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A parametric study is conducted in order to investigate the influence of(a) velocity dependent
dispersion, and(b) concentration-dependent diffusion on the stability of miscible porous media
displacements in the radial geometry. Numerical solutions for the base concentration profile
demonstrate that velocity induced dispersion dominates for short times and large Péclet numbers.
For large times, the growth rates approach those obtained when only molecular diffusion is taken
into account. Concentration-dependent diffusion coefficients are seen to modify the mobility profiles
of the base flow, and to shift the eigenfunctions into more or less viscous environments. This results
in a destabilization for nearly all Péclet values and mobility ratios. ©2004 American Institute of
Physics. [DOI: 10.1063/1.1775431]

I. INTRODUCTION

Past theoretical investigations have addressed many as-
pects of the linear stability problem arising when one fluid
displaces another one of larger viscosity in a Hele–Shaw cell
or porous medium. For the situation of miscible fluids in a
radial source flow geometry, Tan and Homsy1 employ a
quasi-steady-state analysis, which shows that the unfavorable
viscosity gradient results in an algebraically growing pertur-
bation, rather than the exponential behavior known from rec-
tilinear displacements. Pankiewitz and Meiburg2 extend this
analysis to fluid combinations giving rise to nonmonotonic
viscosity profiles, which they find to be destabilizing. Riaz
and Meiburg3 report on the stability of axial and helical per-
turbations in three-dimensional displacements. Yortsos4 in-
corporates the effects of equilibrium adsorption and shows
the existence of a mathematical transformation that relates
radial flows to rectilinear ones. A partial review, along with a
discussion of the effects of heterogeneity, is provided by
Yortsos.5 Whenever the above studies account for molecular
diffusion or mechanical dispersion, they do so by assuming a
constant diffusion coefficient, which is found to have a sta-
bilizing effect. However, the experimental measurements by
Petitjeans and Maxworthy6 demonstrate that this may not
always be a good approximation. These authors find that, for
example, the diffusion coefficient between water and glyc-
erin varies by a factor of about 30, depending on the local
concentration value. Hence an interesting question arises
concerning the influence of this concentration dependence on
the stability properties of miscible displacements. The depen-
dence of the diffusivity on the concentration can be expected

to have two main effects. First of all, it will modify the
concentration profile of the base flow. Second, it will affect
the location of the perturbation eigenfunction within the base
flow, as well as its shape and growth rate.

The issue of velocity induced dispersion has been ad-
dressed for rectilinear displacements by Yortsos and Zeybek7

and by Zimmermann and Homsy.8 The former authors com-
pare the relative influence of molecular diffusion and veloc-
ity induced dispersion by means of a linear stability analysis.
They show that displacements which take into account the
velocity induced dispersion generally are more stable than
those which account for molecular diffusion only. This is in
line with expectation, as dispersion acts to spread out both
the base profile as well as the perturbation itself. Since the
dispersion coefficient in a realistic porous medium as well as
in Hele–Shaw flows is commonly assumed to grow with in-
creasing velocity, it should affect the radial flow problem in
a qualitatively different way, as compared to the rectilinear
problem. The base velocity in the latter is constant, leading
to a uniformly stabilizing influence. On the other hand, the
base velocity in radial flows decreases as 1/r away from the
source, so that the influence of dispersion can be expected to
weaken over time. Thus there is a possibility that the level of
instability can be higher at later times when the velocity
induced dispersion cannot provide an appreciable stabiliza-
tion.

Quantitative estimates regarding the different flow re-
gimes can be obtained on the basis of classical Taylor dis-
persion results(Taylor9), which were modified for two-
dimensional gaps by Horne and Rodriguez.10 These authors
show that the Taylor dispersion coefficient can be quantified
as 2

945sd2U2/D8d, whered is the gap width,U denotes the
centerline velocity, andD8 indicates the molecular diffusion
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coefficient. For a typical “lab-on-a-chip” application, one
may assumeD=Os10−6 cm2/sd and d=Os10 mmd. For U
=Os1 mm/sd, Taylor dispersion dominates, whereas forU
=Os100 mm/sd, molecular diffusion can be expected to out-
weigh dispersion. These rough estimates demonstrate that
both of these regimes may be attained in microfluidic appli-
cations, cf. also the recent review article by Stoneet al.11

