors com-
quasi-steady-state analysis, which shows that the “”fa"orabﬁeare the relative influence of molecular diffusion and veloc-

Egggs'tfaﬂzgf'ﬁ:nrf;g; Ir:)r?:n:gebberﬁ:vailg)r/ I?r:gxr??rgnewrtrgrc-ity induced dispersion by means of a linear stability analysis.
- T ponent ) . They show that displacements which take into account the
tilinear displacements. Pankiewitz and Meibfuextend this

. . o O . . velocity induced dispersion generally are more stable than
analysis to fluid combinations giving rise to honmonotonic

. ) ) . ) L .__those which account for molecular diffusion only. This is in
viscosity profiles, which they find to be destabilizing. Riaz . . . ) .
’ o . . line with expectation, as dispersion acts to spread out both
and Meiburd report on the stability of axial and helical per- . o )
. . . . . . the base profile as well as the perturbation itself. Since the
turbations in three-dimensional displacements. Yortsos

N . ispersion coefficient in a realistic porous medium as well as
corporates the effects of equilibrium adsorption and show§j P P

the existence of a mathematical transformation that relate Hele-Shaw flows is commonly assumed to grow with in-

radial flows to rectilinear ones. A partial review, along with acreasing velocity, it should affect the radial flow problem in

discussion of the effects of heterogeneity, is provided bysl qualitatively different way, as compargd to the rectilingar
Yortsos® Whenever the above studies account for molecuIaPrOblem' The base_\_/e_lom_ty in the latter is constant, leading
diffusion or mechanical dispersion, they do so by assuming 40 @ uniformly stabilizing influence. On the other hand, the
constant diffusion coefficient, which is found to have a sta-?@s€ velocity in radial flows decreases as away from the
bilizing effect. However, the experimental measurements byOUTCe; SO that the influence of dispersion can be expected to
Petitieans and Maxwortfydemonstrate that this may not yveake_r? over time. T_hus there is ap_ossmlhty that the Ievel_ of
always be a good approximation. These authors find that, fdfStability can be higher at later times when the velocity
example, the diffusion coefficient between water and g|yC_||.'1duced dispersion cannot provide an appreciable stabiliza-
erin varies by a factor of about 30, depending on the local'o": o _ _ _
concentration value. Hence an interesting question arises Quantitative estimates regarding the different flow re-
concerning the influence of this concentration dependence dgimes can be obtained on the basis of classical Taylor dis-
the stability properties of miscible displacements. The depenPersion results(Taylor’), which were modified for two-
dence of the diffusivity on the concentration can be expectedimensional gaps by Home and Rodrigd&Zhese authors
show that the Taylor dispersion coefficient can be quantified

2 (4212 ; ;
3Author to whom correspondence should be addressed. Electronic maiftS 945((?i U /D’)'_ whered !S t_he gap width,U denOt?S the
meiburg@engineering.ucsb.edu centerline velocity, and’ indicates the molecular diffusion
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coefficient. For a typical “lab-on-a-chip” application, one V.-u=0, (3)
may assumeD=0(10"° cn?/s) and d=0O(10 um). For U

=0O(1 mm/s), Taylor dispersion dominates, whereas for
=0(100 um/s), molecular diffusion can be expected to out-
weigh dispersion. These rough estimates demonstrate that
both of these regimes may be attained in microfluidic appli- oc, u-ve=V.-D-Ve. (5)
cations, cf. also the recent review article by Stetel d

Petitjean 112 carr t both experimen well - . . . .
c tjea_ set a. carry ou bot exper e_ts as wet as Here n indicates the viscosity, which has been rendered di-
numerical simulations in order to gain insight into the role of . . : . . ;
. . S . . . . mensionless by the lower viscosity of the displacing fluid. In
mechanical dispersion in variable viscosity, radial Hele—. : . ; ; )
. . . line with earlier authors, the functional relationship between
Shaw displacements. They observe that numerical simula-. . "
. ) . . viscosity and concentration is taken to be
tions employing a Taylor dispersion model are unable to ac-
curately reproduce the experimental data. Most likely, this is w=ere, (6)
due to the fact that Taylor's model is based on the assump-
tion of Poiseuille flow, which does not exist in the presenceThe dispersion tensd can be expressed'as'

of significant viscosity gradients. For this reason, here we

u=-uVp, (4)

model dispersion in radial flows based on the model pro- p-= (/3|U| +iD>I + %Bﬂ, (7)
posed by Beal® The outline of this paper is as follows: Pe ul
Section Il states the set of governing equations and derives i ) )
the eigenvalue problem. Section Il begins by discussing thé‘"here the Péclet numbéte is defined as
effects of velocity induced dispersion on the base concentra- Q
tion profile, as well as on the dispersion relations. Subse- Pe=—=— (8)
quently, the role of concentration-dependent diffusivities is D
addressed as a function of the Péclet number, and related
scaling behaviors are identified. Section IV summarizes th&"
main findings and conclusions from this investigation. ar
B=1" 9)

