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Radial source flows in porous media: Linear stability analysis of axial
and helical perturbations in miscible displacements
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Linear stability results are presented for axial and helical perturbation waves in radial porous media
displacements involving miscible fluids of constant density. A numerical eigenvalue problem is
formulated and solved in order to evaluate the relevant dispersion relations as functions of the Peclet
number and the viscosity ratio. In contrast to the constant algebraic growth rates of purely azimuthal
perturbationgC. T. Tan and G. M. Homsy, Phys. Flui@§, 1239(1987], axial perturbations are

seen to grow with a time-dependent growth rate. As a result, there exists a critical time up to which
the most dangerous axial wavenumbers are larger, and beyond which the most dangerous azimuthal
wavenumbers have higher values. This raises the possibility that early on, the smaller flow scales
appear in the axial direction, whereas the later flow stages are dominated by smaller azimuthal
features. By rescaling the axial wavenumber, the explicit appearance of time can be eliminated. The
maximum growth rate of axial perturbations, as well as their most dangerous and cutoff
wavenumbers, are seen to increase with the Peclet number and the viscosity ratio. The most
dangerous wavenumber is observed to shift towards the lower end of the spectrum as the Peclet
number increases. With increasing viscosity contrast, it first moves towards the lower part of the
spectrum, only to shift towards the higher end later on. In the limit of large Pe, asymptotic solutions
are obtained for the growth of axial disturbances. Numerical solutions of the full eigenvalue
problem generally show good agreement with these asymptotic solutions for large Peclet numbers.
Over the entire range of wave vector directions between the purely axial and azimuthal extrema,
helical waves display an approximately constant maximum growth rate. The wavenumber of
maximum growth as well the maximum growth rate of helical waves can be evaluated from the
corresponding purely azimuthal and axial problems. This suggests that in three-dimensional flows
the nature of the initial conditions plays an important role. 2803 American Institute of Physics.
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I. INTRODUCTION temporal change in the base state is slow compared to that of
the perturbations. It has been successfully employed in
Unstable displacements in porous media have been th&tudying the stability characteristics of a variety of miscible
subject of intense research for many years, due to their imfow problems in rectilinear porous media domains, e.g., dis-
portance in practical applications, for example, in the areaplacements with nonmonotonic viscosity profilesertical
of enhanced oil recovery and ground water hydrolbgyan  miscible displacements with density, stratificatfoand dis-
unfavorable mobility gradient, the interface between the twoplacements with shear across the interface.
fluids becomes unstable, with the spectrum of unstable wave- Miscible displacements caused by radially outward flows
lengths determined by diffusion or surface tension, dependfrom localized sources are of particular importance in oil
ing on whether the displacement is miscible or immiscible,recovery applications. Linear stability analyses of azimuthal
respectively. Pioneering work on the fundamental instabilitydisturbances in radial source flows confined to plane geom-
of the displacement process was performed by Haiaffman  etries have been carried out for both miscible and immiscible
and Taylor; and Chouke, van Meurs, and van der Pbel.  situations®!%*The growth rate in these cases is known to be
In the presence of diffusion or dispersion, the linear staalgebraic, in contrast to the exponential growth observed for
bility analysis of miscible flows has to deal with the exis- rectilinear flows. Radial displacements furthermore are sub-
tence of a time-dependent base state. Towards this end, T@stt to a critical Peclet number, and they give rise to distur-
and Homsy® developed a quasi-steady-state approximatiorbances that grow in a self-similar fashidn.
(QSSA in order to analyze the stability of miscible displace- To our knowledge, the stability of axial and helical per-
ments in rectilinear domains. The QSSA requires that theurbations in radial source flows has not yet been analyzed.
However, in any three-dimensionally evolving radial source
3Author to whom correspondence should be addressed. Electronic maiflOW, such disturbances can be expected to play an important
meiburg@engineering.ucsb.edu role 1? especially in the presence of density variatioh¥’so
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z does not correctly predict the velocity-induced dispersion en-
countered in variable viscosity displacements in a Hele-Shaw
cell, for example. As a result, rather than applying a model
that may not capture the true physics, we decide to follow

