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Abstract. High accuracy three-dimensional numerical simulations are per-
formed in quarter five-spot geometry to analyse miscible displacements with
gravity override. Using a vorticity formulation, the coupling between viscous
and gravitational effects is studied. Its is found that an optimal level of inter-
action among the viscous and gravity-related vorticity components leads to an
improvement in displacement efficiency.
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Vorticity dynamics of miscible porous media flows
1. Introduction

The stability of the interface between fluids of different viscosities in a porous medium has
been a subject of investigation for a number of years, for both miscible and immiscible phase
displacements [1]. The phenomenon of viscous fingering occurs when a more viscous fluid is
displaced by a less viscous one. The interface between the two fluids becomes unstable and
the less viscous fluid channels through and bypasses the more viscous fluid. If the two fluids
differ also in density, then viscous and gravitational forces couple to influence the displacement
process.

Pioneering work on fingering instability related to adverse mobility displacement was done
by Hill [2], Saffman and Taylor [3] and Chouke et al [4]. A thorough understanding of the
mechanisms of instability operative in the dynamical evolution of the interface is of prime
importance for practical applications like in enhanced oil recovery, ground water hydrology
and packed bed reactions.

Our objective is to study the relative effects of viscous and gravitational forces on the
efficiency of the displacement process in terms of the interaction of related components of
vorticity [5]-[9]. In a 3D setting, additional complexity is introduced due to varying levels
of interaction between different spatial components of viscous and gravity-related vorticity.

2. Governing equations

We solve the 3D, miscible, homogeneous porous media problem in a quarter five-spot geometry.
This configuration consists of a staggered array of injection and production wells modelled by line
sources and sinks; figure 1(a). Since the flow is assumed to be symmetric across cell boundaries,
a single cell represents the computational domain shown in figure 1(b). Darcy’s law gives the
velocity due to a pressure gradient across a porous medium, which in dimensionless form is

Vp=—pu+GcVz (1)

where p is the local viscosity and ¢ is the concentration. Upon taking the curl of Darcy’s
equation a vorticity equation is obtained, equation (3), which contains two sources of vorticity
production related to viscosity and gravity; therefore vorticity is present only where viscosity
and density vary. An incompressible flow is assumed and the transport of concentration is given
by a convection—diffusion equation. The set of governing equations is
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Vi = —w. (6)
Three dimensionless parameters appear in the above equations: the Peclet number Pe =
Q/D, the viscosity parameter R = —(1/pu)dp/de = In(pe/p1) and the gravity parameter

G = g(p1—p2)kL/Qui. Subscripts 1 and 2 refer to injected and displaced fluid respectively. k is
the constant permeability, () is the injection rate per unit depth and D is the diffusion coefficient.
The initial condition for the concentration is prescribed with a radial error function profile at
time ¢ > 0. The initial velocity is the potential component u, which arises due to the source and
sink arrangement and gives rise to diverging (converging) streamlines close to the source (sink).
A high accuracy numerical method is employed by using sixth-order compact finite differences
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Figure 1. (a) The layout of the quarter five-spot arrangement. (b) The
computational domain.

Figure 2. Concentration isosurfaces for Pe = 800, R = 2.5 and t = 0.14.
(a) G=0, (b) G=0.5.

for spatial derivatives [10]. Equation (6) is solved by Fourier—Galerkin discretization; typically,
512 x 512 x 64 grid points are used. Equation (2) is solved with explicit third-order Runga—Kutta
time integration and a CFL criterion determines the allowable time step which is of the order of
1075, Vertical boundaries are symmetric and horizontal boundaries have zero normal flux. We
define a breakthrough time when the concentration at the sink is 10% of the injected fluid.

3. Discussion of results

First consider an unstable displacement without density difference; figure 2(a). The initial
wavelength and growth rate of perturbations are in agreement with linear stability analysis
for radially symmetric flows [11]. The disturbances develop into viscous fingers that grow in
time. When the amplitude of the fingers becomes large, they start to interact with each other.
Several mechanisms of nonlinear finger interaction can be observed in figure 2(a), i.e. merging,
shielding and coalescence [5], which accelerate the convective mixing of the interfacial regions.
This brings about a relaxation of the concentration gradient and the overall vorticity level drops.
Furthermore, such interactions lead to a reduction in the number and an increase in the size of
the fingers.
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Figure 3. G = 2, Pe = 800, R = 2.5. Isosurfaces of (a) concentration,
(b) horizontal viscous vorticity, (c) gravitational vorticity, (d) vertical viscous
vorticity.

3.1. Gravity override

In the presence of density difference, the lower-density, injected fluid tends to rise above the
heavier resident fluid, which leads to the formation of a gravity layer near the top boundary;
figure 2(b). Increased flow rate in the gravity layer results in an effective local Peclet number
higher than the average value and accelerates the growth of disturbances in this region. The
interface tends to tilt forward in the displacement direction.

The formation of the gravity override region [8, 12], leads to less intense fingering in the lower
layer, and bypass of resident fluid in the underride region. However, at a moderate G = 0.5
value, the underride fingers eventually develop and are subject to the buoyancy effect, which
leads to their interaction with the gravity layer; figure 2(b). The type of this interaction can lie
between two extremes:

(1) if the underride fingers pinch off the dominant fingers in the gravity layer, cutting their fluid
supply, there can be a delay in the breakthrough time;

(2) if, on the other hand, the underride fingers merge with the gravity layer to increase its
supply of less viscous fluid, the result can be a decrease in the breakthrough time.