Il. GOVERNING EQUATIONS

We consider the problem of radial source flow in a ho- _a 1. (10)
mogeneous porous medium of constant permeability. Fluid 1 ar

is injected at a constant flow ra@ thereby displacing fluid o . o

2. The fluids are assumed to be miscible in all proportions| "€ longitudinal and transverse dispersivitiésnits of
with a molecular diffusion coefficier®’(c) that depends on 1€ngth area, and ar, respectively, while. indicates a mac-
the concentratior of the solvent, which is taken to be unity fOSCopic length scale, such as the radius of the nominally
in the displaced fluid. We assume a linear relationship fo@XISymmetric fron | denotes the unit diagonal matrix. Gel-

D’(c) of the form haret al'® present careful experimental studies to determine
the magnitude oty and a+. Although strictly valid only for
D(c) = D©__2  ,S-1 . o=D(C=D tracer flows, we use their analysis and employ valueg of
D S+1 "S+1 D'(c=0)’ =10 and ar=0.1 a;. Their work furthermore suggests that

1 for variable viscosity displacements the value ®ftan be
(@D even smaller than 16,

where The above equations allow for the axisymmetric base
1 state velocity profileug=1/r andvy=0. Since the problem

D= f D'(c)dc. (2)  does not contain an external length scale, we transform the
0 equations to the new variable=rvPe/2t, for which the

The above linear dependence closely tracks real fluid Comgquatlon governing the base state concentratjopecomes

binations such as water and glycerin, cf. Petiteans and acy P28 #c, 1
Maxworthy® For most fluids,D’ decreases with increasing Do+ —=(1+y) -5+ (Do-Pe—+7
viscosity(cf. Bird, Stewart, and Lightfodf), which suggests et 97 K
valuesS<1. However, for the sake of completeness we will dDg | dCo
consider values o8 both smaller and larger than unity. + [?_,7 ,9_,7'
The analysis to be presented in the following closely
follows earlier work by Tan and Hombyand by our own whereDy=D(cy).
group®® However, all of these earlier investigations ad- The linearized stability equations are obtained by ex-
dressed situations with constant diffusion coefficients and impressing the dependent variables as a sum of base and per-
the absence of flow induced dispersion. By employing Darturbation components. The perturbation variables are then
cy’s law, one arrives at the dimensionless equations in cylindecomposed into normal modes whose amplitude depends on
drical coordinates, 7,

at

11
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a . , a
(u,c)(r,e,t):(—,c)(r;)f(t)e'”". (12 (@) 1
n
We thus obtain the system of equations, [
0.8
da (1 Nda n? | n? i
—+|—+Rg|——-—-0U-R—C=0, (13
d7* \n dn 7 7 06
Cc
B /2 d2
{Dmo+ e (1 '}/) d772 + (Dmo Pe) 0.4
et 25—1(1C,+C,,> ;
S+1 7% dy |“s+1\y 0" 0 02r
+n—2<D +3Pe3’2) - ﬂpes/zc di 0: = t—OO1 010 g—10 L
2\ o 77\@ ot oOI77 8 9 1;) 11 12
pe¥2 Pe
+ B —= (1 +y)cg-—c,U=ot, (14) (b)
m2t 7
where primes denote derivatives with respect 7o The TN
above equations define an eigenvalue problem with an alge- 8r
braic eigenvaluer given by [
1df sf
o=2t-— (15 i
f dt G |
B \
for the boundary conditionli,¢) —0 with »—0 and 7 4- t=0.01-0.10
—o0. The growth rate of a given mode with wave numhber A
is seen to depend dPe, R, S and the properties of the rela- 2
tionships u(c) and D(c). The stability equationg13) and [ .
(14) have to be solved numerically to obtain the dispersion ok \
relations. Toward this end, we employ a finite difference ap- [ e b
proximation to the equations that transforms the differential 0 10 20 n 30 40

eigenvalue problem into a general algebraic eigenvalue prob-

lem which can then be solved applymg standard metﬁads FIG. 1. Influence of velocity induced dispersiof® Base concentration
profiles for Pe=100 andB=10"* at different timeg(solid line9, and for 8
=0 (dashed ling The base state in the presence of velocity induced disper-
sion asymptotically approaches the base state without dispe(sipDis-

IIl. RESULTS persion relations foPe=100, R=5, and3=10* at different times(solid
. . lines), and for 3=0 (dashed ling The growth rates for the case with dis-
A. Influence of dispersion persion asymptotically approach the values for the case without dispersion.