p 8 the original approach by Tan and Horfisgnd disregard

velocity-induced dispersion for now. This also has the advan-

tage that it allows us to compare the current results for axial
waves with their original results for azimuthal waves. How-
ever, we would like to mention that we are currently working
- towards developing improved dispersion models for variable
density and viscosity displacements in narrow gé@saf
et al% and capillary tubegWilhelm and Meiburd?).
FIG. 1. Principal sketch of the flow domain. Perturbations are considered in !n rende_rlng the above e.quatlons dimensionless, we take
the axialz- and the azimuthab directions. a slightly different perspective from the one employed by
Tan and Homs$.Due to the absence of an external charac-
teristic length, those authors refer all lengthgite \k, i.e.,

that it is essential to obtain information about their linearto @ length scale related to the microscopic structure of the

growth, as well as any nonlinear interactions among them. T®orous medium. In this way, they arrive at the time scale
this end, we carry out a linear stability analysis of axial andk/Q, the characteristic velocit®/ k, and the characteristic

helical disturbances in axisymmetric, radial base flows. AftefressureQu, /k. One might argue that this length scale de-
stating the basic assumptions and setting up the correspongcribing the microstructure of the porous medium is not ap-

ing system of governing equations, the linear stability probropriate for rendering the continuum velocity and time di-

lem will be formulated. Results will be discussed for axial mensionless. For example, a characteristic velddityin the

and helical waves in terms of dispersion relations. Thes@xisymmetric flow field generated by a point source would

provide both the maximum growth rates, as well as the mospe Q/L, with L being the distance from the point source,

dangerous and the cutoff wavenumbers. Of particular intereggther tharQ/ k. Consequently, we introduce an unspecified
is a comparison between the rescaled, purely axial perturb&lobal length scalé, in order to obtain the time scal€/Q,
tions on one hand, and the purely azimuthal perturbationgnd the velocity scal®/L, cf. also the nonlinear simulations
considered by Tan and Hom8$y. by Chen and Meibufg in the quarter five-spot geometry,
which does exhibit a global length scale. The characteristic
pressure scales witQu,/k, and all viscosities are referred
to uq. The equations in nondimensional form thus are

M2

Il. MATHEMATICAL FORMULATION

A. Governing equations 19 1lov ow
——(ru)+ - —+-—=0, (4)
We consider a three-dimensional domain, Fig. 1, with a" " rag oz
radial line source of strengt® per unit depth. The perme-
ability field is assumed to be constant and diffusion isotropicﬂ_p: . )
while the fluids are considered to be neutrally buoyant andr B
incompressible. As a result, the governing equations take the
form ap
V.u=o, 1 29 MU, (6)
i ]
Vp=-1u, @ P__
K oy AW, )
Jc 5
= Tu-Ve=DbV<c. 3 o, o vic e 1(rc 1lioc 1 s
. a Yo rae VT Pelarr Tt ar T r2ae " o)
Here, c denotes the concentration, represents the Darcy ®)

