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Radial source flows in porous media: Linear stability analysis of axial
and helical perturbations in miscible displacements

Amir Riaz and Eckart Meiburga)

Department of Mechanical and Environmental Engineering, University of California, Santa Barbara,
California 93106

~Received 20 September 2002; accepted 8 January 2003; published 4 March 2003!

Linear stability results are presented for axial and helical perturbation waves in radial porous media
displacements involving miscible fluids of constant density. A numerical eigenvalue problem is
formulated and solved in order to evaluate the relevant dispersion relations as functions of the Peclet
number and the viscosity ratio. In contrast to the constant algebraic growth rates of purely azimuthal
perturbations@C. T. Tan and G. M. Homsy, Phys. Fluids30, 1239~1987!#, axial perturbations are
seen to grow with a time-dependent growth rate. As a result, there exists a critical time up to which
the most dangerous axial wavenumbers are larger, and beyond which the most dangerous azimuthal
wavenumbers have higher values. This raises the possibility that early on, the smaller flow scales
appear in the axial direction, whereas the later flow stages are dominated by smaller azimuthal
features. By rescaling the axial wavenumber, the explicit appearance of time can be eliminated. The
maximum growth rate of axial perturbations, as well as their most dangerous and cutoff
wavenumbers, are seen to increase with the Peclet number and the viscosity ratio. The most
dangerous wavenumber is observed to shift towards the lower end of the spectrum as the Peclet
number increases. With increasing viscosity contrast, it first moves towards the lower part of the
spectrum, only to shift towards the higher end later on. In the limit of large Pe, asymptotic solutions
are obtained for the growth of axial disturbances. Numerical solutions of the full eigenvalue
problem generally show good agreement with these asymptotic solutions for large Peclet numbers.
Over the entire range of wave vector directions between the purely axial and azimuthal extrema,
helical waves display an approximately constant maximum growth rate. The wavenumber of
maximum growth as well the maximum growth rate of helical waves can be evaluated from the
corresponding purely azimuthal and axial problems. This suggests that in three-dimensional flows
the nature of the initial conditions plays an important role. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1556292#
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I. INTRODUCTION

Unstable displacements in porous media have been
subject of intense research for many years, due to their
portance in practical applications, for example, in the ar
of enhanced oil recovery and ground water hydrology.1 In an
unfavorable mobility gradient, the interface between the t
fluids becomes unstable, with the spectrum of unstable wa
lengths determined by diffusion or surface tension, depe
ing on whether the displacement is miscible or immiscib
respectively. Pioneering work on the fundamental instabi
of the displacement process was performed by Hill,2 Saffman
and Taylor,3 and Chouke, van Meurs, and van der Poel.4

In the presence of diffusion or dispersion, the linear s
bility analysis of miscible flows has to deal with the exi
tence of a time-dependent base state. Towards this end
and Homsy5,6 developed a quasi-steady-state approximat
~QSSA! in order to analyze the stability of miscible displac
ments in rectilinear domains. The QSSA requires that

a!Author to whom correspondence should be addressed. Electronic
meiburg@engineering.ucsb.edu
9381070-6631/2003/15(4)/938/9/$20.00
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temporal change in the base state is slow compared to th
the perturbations. It has been successfully employed
studying the stability characteristics of a variety of miscib
flow problems in rectilinear porous media domains, e.g., d
placements with nonmonotonic viscosity profiles,7 vertical
miscible displacements with density, stratification,8 and dis-
placements with shear across the interface.9

Miscible displacements caused by radially outward flo
from localized sources are of particular importance in
recovery applications. Linear stability analyses of azimut
disturbances in radial source flows confined to plane ge
etries have been carried out for both miscible and immisc
situations.6,10,11The growth rate in these cases is known to
algebraic, in contrast to the exponential growth observed
rectilinear flows. Radial displacements furthermore are s
ject to a critical Peclet number, and they give rise to dist
bances that grow in a self-similar fashion.6