We first analyze the influence of the velocity-induced
dispersion(B+ 0) using a constant diffusion coefficiel® B. Influence of variable diffusion
=1. Figure 1a) presents the concentration base profile as
obtained by solving Eq(11) for different times andPe In the following, we investigate the effect of variable
=100. Initially the 8+ 0 profiles are less steep than tBe diffusion coefficients, as given by E@l), on the stability
=0 profile. However, they approach the latter for large timesproperties of the radial displacement. During this analysis,
reflecting the diminishing importance of dispersion. The in-the dispersion coefficiens is set to zero, which effectively
creased gradients of the base state for late times result Iimits the applicability to late times.
higher growth rates, which approach those of the case with- Figure 3a) compares numerically computed base states
out dispersion, as shown in Fig(k). These dispersion rela- for Pe=400 and variable diffusion coefficients with the ana-
tions are obtained by solving Egd.3) and(14). lytic solution for a constant diffusion coefficient displace-

The effect of increasing the Péclet number is shown irment at the same value ¢fe (cf. Tan and Homs¥). The
Fig. 2, which presents results fBie=1000. For this case, the location of the “mean” interface, defined oy 0.5, depends
base profiles in the presence of dispersion are considerabiyeakly onS and is given approximately by=Pe*? for all
less steep than th@=0 profile, even at large times. Conse- values ofS. SinceD reaches its extrema fa=0 and 1, the
quently, the growth rates are significantly smaller as comvariable diffusion coefficient predominantly influences the
pared to theB=0 case, as shown in Fig(l9. This observa- tails of the concentration profile. Hence, while the slope of
tion indicates that the influence of velocity induced the concentration profile does not vary strongly w&lmear
dispersion is more important for larger Péclet numbers, irthe mean position of the interface, it becomes considerably
line with expectation. steeper on the side with the lower diffusion coefficient, and
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FIG. 2. Influence of velocity induced dispersiof@ Base concentration
profiles for Pe=1000 andg=10"* at different times(solid lineg, and for
B=0 (dashed ling (b) Dispersion relations forPe=100, R=5, and 8

FIG. 3. Influence of concentration dependent diffusion(anthe concen-
tration base state an@) the viscosity base profile, fd?e=400,R=2.5 and

P, ; ) PE! B ' various values o8. Depending upor®, the concentration gradient becomes
=10" at different timeg(solid lines, and for 3=0 (dashed ling The base  gteeper on one end and more gentle on the other end, as compared to the

states and dispersion relations are qualitatively similar to the sni&lease  qnstant diffusion coefficient profile. On the other hand, the viscosity profile
shown in Fig. 1. However, the difference between the cases with and Withpecomes uniformly steeper over much of the interfacial region for values
out dispersion is greater even for large times, indicating a dominance og_ q

dispersion over diffusion for higher Péclet numbers.

correspondingly more gentle on the opposite side. Due to thNctions below. For values @& near 50, the increase in the
exponential dependence of the viscosity on concentratio'@Ximum growth rate is seen to be about 30%.
differences among the viscosity profiles for varidsalues Figure 5 shows the maximum growth rate fand 15
are more pronounced near 1, cf. Fig. 3b). as function oﬂDe[Flg. 5a)] andR [Fig. 5b)], respectively. It

In order to investigate the stability properties of the dis-iS Shown to increase from thé=1 case for bott6>1 and
placement, the growth rate vs wave number dispersion rela><1, for all values ofPe andR. Figure §a) displaysoay
tions are numerically determined from E@$3) and(14) for ~ Values forR=>5, as function o, with Peas a parameter. The
various values oPe R, andS. Typical results for different growth rate generally increases wigte. In addition, the fig-
values ofS with Pe=400 andR=5 are shown in Fig. 4. It ure suggests that both low and high valuesSdfave a de-
can be observed that the maximum rate of growth increasesfabilizing effect on the displacement, with the growth rate
both for S>1 and forS<1. Both the most dangerous wave reaching a minimum arounfi~ 1.
number and the cutoff wave number shift to larger values. In order to explore the governing scaling behavior in the
For S>1, the maximum growth rate for the $/case is presence of a variable diffusion coefficient, the growth rates
slightly smaller than that for the correspondigase, while  presented in Fig.@&) are normalized by their corresponding
the cutoff wave number is larger for theQéase. The reason values atS=1. The resulting curves, shown in Figh§, are
for this will become clear later, when we examine the eigenseen to collapse foB<<1. ForS>1, on the other hand, the
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FIG. 4. Influence of the variable diffusion coefficient on the dispersion
relation for Pe=400 andR=5. Both S>1 and S<1 lead to increasing

growth rates, maximum and cutoff wave numbers.

collapse is less complete &becomes very large. This be-
havior is also evident at a smaller viscosity raRs3, as

shown in Fig. €c).