velocity, andk indicates the permeabilityw(c) gives the

viscosity as a function of the local concentration, and thdt should be pointed out that, in spite of introducing an arti-
diffusion coefficientD is taken constant. In assuming a con- ficial global length scald., we arrive at the same set of
stant value oD, we neglect the effects of velocity-induced dimensionless equations as Tan and Hofrsipce all factors
dispersion, cf. Taylot> These are known to be relevant in of L cancel out in the process of nondimensionalization. The
porous media, and both Yortsos and Zeybelas well as  Peclet number PeQ/D appears as the only dimensionless
Zimmerman and HomsY, have attempted to account for parameter in the above equations so far. Another parameter
them on the basis of a Taylor dispersion tensor. Howeverill arise later due to the concentration dependence of vis-
this approach is strictly applicable only to constant viscositycosity. An axisymmetric solution to the above equations is
and density displacements. Petitjeagtsal’® show that it  given by
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1 Upon eliminating pressure from Egél5), (16), and (17),
Uo=1" (9 and employing Eq(14) to eliminatew, the equations fou
andv can be written asgafter omitting the primes
Vo=Wo=0, (10 AT P AT 1)(u 1(?v)+1 v
ot —|— C——||l-t+——=|+~—
[rPegPe-1) =2 ar? ° ar ° r)\r ra@ rarag
Co™= f°°s<Pe—1)e_52/2dS (1D 9’u R é%c
’ T2 T2~ 20
An order O(1/\/Pe) approximation to the above base
concentration valid for large value of P€ is dv lRe 1) 1ou Rdc o 21
ar YV T Y 0 a0 @D
1 Pe
Co=5 )| 1+erfr z—\/P—e . (12 wherec/=dc,/dr. Ris the second nondimensional param-

eter in the problem; it represents the viscosity concentration
Below, we will employ Eq.(11) for stability analyses in the relationship given by
range Pe&100, and Eq(12) for higher values of Pe. In this

context, it is appropriate to discuss representative values of R= |n(ﬂ> = E d_'“ (22)
Pe in practical applications. One can write p1)  wdc
b Q_UTL_UrdL_ L 1a Hence
“ D™D "D d Y 13 p(c)=e"c, (23)
where Pgis the Peclet number formed with the pore saile The disturbances are decomposed into Fourier modes as
and L/d is the ratio of macroscopic to microscopic length 0o . .
scales. It is well known that Rés anO(1) quantity in both (u,v,c)(r,ﬁ,t)=(F,F,C (r,p)e'(mo+nvz), (24

the diffusion and the dispersion dominated regimes, cf.
Taylor® However,L/d can be very large, with the macro- The reason for assuming a time-dependent wavenumber in
scopic length scalé (such as the distance of the front from Eq. (24) will become clear below. We introduce a coordinate
the injection well on the order of meters or more, and the transformation involving the similarity variablg and time

pore scale on the order of millimeters or less. Hence, the

Peclet number as defined in the present investigation, i.e., n=r \/Ee t=t. (25)
Pe=Q/D, can easily reach values 6f(10°) or more. 2t

In analogy to the treatment of azimuthal wafese search

for a separable solution of the form
In order to carry out the linear stability analysis, the A na _
dependent variables are decomposed into base and distur- (Uv,¢)(7,0)=(g,h, ) (7)s(t). (26
bance components as- x,+X’. By making this substitution By using Egs.(24), (25), and (26), the concentration and
in the above equations, subtracting out the base state, anelocity equationg18), (20), and(21) can be written as
neglecting higher order terms, we obtain the following lin-

B. Linear stability problem

- - - . d? 1\ dg 2tn? Rc, 2 im dh
earized equations for the disturbances: 79 + ( Rc,— _)_g_ —qg+ im( —2 —z> h+ — —
dn n/dn Pe n 7 n dn
10 1o ow 14 ,
T U+ oot ——=0, 14 2tn Rf:O @7
Pe '
a ! ’
i=—,u0u’—'u—, (150 dh . im_imR
ar r —+Rch——g———1=0, (28
dn 7 7
ap’ 2
—o =Ty, (16) df+ it )ﬂ_i e 2t Ligop 2
a0 ar’ (1—Pe aF 772mf P f |22tdtf
ap’ Pec/ 1ds
=~ oW, 17 0=t 2
Jz ” g 2tsdtf' (29
ax de, 1ot 1 #*c’ 1gc’ 1%’ % The explicit appearance of time in the above equations im-
U T o T Pel ar2 + Y o * r2 962 * 972 |’ plies that the variabley is not an exact similarity variable for
(18  axial waves, in contrast to the situation for azimuthal waves.
Progress can be made with the above equations by assuming
, du , a functional form for the axial wavenumber @$omsy, pri-
p'=—==c'. (29 L
dc vate communication
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. @) E=5400( 0)
n(t)= —=n’. (30) 80 ~ 5 ~Ponso0 (m=
r - —a- - Pe=800 (m=0)
\/z ——a— Pe=1600 $m=0)
—-—a—--Pe=400 (n'=0)
~ —a— -Pe=800 (n'=0)
— & Pe=1600 (n'=0)