The actual form that is realized depends upon the relative magnitude and spatial distribution
of the viscous and gravitational vorticity.

A high value of G = 2 results in almost total elimination of underride fingers; figure 3(a).
The gravity layer is dominant and interactions among fingers within the layer are more
pronounced. The beneficial, type (1), interactions are absent; the interface is more tilted as
compared to the previous case. Consequently the breakthrough time has reduced from 0.20 for
G = 0.5 to 0.165 for G = 2.
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Figure 4. Vorticity rms values as a function of time for G = 0.5 and 2, Pe = 800,
R = 2.5. The horizontal viscous component increases with G but the vertical
viscous component remains nearly independent of G throughout the nonlinear
phase.

In the 3D problem there are three spatial components of viscous vorticity and two spatial
horizontal components of gravitational vorticity. The difference between horizontal and vertical
components of viscous vorticity has important ramifications for the displacement process.
Figure 3(b) shows the vertical viscous components for the case shown in figure 3(a), where
the fingers are driven, primarily in the horizontal direction, by a structure of vorticity dipole
pairs. The horizontal viscous component is shown in figure 3(c). Counterrotating vortex pairs
are located next to each other, in horizontal planes for the vertical viscous component, shown in
figure 3(b), and in the vertical planes for the horizontal viscous component, shown in figure 3(c).
The gravitational vorticity dipole pairs, shown in figure 3(d), follow the orientation of the
viscous vertical vorticity. The gravitational vorticity, although much smaller in magnitude
than the viscous components, figure 4, makes an important contribution by changing the
local concentration gradients, which strongly affects both the horizontal and vertical viscous
components.

The evolution of vorticity is tracked by measuring the rms value as a function of time,
as shown in figure 4 for two values of GG. The effect of the increase in G on the vertical
and horizontal viscous components is worth noting. As G is increased from 0.5 to 2, the
vertical component remains unchanged and the horizontal component increases. This points
to the positive (negative) correlation of horizontal (vertical) viscous vorticity with the gravity
parameter. It follows, then, that the horizontal (vertical) viscous component reflects the influence
of gravitational (viscous) effects.

3.2. Critical vorticity interaction

The efficiency of the displacement process can be defined as the volume of the displaced fluid
produced at the production well up to breakthrough, as a fraction of the total domain volume.
The type of coupling between the viscous and gravitational effects that can improve the efficiency
by checking the growth of the gravity layer occurs at the right combination of parameters.
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Figure 5. Efficiency curves for various regimes. A maximum for some
parameter combinations indicates the favourable interaction between viscous and
gravitational effects.

14
_(\l
1.2
3
.gl 1
kS|
-
=08
§ . .
2 ’ 3
> i Pe=400, R=3 !
I - G=0.25 !
= 06F - - --G=05 !
- G=0.75
i . ] M B
0.05 0.1 0.15
1

Figure 6. The rms value ratio of the horizontal to the vertical viscous vorticity.
From figure 5, a maximum in efficiency occurs for G = 0.5 represented by
successive dominance of each vorticity component.

Figure 5 plots the efficiency curves for various regimes. A maximum in the efficiency curve
is observed for Pe = 400, R = 3 as G goes from 0.25 to 0.75, while the efficiency decreases
monotonically for the same combination as R goes from 2.5 to 3.5. At Pe = 800, R = 2.5 there
is a slight improvement in efficiency as G' goes from 0.25 to 0.5.

To get a better understanding of the gravity- and viscosity-related effects in the case where
the efficiency is maximum, we plot in figure 6 the ratio of horizontal to vertical viscous vorticity
for the case of Pe =400, R = 3,G = 0.25-0.75.
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For G = 0.25, the vertical viscous vorticity is dominant and the ratio is less than one.
When G = 0.5, the horizontal component becomes larger than the vertical component for a brief
period during the nonlinear phase but later the ratio drops below 1 again. As G is increased
to 0.75, the horizontal component is dominant for a longer period of time during the nonlinear
phase. We conclude that the reason for the highest efficiency being at G = 0.5 is the fact that
the initial dominance of vertical viscous vorticity develops the underride fingers and then later
the dominance of buoyancy effects leads to their pinching off of the gravity layer. This does not
happen at low G when the gravity effect is not strong enough to lead to pinch-off and at high G
when the continued dominance of horizontal vorticity does not let the underride fingers develop
to a point where any meaningful interaction with the gravity layer can be sustained.

4. Conclusions

From the above, we see that the interaction between spatial components of viscous and
gravitational vorticity can have a substantial influence on the process efficiency. Although the
magnitude of the gravity-related vorticity component is smaller than that of the viscosity-related
component, it can combine with the horizontal viscous component to influence the displacement
process. Therefore, we see that an increase in the gravity parameter is strongly correlated
with the horizontal viscous component of the vorticity. For a favourable interaction, a delicate
balance exists between the viscous and buoyancy effects where the viscous vorticity has to develop
the underride fingers to sufficiently large amplitudes before buoyancy effects can lead to their
interaction with the gravity layer. On the other hand, higher gravity values lead to an increased
flow into the gravity layer right from the start, stabilizing the underride region, so the fingers in
this region cannot have an appreciable effect on the gravity layer.
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