Close inspection shows that f& near to but less than
one, variable diffusion coefficients can have a slightly stabi-
lizing influence on the displacement. This effect is more
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FIG. 5. Growth rates of the most unstable mode as a functiga)dfe, and

entire range oPe andR shown.
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FIG. 6. (a) The maximum growth rate as a function ®for various values

of Pe and R=5. (

b) The maximum growth rate aofa), normalized by the

maximum growth rate for th&=1 case(c) Normalized maximum growth
(b) R for various values ofS. S#1 is seen to be destabilizing across the rate for different values oPe and R=3. The normalized curves ifb) and
(c) are seen to collapse f@<1.
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FIG. 7. Normalized maximum rate of growth as a functiorsdor different £ 8. The velocity eigenfunctions associated with the maximum growth

values ofR and Pe=400. These curves collapse for b&h 1 andS<1 in rate for different values dB. The mean interface positiar=0.5 is shown in
the neighborhoo®~1. dotted line. The eigenfunction shifts inwards towards smailend lower

viscosities values fo>1, and it shifts slightly outwards towards higher
and larger viscosities values f&<1.

prominent and extends to lower values $ffor small Pe
values. Below a certai®=S <1 and forS>1, the growth
rate exceeds that of the corresponding constant diffusion ca&oncentration gradient is steep@ig. 3). For S=10, on the
efficient displacement. Fd8> 1, lower Péclet numbers re- other hand, the eigenfunction is shifted inwards. We note that
sult in a stronger increase of,./ oma(S=1). Additionally,  this radially inward shift represents a shift into a less viscous
the growth rates generally are higher for valuesSof1, as  environment, which in turn facilitates more rapid growth.
compared to the corresponding value at the “inverse” locaThe weak stabilization observed fBivalues slightly smaller
tion 1/S. Visual inspection of the results suggests that forthan unity can then be explained by the competing conse-
Pe—o an asymptotic curve fowr,./omadS=1) will be  quences of a radially outward shift, viz. a locally steeper
reached that depends only on the mobility refoThis is  concentration profile and a local increase in the viscosity.
confirmed by Fig. 7, which shows the normalized curves to
collapse for bothS>1 andS<1 in the neighborhood o6
~ 1. Therefore, in the limiPe— o, for a given mobility ratio |\, coNCLUSIONS
the dependence of the maximum growth ratg,, on the
two-dimensional parameter space spannedbyand S can A linear stability analysis of radial, miscible displace-
be reduced to the two one-dimensional relationg,(S=1) ments in porous media and Hele—-Shaw flows has been car-
=f(Pe) and oya/ omad S=1)=f(S). We remark that this find- ried out, in order to gain insight into the roles played by
ing holds not only for the maximum growth rate, but also for velocity induced dispersion and concentration-dependent dif-
the wave number of the most dangerous mode, so that thfeision coefficients. The results show that, as expected, dis-
relation n,,=f(Pe,S can be replaced by the two one- persion tends to dominate over diffusion for large values of
dimensional functionsn,,,,=(S=1)=f(Pe) and n,./Nnmax  the Péclet number. However, due to the radially decreasing
=(S=1)=1(9). velocity values, the importance of dispersion decreases with
In the following, we will attempt to explain the above time, so that the growth rates asymptotically approach those
results from a physical point of view. The overall reason forobtained when only molecular diffusion is taken into ac-
the instability is the existence of an unfavorable mobility count.
profile in the flow. From earlier investigations of the constant ~ Concentration dependent diffusion coefficients are seen
diffusion coefficient casé¢e.g., Tan and Hom%)/, it is well  to affect the stability problem in competing ways: They
known that the growth rate of the instability increases withmodify the mobility profiles of the base flow, rendering them
the Péclet number, i.e., with an increasingly steep viscositjocally steeper or gentler, and they lead to a radial shift of the
profile. Figure 8b) shows that for constarRe andSvalues  eigenfunctions into more or less viscous environments. Over-
significantly smaller than one, the viscosity profiles becomeall, concentration dependent diffusion is seen to be destabi-
steeper over much of the front, which explains the largetizing for nearly all Péclet values and mobility ratios. How-
growth rates for thisS regime. ever, for small Péclet numbers and valuesSafightly below
For S>1, the reason for the destabilization is not quiteunity a slight stabilization is observed. Maximum growth
so obvious, since now the viscosity profile is less steep overates as well as the corresponding wave numbers tend to
much of the front, cf. Fig. @). Here it helps to inspect the increase significantly for both small and large valuesSof
eigenfunctions more closely. Figure 8 depicts the velocityWhen normalized by their values f@=1, the maximum
eigenfunctions for theS values of 1, 0.1, and 10. Th8  growth rates for differenPe values are seen to collapse for
=0.1 eigenfunction is shifted towards larger radii, where theS<1.
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