To our knowledge, the stability of axial and helical pe
turbations in radial source flows has not yet been analyz
However, in any three-dimensionally evolving radial sour
flow, such disturbances can be expected to play an impor
role,12 especially in the presence of density variations,13,14so
il:
© 2003 American Institute of Physics

 license or copyright, see http://pof.aip.org/pof/copyright.jsp



a
. T
n
fte
on
b

ia
es
o
re
rb
on

-
ic
n
t

y

th
n-
d
in

r
ve
it

en-
aw

del
ow

an-
xial
w-
g

ble

ake
by
c-

the
ale

e-
ap-
di-

ld
e,
ed

s
,
stic
d

ti-
f

he
ss
eter

vis-
is

d

939Phys. Fluids, Vol. 15, No. 4, April 2003 Radial source flows in porous media
that it is essential to obtain information about their line
growth, as well as any nonlinear interactions among them
this end, we carry out a linear stability analysis of axial a
helical disturbances in axisymmetric, radial base flows. A
stating the basic assumptions and setting up the corresp
ing system of governing equations, the linear stability pro
lem will be formulated. Results will be discussed for ax
and helical waves in terms of dispersion relations. Th
provide both the maximum growth rates, as well as the m
dangerous and the cutoff wavenumbers. Of particular inte
is a comparison between the rescaled, purely axial pertu
tions on one hand, and the purely azimuthal perturbati
considered by Tan and Homsy.6

II. MATHEMATICAL FORMULATION

A. Governing equations

We consider a three-dimensional domain, Fig. 1, with
radial line source of strengthQ per unit depth. The perme
ability field is assumed to be constant and diffusion isotrop
while the fluids are considered to be neutrally buoyant a
incompressible. As a result, the governing equations take
form

¹•u50, ~1!

¹p52
m

k
u, ~2!

]c

]t
1u•¹c5D¹2c. ~3!

Here, c denotes the concentration,u represents the Darc
velocity, andk indicates the permeability.m(c) gives the
viscosity as a function of the local concentration, and
diffusion coefficientD is taken constant. In assuming a co
stant value ofD, we neglect the effects of velocity-induce
dispersion, cf. Taylor.15 These are known to be relevant
porous media, and both Yortsos and Zeybek,16 as well as
Zimmerman and Homsy,17 have attempted to account fo
them on the basis of a Taylor dispersion tensor. Howe
this approach is strictly applicable only to constant viscos
and density displacements. Petitjeanset al.18 show that it

FIG. 1. Principal sketch of the flow domain. Perturbations are considere
the axialz- and the azimuthalu directions.
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does not correctly predict the velocity-induced dispersion
countered in variable viscosity displacements in a Hele-Sh
cell, for example. As a result, rather than applying a mo
that may not capture the true physics, we decide to foll
the original approach by Tan and Homsy6 and disregard
velocity-induced dispersion for now. This also has the adv
tage that it allows us to compare the current results for a
waves with their original results for azimuthal waves. Ho
ever, we would like to mention that we are currently workin
towards developing improved dispersion models for varia
density and viscosity displacements in narrow gaps~Graf
et al.19! and capillary tubes~Wilhelm and Meiburg20!.

In rendering the above equations dimensionless, we t
a slightly different perspective from the one employed
Tan and Homsy.6 Due to the absence of an external chara
teristic length, those authors refer all lengths tod5Ak, i.e.,
to a length scale related to the microscopic structure of
porous medium. In this way, they arrive at the time sc
k/Q, the characteristic velocityQ/Ak, and the characteristic
pressureQm1 /k. One might argue that this length scale d
scribing the microstructure of the porous medium is not
propriate for rendering the continuum velocity and time
mensionless. For example, a characteristic velocityU* in the
axisymmetric flow field generated by a point source wou
be Q/L, with L being the distance from the point sourc
rather thanQ/Ak. Consequently, we introduce an unspecifi
global length scaleL, in order to obtain the time scaleL2/Q,
and the velocity scaleQ/L, cf. also the nonlinear simulation
by Chen and Meiburg21 in the quarter five-spot geometry
which does exhibit a global length scale. The characteri
pressure scales withQm1 /k, and all viscosities are referre
to m1 . The equations in nondimensional form thus are

1

r

]

]r
~ru !1

1

r

]v
]u

1
]w

]z
50, ~4!