Petitjeanset al.12 carry out both experiments as well as
numerical simulations in order to gain insight into the role of
mechanical dispersion in variable viscosity, radial Hele–
Shaw displacements. They observe that numerical simula-
tions employing a Taylor dispersion model are unable to ac-
curately reproduce the experimental data. Most likely, this is
due to the fact that Taylor’s model is based on the assump-
tion of Poiseuille flow, which does not exist in the presence
of significant viscosity gradients. For this reason, here we
model dispersion in radial flows based on the model pro-
posed by Bear.13 The outline of this paper is as follows:
Section II states the set of governing equations and derives
the eigenvalue problem. Section III begins by discussing the
effects of velocity induced dispersion on the base concentra-
tion profile, as well as on the dispersion relations. Subse-
quently, the role of concentration-dependent diffusivities is
addressed as a function of the Péclet number, and related
scaling behaviors are identified. Section IV summarizes the
main findings and conclusions from this investigation.

II. GOVERNING EQUATIONS

We consider the problem of radial source flow in a ho-
mogeneous porous medium of constant permeability. Fluid 1
is injected at a constant flow rateQ, thereby displacing fluid
2. The fluids are assumed to be miscible in all proportions,
with a molecular diffusion coefficientD8scd that depends on
the concentrationc of the solvent, which is taken to be unity
in the displaced fluid. We assume a linear relationship for
D8scd of the form

Dscd =
D8scd

D̄
=

2

S+ 1
+ 2

S− 1

S+ 1
c with S=

D8sc = 1d
D8sc = 0d

,

s1d

where

D̄ =E
0

1

D8scddc. s2d

The above linear dependence closely tracks real fluid com-
binations such as water and glycerin, cf. Petitjeans and
Maxworthy.6 For most fluids,D8 decreases with increasing
viscosity(cf. Bird, Stewart, and Lightfoot14), which suggests
valuesS,1. However, for the sake of completeness we will
consider values ofS both smaller and larger than unity.

The analysis to be presented in the following closely
follows earlier work by Tan and Homsy1 and by our own
group.2,3 However, all of these earlier investigations ad-
dressed situations with constant diffusion coefficients and in
the absence of flow induced dispersion. By employing Dar-
cy’s law, one arrives at the dimensionless equations in cylin-
drical coordinates,

¹ ·u = 0, s3d

u = − m ¹ p, s4d

] c

] t
+ u · ¹ c = ¹ ·D · ¹ c. s5d

Herem indicates the viscosity, which has been rendered di-
mensionless by the lower viscosity of the displacing fluid. In
line with earlier authors, the functional relationship between
viscosity and concentration is taken to be

m = eRc. s6d

The dispersion tensorD can be expressed as15–18

D = Sbuuu +
1

Pe
DDI + gb

uu

uuu
, s7d

where the Péclet numberPe is defined as

Pe=
Q

D̄
s8d

and

b =
aT

L
, s9d

g =
aL

aT
− 1. s10d

The longitudinal and transverse dispersivities(units of
length) areaL andaT, respectively, whileL indicates a mac-
roscopic length scale, such as the radius of the nominally
axisymmetric front.3 I denotes the unit diagonal matrix. Gel-
haret al.18 present careful experimental studies to determine
the magnitude ofaL andaT. Although strictly valid only for
tracer flows, we use their analysis and employ values ofb
=10−4 andaT=0.1 aL. Their work furthermore suggests that
for variable viscosity displacements the value ofb can be
even smaller than 10−4.