With this definition, the term containing the time derivative

of n(t) in Eq. (29) becomeszfn’/+/2t. We note that this is 60
the only term in which time appears after the substitution of

n(t) into Egs.(27)—(29). Formally the term witidn/dt, be-

LI

ing proportional to 1{2t, becomes small only for large Ok /.=
times. However, comparisons with direct numerical simula- oy ™
tions indicate that this term can be neglected even for times L ) \\"\\\\
of O(1). The governing equations can then be expressed as N Al W
20} \k N
dzg+ . 1l)dg n’? N Rc, 2 A [ % a
a7 FIReT g, Pt M A YA Y ¥
- 2 S T 200 300 400
+ m ﬂ_ R (31) wavenumber
n dnp Pe ’
dh im imR
dn 7 7 Pe=800
~-—a—--R=3 (m=0
d?f df 1 , n’? 0 I —*-—g=g§m=g§
—_ —_— —_ 71— = B —— =0 (M=
d7]2+ (1 Pe) +7] d7] > M Pef 7 g (Tf, sk _._A_._R‘:S(n;___o;
(33 - ——- -R=4 (nl=0
- ———R=5 (n'=0)
with the boundary conditions i AT T,
- V4 >
(f,9,h)(n—==)=0. (34) ol R
S %
Equationg31)—(34) form a linear eigenvalue system with an 201 ,” 4 S \\\A
eigenvalues given by W/ RN
» /, N ANY
1ds ¥ %R
o(mn,PeR)=2t_ . (35) ' N “\%\
ST R  STE Y S \ U
As for azimuthal wave$§,we find that helical disturbances 0 100 200
wavenumber

grow algebraically<t®?2. The original axial wavenumber

n(t) for different times can be obtained from relati9). In FIG. 2. Dispersion relations for purely azimuthal’ €0) and purely axial

this context, it is important to appreciate a fundamental dif{(m=0) perturbation waves, respectively, as functionga)fPe and(b) R.

ference between azimuthal and axial perturbation waves, reRescaling the axial wavenumber witt=n /2t results in very similar dis-

spectively. The azimuthal Wavelength naturally increasegersion relations for the two cases. The maximum growth rate, as well as the
12 . maximum and cutoff wavenumbers, increase with Pe Rnd

with t~< as the front moves radially outward from the source.

A corresponding stretching mechanism for increasing the

Wavelength of axial perturbations is absent, which results irC()nverse|y, for the case of pure|y axial per’[urba’[iom (

the need to scale the axial wavenumber viifA =0), we obtain

The above eigenvalue problem is solved numerically by ) ) 5
means of the public domain subroutine packagesck and d_g o — l)@_ n_g: Rn_f (39)
ARPACK, 2223 with 10th-order discretization of the derivatives ~ d#° ° n/dn Pe Pe’
using compact finite differencé$The real part of the com- 2 1 df (n2 Pe
plex growth constant- represents the algebraic growth rate —+|(1-P9 —+np|-— | ==+o|f=—clg. (39
of the disturbances. d n “ldy \Pe 7

The plane, two-dimensional case for purely azimuthalThese two sets of equations have closely related structures.
dlstgrbances considered by Tan _and Ho?nsye(_:overed b_y As we will see below, this is responsible for the fact that the
settingn’=0. In the above notation, the resulting equationsdispersion relationships of purely axial and purely azimuthal
read perturbations are quantitatively quite similar.

dg m? m?