]p

]r
52mu, ~5!

]p

]u
52rmv, ~6!

]p

]z
52mw, ~7!

]c

]t
1u

]c

]r
1

v
r

]c

]u
1w

]c

]z
5

1

PeS ]2c

]r 2 1
1

r

]c

]r
1

1

r 2

]2c

]u2 1
]2c

]z2D .

~8!

It should be pointed out that, in spite of introducing an ar
ficial global length scaleL, we arrive at the same set o
dimensionless equations as Tan and Homsy,6 since all factors
of L cancel out in the process of nondimensionalization. T
Peclet number Pe5Q/D appears as the only dimensionle
parameter in the above equations so far. Another param
will arise later due to the concentration dependence of
cosity. An axisymmetric solution to the above equations
given by6

in
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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uo5
1

r
, ~9!

vo5wo50, ~10!

co5
*0

rAPe/2ts~Pe21!e2s2/2ds

*0
`s~Pe21!e2s2/2ds

. ~11!

An order O(1/APe) approximation to the above ba
concentration valid for large value of Pe is6

co5
1

2 H 11erfS rAPe

2t
2APeD J . ~12!

Below, we will employ Eq.~11! for stability analyses in the
range Pe<100, and Eq.~12! for higher values of Pe. In this
context, it is appropriate to discuss representative value
Pe in practical applications. One can write

Pe5
Q

D
5

U* L

D
5

U* d

D

L

d
5Ped

L

d
, ~13!

where Ped is the Peclet number formed with the pore scaled,
and L/d is the ratio of macroscopic to microscopic leng
scales. It is well known that Ped is anO(1) quantity in both
the diffusion and the dispersion dominated regimes,
Taylor.15 However,L/d can be very large, with the macro
scopic length scaleL ~such as the distance of the front fro
the injection well! on the order of meters or more, and th
pore scale on the order of millimeters or less. Hence,
Peclet number as defined in the present investigation,
Pe5Q/D, can easily reach values ofO(103) or more.

B. Linear stability problem

In order to carry out the linear stability analysis, th
dependent variables are decomposed into base and d
bance components asx5xo1x8. By making this substitution
in the above equations, subtracting out the base state,
neglecting higher order terms, we obtain the following li
earized equations for the disturbances:

1

r

]

]r
~ru8!1

1

r

]v8

]u
1

]w8

]z
50, ~14!

]p8

]r
52mou82

m8

r
, ~15!

]p8

]u
52rmov8, ~16!

]p8

]z
52mow8, ~17!

]c8

]t
1u8

]co

]r
1

1

r

]c8

]r
5

1

PeS ]2c8

]r 2 1
1

r

]c8

]r
1

1

r 2

]2c8

]u2 1
]2c8

]z2 D ,

~18!

m85
dm

dc
c8. ~19!
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Upon eliminating pressure from Eqs.~15!, ~16!, and ~17!,
and employing Eq.~14! to eliminatew, the equations foru
andv can be written as~after omitting the primes!

]2u

]r 2 1S Rco81
1

r D ]u

]r
1S Rco82

1

r D S u

r
1

1

r

]v
]u D1

1

r

]2v
]r ]u

1
]2u

]z2 1
R

r

]2c

]z2 50, ~20!

]v
]r

1S Rco81
1

r D v2
1

r

]u

]u
2

R

r 2

]c

]u
50, ~21!

whereco85dco /dr. R is the second nondimensional param
eter in the problem; it represents the viscosity concentra
relationship given by

R5 lnS m2

m1
D5

1

m

dm

dc
. ~22!

Hence

m~c!5eRc. ~23!

The disturbances are decomposed into Fourier mode

~u,v,c!~r ,u,t !5S û

r
,
v̂
r

,ĉD ~r ,t !ei ~mu1n~ t !z!. ~24!

The reason for assuming a time-dependent wavenumbe
Eq. ~24! will become clear below. We introduce a coordina
transformation involving the similarity variableh and time

h5rAPe

2t
, t5t. ~25!