The above equations allow for the axisymmetric base
state velocity profileu0=1/r and v0=0. Since the problem
does not contain an external length scale, we transform the
equations to the new variableh=rÎPe/2t, for which the
equation governing the base state concentrationc0 becomes

2t
] c0

] t
= HD0 +

Pe3/2b

hÎ2t
s1 + gdJ ]2c0

] h2 + HsD0 − Ped
1

h
+ h

+
] D0

] h
J ] c0

] h
, s11d

whereD0=Dsc0d.
The linearized stability equations are obtained by ex-

pressing the dependent variables as a sum of base and per-
turbation components. The perturbation variables are then
decomposed into normal modes whose amplitude depends on
h,
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su,cdsr,u,td = S û

h
,ĉDshdfstdeinu. s12d

We thus obtain the system of equations,

d2û

dh2 + S 1

h
+ Rc08D dû

dh
−

n2

h
− û − R

n2

h
ĉ = 0, s13d

HDm0
+

bPe3/2

hÎ2t
s1 + gdJ d2ĉ

dh2 + H 1

h
sDm0

− Ped

+ 4
S− 1

S+ 1
c08J dĉ

dh
+ H2

S− 1

S+ 1
S 1

h
c08 + c09D

+
n2

h2SDm0
+

bPe3/2

hÎ2t
DJĉ +

bPe3/2

hÎ2t
c08

dû

dh

+ HbPe3/2

hÎ2t
s1 + gdc09 −

Pe

h
c08Jû = sĉ, s14d

where primes denote derivatives with respect toh. The
above equations define an eigenvalue problem with an alge-
braic eigenvalues given by

s = 2t
1

f

df

dt
s15d

for the boundary conditionssû, ĉd→0 with h→0 and h
→`. The growth rate of a given mode with wave numbern
is seen to depend onPe, R, S and the properties of the rela-
tionships mscd and Dscd. The stability equations(13) and
(14) have to be solved numerically to obtain the dispersion
relations. Toward this end, we employ a finite difference ap-
proximation to the equations that transforms the differential
eigenvalue problem into a general algebraic eigenvalue prob-
lem which can then be solved applying standard methods.2,3

III. RESULTS

A. Influence of dispersion

We first analyze the influence of the velocity-induced
dispersionsbÞ0d using a constant diffusion coefficientS
=1. Figure 1(a) presents the concentration base profile as
obtained by solving Eq.(11) for different times andPe
=100. Initially the bÞ0 profiles are less steep than theb
=0 profile. However, they approach the latter for large times,
reflecting the diminishing importance of dispersion. The in-
creased gradients of the base state for late times result in
higher growth rates, which approach those of the case with-
out dispersion, as shown in Fig. 1(b). These dispersion rela-
tions are obtained by solving Eqs.(13) and (14).

The effect of increasing the Péclet number is shown in
Fig. 2, which presents results forPe=1000. For this case, the
base profiles in the presence of dispersion are considerably
less steep than theb=0 profile, even at large times. Conse-
quently, the growth rates are significantly smaller as com-
pared to theb=0 case, as shown in Fig. 2(b). This observa-
tion indicates that the influence of velocity induced
dispersion is more important for larger Péclet numbers, in
line with expectation.

B. Influence of variable diffusion

In the following, we investigate the effect of variable
diffusion coefficients, as given by Eq.(1), on the stability
properties of the radial displacement. During this analysis,
the dispersion coefficientb is set to zero, which effectively
limits the applicability to late times.

Figure 3(a) compares numerically computed base states
for Pe=400 and variable diffusion coefficients with the ana-
lytic solution for a constant diffusion coefficient displace-
ment at the same value ofPe (cf. Tan and Homsy1). The
location of the “mean” interface, defined byc=0.5, depends
weakly onS and is given approximately byh=Pe1/2 for all
values ofS. SinceD reaches its extrema forc=0 and 1, the
variable diffusion coefficient predominantly influences the
tails of the concentration profile. Hence, while the slope of
the concentration profile does not vary strongly withS near
the mean position of the interface, it becomes considerably
steeper on the side with the lower diffusion coefficient, and

FIG. 1. Influence of velocity induced dispersion.(a) Base concentration
profiles for Pe=100 andb=10−4 at different times(solid lines), and forb
=0 (dashed line). The base state in the presence of velocity induced disper-
sion asymptotically approaches the base state without dispersion.(b) Dis-
persion relations forPe=100, R=5, andb=10−4 at different times(solid
lines), and forb=0 (dashed line). The growth rates for the case with dis-
persion asymptotically approach the values for the case without dispersion.
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correspondingly more gentle on the opposite side. Due to the
exponential dependence of the viscosity on concentration
differences among the viscosity profiles for variousS values
are more pronounced nearc=1, cf. Fig. 3(b).

