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The transport in vortical and stagnation point flow fields is analyzed for particles across the entire
range of density ratios, based on the Maxey—Riley equafttrys. Fluids26, 883 (1983 ] without

history effects. For these elementary flow fields, the governing equations simplify substantially, so
that analytical progress can be made towards quantifying ejection/entrapment trends and
accumulation behavior. For a solid body vortex, the analysis shows that optimal ejection or
entrapment occurs for all density ratios, as the difference between inward and outward forces
reaches a maximum for intermediate values of the Stokes number. The optimal Stokes number value
is provided as a function of the density ratio. Gravity is shown to shift accumulation regions,
without affecting the entrapment or ejection rates. For a point vortex flow, the existence of up to
three different regimes is demonstrated, which are characterized by different force balances and
ejection rates. For this flow, optimal accumulation is demonstrated for intermediate Stokes numbers.
The stagnation point flow gives rise to optimal accumulation for heavy particles, whereas light
particles do not exhibit optimal behavior. The analysis furthermore indicates that nonvanishing
density ratios give rise to a finite Stokes number regime in which the particle motion is oscillatory.
Above and below this regime, the motion is overdamped.1997 American Institute of Physics.
[S1070-663(97)00202-X]

I. INTRODUCTION in the neighborhood of stagnation points. The formation of
streaks of high particle concentrations plays an important
The transport of heavy particles, drops, and bubbles in aole in the overall dynamics of the dispersion process. A
variety of flow fields has received wide attention in recentrecent review of the relevant work is given by Crowteal 1°
years, owing to its importance in both engineering and natuFor bubbly flows, numerical simulations have demonstrated
ral flows. Technological applications concern, for examplethe preferential entrapmént? of bubbles of intermediate
pollution reduction and efficiency enhancement through im-St, along with the modification of the flow by the bubbf€s.
proved mixing of the fuel droplets in an internal combustionin contrast to the behavior of heavy particles, the bubble
engine. Similarly, control over the droplet dynamics in theconcentration is found to decrease in the outer regions of the
final stages of large turbines can avoid impact erosion of theortices.
blades. A different, but related issue arises in the recently From the above experimental and computational investi-
developed experimental technique of particle image velocigations, it becomes clear that the global features of bubble
metry (PIV). Here, the fluid motion is to be tracked by either and particle dispersion are dominated by their dynamics in
droplets or solid particles. An obvious question concerns thé¢hree distinctly different regions of the flow field: the vis-
tracking ability of particles whose density or initial velocity cously dominated vortex core, the outer region of the vorti-
does not quite match the fluid properties. ces, and the stagnation zones. Several investigations have
Over the last decade, both experimental and computaaddressed the dynamics of particles and bubbles in idealized
tional investigations have addressed the issue of the disperepresentations of these flow$**-1"However, these stud-
sion of heavy particles and bubbles, with particular emphasiges were mostly limited to situations in which the ratio be-
on free shear flows, such as mixing layers, jets, and wakes$ween particle and fluid density is either zero or infinity. The
Numerous studies have demonstrated the strong influence pfesent investigation aims at analyzing in detail the dynam-
the coherent vortical flow structures. These are observed ties of particles across the entire spectrum of density ratios
preferentially disperse heavy particles whose aerodynamiand St values, and at elucidating the governing force bal-
response time is of the same order as the characteristic floances in the different parameter regimes. A combination of
time scale, i.e., particles whose Stokes num®Beris near analytical and numerical approaches will be employed to-
unity. For these particles of intermediate size, bothwards this end. The vortex core region will be approximated
numerical™ and experimentéi® investigations demonstrate as a solid body vortex, while the outer vortical region can be
the ejection of the particles from the vortex centers, as wellnalyzed on the basis of a point vortex model. Finally, the

as their accumulation in the outer regions of the vortices andtagnation zone will be modeled in a linear fashion as well.
For all of these model flows, particular attention will be paid
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The equations governing the particle motion are outlinedhan originally thought, so that within the present investiga-
in section 1l. In section Il we address the core region, whiletion we neglect them entirely. The forces driving the particle
in section IV we focus on the point vortex model. Subse-motion in our model are the particle inertia, the pressure
qguently, the stagnation point flow is analyzed in section V,gradient, the added mass term, and the viscous Stokes drag.
while in section VI we summarize the results and presentn some situations, we will analyze the effect of gravity as
several conclusions. well. It should be mentioned that all of the above forces were

included in Maxey' study of particle dynamics in cellular

Il. EQUATIONS GOVERNING THE PARTICLE MOTION  flows as well.