1
a9 R (36) Il RESULTS

&y +(R +
— C

dzy 0 _ _ _ _
The two dimensionless parameters governing the linear

stability problem are the Peclet number Pe and the mobility
ratio R. Figure 2 demonstrates their influence on the disper-

d*f

—
d#?

m2

—+o
2

u

dn

(1-Po =~ + =% 37
-Pe— =—clg.
7 7 7 09
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plotted in Fig. 3b). It is seen to closely follow an elliptical
path given by

2 12

m n

mimajneo i n(,rzmaJm=0

=1. (40)

The above graph suggests that for helical modes with wave-
numberk=m?+n'2, the maximum growth rates and the
corresponding wavenumbers can be estimated with good ac-
curacy from the purely axial and azimuthal problems with
corresponding wavenumbers. It furthermore demonstrates
that there are no preferred helical modes, so that in a fully
three-dimensional flow the entire range of helical modes be-
tween the purely axial and azimuthal extrema can be ampli-
fied. Under these circumstances, the characteristics of the
initial conditions can take on special importance.

A. Relationship between purely axial and azimuthal
modes

The dispersion relations plotted in Fig. 2 suggest that the
characteristics of the azimuthal and axial modes are closely
related, at least in the limit of large Pe. In order to further
investigate this issue, we derive an analytic solution for axial
waves in the limit of large Pe, similar to the one presented by
Tan and HomsYfor azimuthal perturbations. To this end, we
setm=0 in Egs.(31)—(33) and introduce a modified wave-
number

n,=n’'Pe 2

along with a modified growth rate

g

JPe
FIG. 3. Dispersion relations for helical perturbations a+R60, R=3. (a) i
The growth rater is plotted as a surface above tiren’ plane.(b) Trajec- Upon setting
tory of the maximum growth rate in th@, n’ plane. Along then’=0 and
m=0 axes, the maximum growth rate corresponds to the two-dimensional n=X+ \/P_e,
plane and axisymmetric cases, respectively. For helical perturbations with o ) )
(m,n"#0), the wavenumbek,, _ of maximum growth follows an elliptical and eliminatingf from Egs.(31) and(33), we obtain
path in them, n” plane.

(X

!

d? d C
d—)g+Rc(’)d—3— ni(l— (}° g+O(Pe?=0, (41
where
sion relations for purely axial and azimuthal perturbations,
respectively. The growth rates for azimuthal perturbations, _ ni

obtained whem'=0, closely reproduce those of Tan and o=01t \/_P—e'
Homsy? which validates the present computational proce-
dures for solving the eigenvalue problem. Equation (41) is identical to the one derived by Tan and

When comparing purely axial with azimuthal perturba- Homsy for purely azimuthal disturbances in the limit of
tions, we note that the shapes of the respective dispersidarge Pe. Of course, the wavenumber is defined differently
relationships in general, and the maximum growth rates irhere. An analytical solution of Eq41) is presented by both
particular, are quite similar for the entire range of Pe Bnd  Hickernell and Yortso4® as well as Tan and Hom&yFor the
The maximum growth rate increases with increasing valuepresent case of axial perturbations, and in the limit of large
of Pe andR, while the most dangerous and cutoff wavenum-n, we obtain
bers shift to higher values.

Figure 3a) shows that the maximum growth rates of R 1 n3 s
helical modes if,n’ #0) are very close to those of the ‘Tl:\/_; _n_l)_\/_p—e+0(nl ), (42)
purely azimuthal and axial modes. The trajectory of maxi-
mum growth for helical perturbations in the, n’ plane is  with the most dangerous wavenumber
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FIG. 4. Ratios of asymptotic to numerical values as a function of Re ( FIG. 5. Original wavenumben of maximum growth as a function of Pe at

=5) for the maximum growth rate, the most dangerous axial wavenumbeR=3 for different times. The most dangerous wavenumber of the axial

and the cutoff axial wavenumber. All ratios approach unity for large Pe. perturbations starts at a magnitude higher than that of the most dangerous
azimuthal perturbations. Its magnitude decreases with time and becomes
approximately equal to the magnitude of the most amplified azimuthal per-

1/3 turbation att=0.5.