In analogy to the treatment of azimuthal waves,6 we search
for a separable solution of the form

~ û,v̂,ĉ!~h,t !5~g,h, f !~h!s~ t !. ~26!

By using Eqs.~24!, ~25!, and ~26!, the concentration and
velocity equations~18!, ~20!, and~21! can be written as

d2g

dh2 1S Rco82
1

h D dg

dh
2

2tn2

Pe
g1 imS Rco8

h
2

2

h2Dh1
im

h

dh

dh

2
2tn2R

Pe
f 50, ~27!

dh

dh
1Rco8h2

im

h
g2

imR

h
f 50, ~28!

d2f

dh2 1S ~12Pe!
1

h
1h D d f

dh
2

1

h2 m2f 2
2t

Pe
n2f 1 iz2t

dn

dt
f

2
Peco8

h
g52t

1

s

ds

dt
f . ~29!

The explicit appearance of time in the above equations
plies that the variableh is not an exact similarity variable fo
axial waves, in contrast to the situation for azimuthal wav
Progress can be made with the above equations by assu
a functional form for the axial wavenumber as~Homsy, pri-
vate communication!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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n~ t !5
1

A2t
n8. ~30!

With this definition, the term containing the time derivativ
of n(t) in Eq. ~29! becomesiz f n8/A2t. We note that this is
the only term in which time appears after the substitution
n(t) into Eqs.~27!–~29!. Formally the term withdn/dt, be-
ing proportional to 1/A2t, becomes small only for large
times. However, comparisons with direct numerical simu
tions indicate that this term can be neglected even for tim
of O~1!. The governing equations can then be expressed

d2g

dh2 1S Rco82
1

h D dg

dh
2

n82

Pe
g1 imS Rco8

h
2

2

h2Dh

1
im

h

dh

dh
2

n82R

Pe
f 50, ~31!

dh

dh
1Rco8h2

im

h
g2

imR

h
f 50, ~32!

d2f

dh2 1S ~12Pe!
1

h
1h D d f

dh
2

1

h2 m2f 2
n82

Pe
f 2

Peco8

h
g5s f ,

~33!

with the boundary conditions

~ f ,g,h!~h→6`!50. ~34!

Equations~31!–~34! form a linear eigenvalue system with a
eigenvalues given by

s~m,n,Pe,R!52t
1

s

ds

dt
. ~35!

As for azimuthal waves,6 we find that helical disturbance
grow algebraically}ts/2. The original axial wavenumbe
n(t) for different times can be obtained from relation~30!. In
this context, it is important to appreciate a fundamental d
ference between azimuthal and axial perturbation waves
spectively. The azimuthal wavelength naturally increa
with t1/2 as the front moves radially outward from the sourc
A corresponding stretching mechanism for increasing
wavelength of axial perturbations is absent, which results
the need to scale the axial wavenumber witht1/2.

The above eigenvalue problem is solved numerically
means of the public domain subroutine packagesLAPACK and
ARPACK,22,23 with 10th-order discretization of the derivative
using compact finite differences.24 The real part of the com
plex growth constants represents the algebraic growth ra
of the disturbances.

The plane, two-dimensional case for purely azimut
disturbances considered by Tan and Homsy6 is recovered by
settingn850. In the above notation, the resulting equatio
read

d2g

dh2 1S Rco81
1

h D dg

dh
2

m2

h2 g5R
m2

h2 f , ~36!

d2f

dh2 1F ~12Pe!
1

h
1hG d f

dh
2S m2

h2 1s D f 5
Pe

h
co8g. ~37!
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Conversely, for the case of purely axial perturbationsm
50), we obtain

d2g

dh2 1S Rco82
1

h D dg

dh
2

n2

Pe
g5R

n2

Pe
f , ~38!

d2f

dh2 1F ~12Pe!
1

h
1hG d f

dh
2S n2

Pe
1s D f 5

Pe

h
co8g. ~39!

These two sets of equations have closely related structu
As we will see below, this is responsible for the fact that t
dispersion relationships of purely axial and purely azimut
perturbations are quantitatively quite similar.