In order to investigate the stability properties of the dis-
placement, the growth rate vs wave number dispersion rela-
tions are numerically determined from Eqs.(13) and(14) for
various values ofPe, R, andS. Typical results for different
values ofS with Pe=400 andR=5 are shown in Fig. 4. It
can be observed that the maximum rate of growth increases
both for S.1 and forS,1. Both the most dangerous wave
number and the cutoff wave number shift to larger values.
For S.1, the maximum growth rate for the 1/S case is
slightly smaller than that for the correspondingS case, while
the cutoff wave number is larger for the 1/Scase. The reason
for this will become clear later, when we examine the eigen-

functions below. For values ofS near 50, the increase in the
maximum growth rate is seen to be about 30%.

Figure 5 shows the maximum growth rate forS and 1/S
as function ofPe [Fig. 5(a)] andR [Fig. 5(b)], respectively. It
is shown to increase from theS=1 case for bothS.1 and
S,1, for all values ofPe andR. Figure 6(a) displayssmax,
values forR=5, as function ofS, with Peas a parameter. The
growth rate generally increases withPe. In addition, the fig-
ure suggests that both low and high values ofS have a de-
stabilizing effect on the displacement, with the growth rate
reaching a minimum aroundS<1.

In order to explore the governing scaling behavior in the
presence of a variable diffusion coefficient, the growth rates
presented in Fig. 6(a) are normalized by their corresponding
values atS=1. The resulting curves, shown in Fig. 6(b), are
seen to collapse forS,1. For S.1, on the other hand, the

FIG. 2. Influence of velocity induced dispersion.(a) Base concentration
profiles for Pe=1000 andb=10−4 at different times(solid lines), and for
b=0 (dashed line). (b) Dispersion relations forPe=100, R=5, and b
=10−4 at different times(solid lines), and forb=0 (dashed line). The base
states and dispersion relations are qualitatively similar to the smallerPecase
shown in Fig. 1. However, the difference between the cases with and with-
out dispersion is greater even for large times, indicating a dominance of
dispersion over diffusion for higher Péclet numbers.

FIG. 3. Influence of concentration dependent diffusion on(a) the concen-
tration base state and(b) the viscosity base profile, forPe=400,R=2.5 and
various values ofS. Depending uponS, the concentration gradient becomes
steeper on one end and more gentle on the other end, as compared to the
constant diffusion coefficient profile. On the other hand, the viscosity profile
becomes uniformly steeper over much of the interfacial region for values
S,1.
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collapse is less complete asS becomes very large. This be-
havior is also evident at a smaller viscosity ratioR=3, as
shown in Fig. 6(c).

Close inspection shows that forS near to but less than
one, variable diffusion coefficients can have a slightly stabi-
lizing influence on the displacement. This effect is more

FIG. 4. Influence of the variable diffusion coefficient on the dispersion
relation for Pe=400 andR=5. Both S.1 and S,1 lead to increasing
growth rates, maximum and cutoff wave numbers.

FIG. 5. Growth rates of the most unstable mode as a function of(a) Pe, and
(b) R for various values ofS. SÞ1 is seen to be destabilizing across the
entire range ofPe andR shown.