R
nr,nax: m P62/3, (43
the cutoff wavenumber cutoff wavenumbers, as functions of Pe. These ratios ap-
2 proach a value of unity as Pex. Note that the ratio of the
n :<_> P4 (44) cutoff wavenumbers approaches this limit faster than the ra-
cutoff Jm ' tio of the wavenumbers of maximum growth, due to the dif-
ferent exponents of Pe in Eq&3) and (44). Figure Gb)
and the growth rate provides corresponding information as a functiorRofnter-
R NEARS estingly, a maximum occurs at intermedidevalues in the
amaxz—Pel’z[ 1- (—) Pe 1’6}. (45 ratio of wavenumbers of maximum growth.
Jr 4R

Figure 4 presents the ratios of the above asymptotic values - Influence of Pe and R

those obtained numerically for the maximum growth rate Figure 7 compares the results obtained from E§3)—
Omax, the corresponding wavenumber, and the cutoff (33 with the asymptotic relationships for large Pe. The
wavenumbem(,q. As is to be expected, they approach maximum growth rater,,. is seen to increase with Pe and
unity as Pe becomes large. R. For the parameter range shown in the figure, the slope is
When comparing with the results of Tan and Hofifsy  not yet constant in the log—log plot, as indicated by the slope
azimuthal modes, we find that in the limit of Iarge Pe theva|ues at two pOSitiOﬂS a|ong the curve. However, the com-
ratio of the wavenumbers for purely azimuthal and aXialputationa| data C|ear|y approach the proper asymptotic be-

modes is havior.
Muax  Meutof The wavenumber corresponding to the maximum growth
== 1. (46)  rate is plotted in Fig. 8 as a function Bfand Pe for the axial
max cutoff and azimuthal modes. While the asymptotic dependence on

We furthermore note that in this limit the ratio of the wave- Pe is recovered to a high degree of accuracy, there is a sig-
numbers is independent of the viscosity ratio. The maximumnificant discrepancy between the numerical and asymptotic
growth rate is identical for axial and azimuthal disturbancesvalues as a function dR, as can be seen in Fig(t8. One
The original wavenumben of maximum growth for possible source of this discrepancy may be the relatively
axial perturbations, which is a function of time as indicatedsmall asymptotic exponent & in Eqg. (43), i.e., 1/3, which
by Eq.(30), shifts to lower values asis increased. This time raises the possibility that the numerical data are not yet in the
dependence is plotted in Fig. 5, based on data calculatessymptotic regime.
numerically from Eqs(31)—(33). The most dangerous wave- Figure 9 depicts the increase of the cutoff wavenumber
number for axial perturbations initially has a higher valuewith Pe andR. Again, good agreement is found with the
than that for azimuthal perturbations, but subsequently depredicted asymptotic behavior.
creases with time. The ratio of the cutoff wavenumber to the wavenumber
Based on numerical solutions of Eq®1)—(33), Fig.  of maximum growth, shown in Fig. 10, displays an interest-
6(a) shows the ratio of azimuthal to axial wavenumbers ofing behavior. With increasing Pe, the most dangerous wave-
maximum growth, as well as the ratio of azimuthal to axialnumber is seen to shift monotonically towards the lower part
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1.02-

—s— maximum wavenumber
—a— cutoff wavenumber

1.008 ,
L —&s— maximum wavenumber

—a&— cutoff wavenumber

1.005

m/n’

1.002F
e
0.999
e e ]
2 4 6 8 10
(b) R

FIG. 6. Ratios of azimuthal to axial, maximum, and cutoff wavenumbers,
(a) as function of Pe aR=5; (b) as function ofR at Pe=1000. In(a) both
ratios monotonically approach a value of unity asRe In (b) there is a
maximum in the ratio of the most dangerous wavenumbers Reat. At
moderate values of Pe aR] the ratio of the most dangerous wavenumbers
deviates from the asymptotic limit of unity significantly more then the cutoff
wavenumber ratio.

of the spectrum, cf. Fig. 18). In contrast, a maximum of
this ratio is observed at intermediate valuesRpfig. 10b).