III. RESULTS

The two dimensionless parameters governing the lin
stability problem are the Peclet number Pe and the mob
ratio R. Figure 2 demonstrates their influence on the disp

FIG. 2. Dispersion relations for purely azimuthal (n850) and purely axial
(m50) perturbation waves, respectively, as functions of~a! Pe and~b! R.
Rescaling the axial wavenumber withn85nA2t results in very similar dis-
persion relations for the two cases. The maximum growth rate, as well a
maximum and cutoff wavenumbers, increase with Pe andR.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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sion relations for purely axial and azimuthal perturbatio
respectively. The growth rates for azimuthal perturbatio
obtained whenn850, closely reproduce those of Tan an
Homsy,6 which validates the present computational pro
dures for solving the eigenvalue problem.

When comparing purely axial with azimuthal perturb
tions, we note that the shapes of the respective disper
relationships in general, and the maximum growth rates
particular, are quite similar for the entire range of Pe andR.
The maximum growth rate increases with increasing val
of Pe andR, while the most dangerous and cutoff wavenu
bers shift to higher values.

Figure 3~a! shows that the maximum growth rates
helical modes (m,n8Þ0) are very close to those of th
purely azimuthal and axial modes. The trajectory of ma
mum growth for helical perturbations in them, n8 plane is

FIG. 3. Dispersion relations for helical perturbations at Pe5400, R53. ~a!
The growth rates is plotted as a surface above them, n8 plane.~b! Trajec-
tory of the maximum growth rate in them, n8 plane. Along then850 and
m50 axes, the maximum growth rate corresponds to the two-dimensi
plane and axisymmetric cases, respectively. For helical perturbations
(m,n8Þ0), the wavenumberksmax

of maximum growth follows an elliptical
path in them, n8 plane.
Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP
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plotted in Fig. 3~b!. It is seen to closely follow an elliptica
path given by

m2

msmax

2 un850
1

n82

nsmax
82 um50

51. ~40!

The above graph suggests that for helical modes with wa
numberk5Am21n82, the maximum growth rates and th
corresponding wavenumbers can be estimated with good
curacy from the purely axial and azimuthal problems w
corresponding wavenumbers. It furthermore demonstra
that there are no preferred helical modes, so that in a f
three-dimensional flow the entire range of helical modes
tween the purely axial and azimuthal extrema can be am
fied. Under these circumstances, the characteristics of
initial conditions can take on special importance.

A. Relationship between purely axial and azimuthal
modes

The dispersion relations plotted in Fig. 2 suggest that
characteristics of the azimuthal and axial modes are clo
related, at least in the limit of large Pe. In order to furth
investigate this issue, we derive an analytic solution for ax
waves in the limit of large Pe, similar to the one presented
Tan and Homsy6 for azimuthal perturbations. To this end, w
setm50 in Eqs.~31!–~33! and introduce a modified wave
number

n15n8Pe21/2,

along with a modified growth rate

s15
s

APe
.

Upon setting

h5x1APe,

and eliminatingf from Eqs.~31! and ~33!, we obtain

d2g

dx2 1Rco8
dg

dx
2n1

2S 12
Rco8

ŝ Dg1O~Pe21/2!50, ~41!

where

ŝ5s11
n1

2

APe
.

Equation ~41! is identical to the one derived by Tan an
Homsy1 for purely azimuthal disturbances in the limit o
large Pe. Of course, the wavenumber is defined differe
here. An analytical solution of Eq.~41! is presented by both
Hickernell and Yortsos,25 as well as Tan and Homsy.6 For the
present case of axial perturbations, and in the limit of la
n1 we obtain

s15
R

Ap
S 12

1

n1
D2

n1
2

APe
1O~n1

22!, ~42!

with the most dangerous wavenumber

al
ith
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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nmax8 5S R

2Ap
D 1/3

Pe2/3, ~43!

the cutoff wavenumber

ncutoff8 5S R

Ap
D 1/2

Pe3/4, ~44!

and the growth rate

smax5
R

Ap
Pe1/2H 12S 9Ap

4R D 1/3

Pe21/6J . ~45!