FIG. 6. (a) The maximum growth rate as a function ofS for various values
of Pe and R=5. (b) The maximum growth rate of(a), normalized by the
maximum growth rate for theS=1 case.(c) Normalized maximum growth
rate for different values ofPe andR=3. The normalized curves in(b) and
(c) are seen to collapse forS,1.
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prominent and extends to lower values ofS for small Pe
values. Below a certainS=S* ,1 and forS.1, the growth
rate exceeds that of the corresponding constant diffusion co-
efficient displacement. ForS.1, lower Péclet numbers re-
sult in a stronger increase ofsmax/smaxsS=1d. Additionally,
the growth rates generally are higher for values ofS.1, as
compared to the corresponding value at the “inverse” loca-
tion 1/S. Visual inspection of the results suggests that for
Pe→` an asymptotic curve forsmax/smaxsS=1d will be
reached that depends only on the mobility ratioR. This is
confirmed by Fig. 7, which shows the normalized curves to
collapse for bothS.1 andS,1 in the neighborhood ofS
<1. Therefore, in the limitPe→`, for a given mobility ratio
the dependence of the maximum growth ratesmax on the
two-dimensional parameter space spanned byPe and S can
be reduced to the two one-dimensional relationssmaxsS=1d
= fsPed andsmax/smaxsS=1d= fsSd. We remark that this find-
ing holds not only for the maximum growth rate, but also for
the wave number of the most dangerous mode, so that the
relation nmax= fsPe,Sd can be replaced by the two one-
dimensional functionsnmax=sS=1d= fsPed and nmax/nmax

=sS=1d= fsSd.
In the following, we will attempt to explain the above

results from a physical point of view. The overall reason for
the instability is the existence of an unfavorable mobility
profile in the flow. From earlier investigations of the constant
diffusion coefficient case(e.g., Tan and Homsy1), it is well
known that the growth rate of the instability increases with
the Péclet number, i.e., with an increasingly steep viscosity
profile. Figure 3(b) shows that for constantPe andS values
significantly smaller than one, the viscosity profiles become
steeper over much of the front, which explains the larger
growth rates for thisS regime.

For S.1, the reason for the destabilization is not quite
so obvious, since now the viscosity profile is less steep over
much of the front, cf. Fig. 3(b). Here it helps to inspect the
eigenfunctions more closely. Figure 8 depicts the velocity
eigenfunctions for theS values of 1, 0.1, and 10. TheS
=0.1 eigenfunction is shifted towards larger radii, where the

concentration gradient is steeper(Fig. 3). For S=10, on the
other hand, the eigenfunction is shifted inwards. We note that
this radially inward shift represents a shift into a less viscous
environment, which in turn facilitates more rapid growth.
The weak stabilization observed forSvalues slightly smaller
than unity can then be explained by the competing conse-
quences of a radially outward shift, viz. a locally steeper
concentration profile and a local increase in the viscosity.

IV. CONCLUSIONS

A linear stability analysis of radial, miscible displace-
ments in porous media and Hele–Shaw flows has been car-
ried out, in order to gain insight into the roles played by
velocity induced dispersion and concentration-dependent dif-
fusion coefficients. The results show that, as expected, dis-
persion tends to dominate over diffusion for large values of
the Péclet number. However, due to the radially decreasing
velocity values, the importance of dispersion decreases with
time, so that the growth rates asymptotically approach those
obtained when only molecular diffusion is taken into ac-
count.

Concentration dependent diffusion coefficients are seen
to affect the stability problem in competing ways: They
modify the mobility profiles of the base flow, rendering them
locally steeper or gentler, and they lead to a radial shift of the
eigenfunctions into more or less viscous environments. Over-
all, concentration dependent diffusion is seen to be destabi-
lizing for nearly all Péclet values and mobility ratios. How-
ever, for small Péclet numbers and values ofSslightly below
unity a slight stabilization is observed. Maximum growth
rates as well as the corresponding wave numbers tend to
increase significantly for both small and large values ofS.
When normalized by their values forS=1, the maximum
growth rates for differentPe values are seen to collapse for
S,1.

FIG. 7. Normalized maximum rate of growth as a function ofS for different
values ofR andPe=400. These curves collapse for bothS.1 andS,1 in
the neighborhoodS<1.

FIG. 8. The velocity eigenfunctions associated with the maximum growth
rate for different values ofS. The mean interface positionc=0.5 is shown in
dotted line. The eigenfunction shifts inwards towards smallerc and lower
viscosities values forS.1, and it shifts slightly outwards towards higherc
and larger viscosities values forS,1.
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