A. Riaz and E. Meiburg

R=5
—e— numerical
——e— asymptotic

140
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i Pe=1000
104F o numerical
79F —e— asymptotic
54F
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R

FIG. 7. oax @s a function of(a) Pe forR=5; (b) R for Pe=1000. The
numbers next to the lines specify the respective local slopes. The asymptotic
relationship according to E¢45) is also plotted. The slopes of the numeri-
cal data decrease slightly with increasing Pe Bnénd they approach the
expected asymptotic behavior.

perturbation$,whose algebraic growth rate does not depend
on time, axial perturbations are seen to grow algebraically

This indicates that the wavenumber of maximum growth ini-With & time-dependent growth rate. However, by rescaling
tially moves towards the lower range of the spectrum, buth® axial wavenumber appropriately, the explicit appearance

starts to shift towards the higher range arotive 3.

IV. SUMMARY AND CONCLUSIONS

A linear stability analysis has been performed for axial

of time in the eigenvalue problem can be avoided. The re-
sulting dispersion relationships for axial waves are seen to be
qualitatively and quantitatively similar to those for azimuthal
waves. The reason for this similarity is shown to lie in the
closely related structures of the differential equations gov-
erning these cases.

and helical perturbations in radial porous media displace- The analysis of helical waves shows that their maximum

ments involving miscible fluids of constant density. The rel-

growth rate is approximately constant over the entire range

evant dispersion relations are evaluated as functions of thef wave vector directions between the purely axial and azi-
Peclet number and the viscosity ratio, by solving a numericamuthal extrema, and that both the maximum growth rate and

eigenvalue problem. In contrast to purely azimuthal

the wavenumber of maximum growth can be obtained from
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FIG. 8. Wavenumber of maximum growth as a function@fPe andb) R, FIG. 9. Cutoff wavenumber as a function @ Pe, andb) R, for axial and

for axial and azimuthal perturbations. While the asymptotic dependence oazimuthal perturbations. Good agreement with the asymptotic behavior pre-
Pe is recovered to a high degree of accuracy, there is a significant discreplicted by Eq.(44) is observed in both cases.

ancy between the numerical and asymptotic values as a functiBnFds-

sibly, the numerical data are not yet in the asymptotic regime.

increase with the Peclet number and the viscosity ratio. The

the corresponding purely axial and azimuthal problems. Thisnost dangerous wavenumber is observed to shift towards the
suggests that in a fully three-dimensional flow the charactedower end of the spectrum as the Peclet number increases.
istics of the initial conditions can take on special importanceWith increasing viscosity contrast, it first moves towards the

The time-dependent growth rate of axial perturbationdower end of the spectrum, only to shift towards the higher
represents an interesting phenomenon, as it gives rise toend later on.
critical time tg;. For t<t.;, the most dangerous axial In the limit of large Pe, asymptotic solutions can be ob-
wavenumbers are larger, whereas fiort;;, the most dan- tained for the growth of axial perturbations. Numerical solu-
gerous azimuthal wavenumbers have higher values. Henctons of the full eigenvalue problem generally show good
there exists the possibility that at early times the dominanagreement with these asymptotic solutions for large Peclet
axial flow structures will be of a smaller scale than the cor-numbers.
responding azimuthal features, and that this trend will re- The above features regarding the linear stability of axial
verse itself later on. and helical waves set the stage for interesting nonlinear dy-

The maximum growth rate of axial perturbations, as wellnamics as well. Furthermore, it will be of great interest to
as their most dangerous and cutoff wavenumbers, are seenstudy their nonlinear interactions with azimuthal waves. A
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