Figure 4 presents the ratios of the above asymptotic value
those obtained numerically for the maximum growth ra
smax, the corresponding wavenumbern8, and the cutoff
wavenumberncutoff8 . As is to be expected, they approa
unity as Pe becomes large.

When comparing with the results of Tan and Homsy6 for
azimuthal modes, we find that in the limit of large Pe t
ratio of the wavenumbers for purely azimuthal and ax
modes is

mmax

nmax8
5

mcutoff

ncutoff8
51. ~46!

We furthermore note that in this limit the ratio of the wav
numbers is independent of the viscosity ratio. The maxim
growth rate is identical for axial and azimuthal disturbanc

The original wavenumbern of maximum growth for
axial perturbations, which is a function of time as indicat
by Eq.~30!, shifts to lower values ast is increased. This time
dependence is plotted in Fig. 5, based on data calcul
numerically from Eqs.~31!–~33!. The most dangerous wave
number for axial perturbations initially has a higher val
than that for azimuthal perturbations, but subsequently
creases with time.

Based on numerical solutions of Eqs.~31!–~33!, Fig.
6~a! shows the ratio of azimuthal to axial wavenumbers
maximum growth, as well as the ratio of azimuthal to ax

FIG. 4. Ratios of asymptotic to numerical values as a function of PeR
55) for the maximum growth rate, the most dangerous axial wavenum
and the cutoff axial wavenumber. All ratios approach unity for large Pe
Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP
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cutoff wavenumbers, as functions of Pe. These ratios
proach a value of unity as Pe→`. Note that the ratio of the
cutoff wavenumbers approaches this limit faster than the
tio of the wavenumbers of maximum growth, due to the d
ferent exponents of Pe in Eqs.~43! and ~44!. Figure 6~b!
provides corresponding information as a function ofR. Inter-
estingly, a maximum occurs at intermediateR values in the
ratio of wavenumbers of maximum growth.

B. Influence of Pe and R

Figure 7 compares the results obtained from Eqs.~31!–
~33! with the asymptotic relationships for large Pe. T
maximum growth ratesmax is seen to increase with Pe an
R. For the parameter range shown in the figure, the slop
not yet constant in the log–log plot, as indicated by the slo
values at two positions along the curve. However, the co
putational data clearly approach the proper asymptotic
havior.

The wavenumber corresponding to the maximum grow
rate is plotted in Fig. 8 as a function ofR and Pe for the axial
and azimuthal modes. While the asymptotic dependence
Pe is recovered to a high degree of accuracy, there is a
nificant discrepancy between the numerical and asympt
values as a function ofR, as can be seen in Fig. 8~b!. One
possible source of this discrepancy may be the relativ
small asymptotic exponent ofR in Eq. ~43!, i.e., 1/3, which
raises the possibility that the numerical data are not yet in
asymptotic regime.

Figure 9 depicts the increase of the cutoff wavenum
with Pe andR. Again, good agreement is found with th
predicted asymptotic behavior.

The ratio of the cutoff wavenumber to the wavenumb
of maximum growth, shown in Fig. 10, displays an intere
ing behavior. With increasing Pe, the most dangerous wa
number is seen to shift monotonically towards the lower p

er
FIG. 5. Original wavenumbern of maximum growth as a function of Pe a
R53 for different times. The most dangerous wavenumber of the a
perturbations starts at a magnitude higher than that of the most dange
azimuthal perturbations. Its magnitude decreases with time and beco
approximately equal to the magnitude of the most amplified azimuthal
turbation att50.5.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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of the spectrum, cf. Fig. 10~a!. In contrast, a maximum o
this ratio is observed at intermediate values ofR, Fig. 10~b!.
This indicates that the wavenumber of maximum growth i
tially moves towards the lower range of the spectrum,
starts to shift towards the higher range aroundR53.

IV. SUMMARY AND CONCLUSIONS

A linear stability analysis has been performed for ax
and helical perturbations in radial porous media displa
ments involving miscible fluids of constant density. The r
evant dispersion relations are evaluated as functions of
Peclet number and the viscosity ratio, by solving a numer
eigenvalue problem. In contrast to purely azimuth

FIG. 6. Ratios of azimuthal to axial, maximum, and cutoff wavenumbe
~a! as function of Pe atR55; ~b! as function ofR at Pe51000. In~a! both
ratios monotonically approach a value of unity as Pe→`. In ~b! there is a
maximum in the ratio of the most dangerous wavenumbers nearR54. At
moderate values of Pe andR, the ratio of the most dangerous wavenumbe
deviates from the asymptotic limit of unity significantly more then the cut
wavenumber ratio.
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perturbations,6 whose algebraic growth rate does not depe
on time, axial perturbations are seen to grow algebraic
with a time-dependent growth rate. However, by rescal
the axial wavenumber appropriately, the explicit appeara
of time in the eigenvalue problem can be avoided. The
sulting dispersion relationships for axial waves are seen to
qualitatively and quantitatively similar to those for azimuth
waves. The reason for this similarity is shown to lie in t
closely related structures of the differential equations g
erning these cases.

The analysis of helical waves shows that their maxim
growth rate is approximately constant over the entire ra
of wave vector directions between the purely axial and a
muthal extrema, and that both the maximum growth rate
the wavenumber of maximum growth can be obtained fr

,

FIG. 7. smax as a function of~a! Pe for R55; ~b! R for Pe51000. The
numbers next to the lines specify the respective local slopes. The asymp
relationship according to Eq.~45! is also plotted. The slopes of the numer
cal data decrease slightly with increasing Pe andR, and they approach the
expected asymptotic behavior.
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the corresponding purely axial and azimuthal problems. T
suggests that in a fully three-dimensional flow the charac
istics of the initial conditions can take on special importan

The time-dependent growth rate of axial perturbatio
represents an interesting phenomenon, as it gives rise
critical time tcrit . For t,tcrit , the most dangerous axia
wavenumbers are larger, whereas fort.tcrit , the most dan-
gerous azimuthal wavenumbers have higher values. He
there exists the possibility that at early times the domin
axial flow structures will be of a smaller scale than the c
responding azimuthal features, and that this trend will
verse itself later on.

The maximum growth rate of axial perturbations, as w
as their most dangerous and cutoff wavenumbers, are se

FIG. 8. Wavenumber of maximum growth as a function of~a! Pe and~b! R,
for axial and azimuthal perturbations. While the asymptotic dependenc
Pe is recovered to a high degree of accuracy, there is a significant dis
ancy between the numerical and asymptotic values as a function ofR. Pos-
sibly, the numerical data are not yet in the asymptotic regime.
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increase with the Peclet number and the viscosity ratio. T
most dangerous wavenumber is observed to shift towards
lower end of the spectrum as the Peclet number increa
With increasing viscosity contrast, it first moves towards t
lower end of the spectrum, only to shift towards the high
end later on.

In the limit of large Pe, asymptotic solutions can be o
tained for the growth of axial perturbations. Numerical so
tions of the full eigenvalue problem generally show go
agreement with these asymptotic solutions for large Pe
numbers.

The above features regarding the linear stability of ax
and helical waves set the stage for interesting nonlinear
namics as well. Furthermore, it will be of great interest
study their nonlinear interactions with azimuthal waves.

on
p-

FIG. 9. Cutoff wavenumber as a function of~a! Pe, and~b! R, for axial and
azimuthal perturbations. Good agreement with the asymptotic behavior
dicted by Eq.~44! is observed in both cases.
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numerical study addressing these topics is currently un
way.

ACKNOWLEDGMENTS

The authors would like to thank Professor Geor
Homsy for several helpful discussions. Support for this
search by the Petroleum Research Fund, the Departme
Energy, and an NSF equipment grant is gratefully ackno
edged.

FIG. 10. Ratio of cutoff to most dangerous wavenumber as function of~a!
Pe, and~b! R, for axial and azimuthal perturbations. The wavenumber
maximum growth shifts monotonically towards the lower part of the sp
trum as Pe increases. In contrast, there is a maximum in the ratio o
cutoff to the most dangerous wavenumber as a function ofR, after which the
wavenumber of maximum growth shifts towards the higher end of the
stable spectrum.
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