We consider the dilute_ limit, in whic_h there is only one- |, vORTEX CORE REGION
way coupling from the fluid to the particle. The concentra-
tion of the particles is assumed to be small enough so that As a first step, we analyze the motion of a particle in the
both the particle—particle and particle—fluid interactions arecore region of a vortex, which we approximate as a solid
negligible. The resulting equation of motion for the particlesPody vortex with the velocity components,

is then obtained by neglecting the the Faxen correction terms Q
in the relationship first derived by Maxey and Ritey U= =Y, (3)
Vpp%=3W¢M[U(X,t)|x=x ®~Vp(O]+V(pp—p1)g Qo
dt P P P Uy=+—-X, (4)
Du 1

+ EVpf %[U(thHx:xp(t) whereQ(_, i§ the vorticity o_f the §olid body vortex. The prob-
x=xy(1) lem exhibits a characteristic time scale in the form of the
eddy turnover timeT=1/Q),, whereas length or velocity
scales are absent. Consequently, after neglecting the Basset
history and gravity terms, the dimensionless version of Eq.
(1) takes the form

+foﬁ

3 2
—Vp()] - 5 gu

ft[ d/dT[Vp(T)_U(X't)|X=Xp(t)] d (1)
X T. 1 1.1 y .

au(t— 1) p]? Z8lx=—Zx—Z R . A
0 [7u( ptl 14 56]%=—gx—78y+ st "2 %) (5)
Herev, andu denote the particle and fluid velocity, respec-
tively. While p, and u are the density and dynamical vis- (1+ }5 j—— fy+ }5)-(+ 1 f_y ®
cosity of the surrounding fluid, the symbols, V, and 2 47 4 St\ 2 '
Xp(t) represent the diameter, volume, and position of the e
part?cle, .respectively. The totall derivativg with respect to the  s5— Ipp, St= pl "8 Qo, (7)
particle is denoted byl/dt, while that with respect to the “

fluid is given byD/Dt. The right hand side of this equation where 5 is the density ratio andSt denotes the particle
represents the forces acting on the particle. In order, these aggokes number. In the present context,can be interpreted
the Stokes drag, gravity, a pressure gradient force accountings the ratio of the particle’s aerodynamic response time and
for the acceleration of the displaced fluid and the virtualihe characteristic time scale of the fluid motion. A larger
mass, and the Basset history term. Mantoand Autort®  particle density results in a lower density ratio and an in-
argue thatDu/Dt should be used in the added mass termcreased Stokes number. On the other hand, a change in size
instead ofdu/dt. Ruetsch and Meibufg show that, for ex-  affectsSt only. In the following, we will refer to light par-
ample, in a solid body vortex the particle trajectory is nearlyticles if §>1, and to heavy particles §< 1. For the limit of
independent of the form of the added mass term. Conswery heavy partic|es(i_>0), Raju and Meibu@discuss the
quently, in the following we will employ the respective form gjection trends in a solid body vortex under the effects of
of the added mass term that keeps the mathematics simplepfrticle inertia and Stokes drag only. They present a quanti-
Equation (1) describes the particle motion accurately pro-tative scaling argument that explains the preferential disper-

vided sion of particles withSt near unity in free shear flows. Ru-
p U $2U etsch and Meiburd! on the other hand, address the bubble
—<1, Re= <1, <1, (2)  limit (6—<), which can most conveniently be treated by
L v v redefining the Stokes number as

where U is the slip velocity between the particle and the pid?

surrounding fluid,y and U denote the characteristic length St =Sté= FQO' (8)

and velocity scales of fluid motion, respectively, ani the K

kinematic viscosity. This definition reflects the importance of the added mass in

Recently, the Basset history term has been examinethe bubble limit. In the present investigation we address the
more closely by several research gro&pg® Through a entire range between the heavy particle and the bubble lim-
combination of analytical and computational investigationsits.
they find that the history term decays initially 852 and The current problem represents a fourth order linear dy-
later ast 2. As a result, history effects are less importantnamical system. In order to solve the governing equations,
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FIG. 2. Stokes number for which optimal entrapment/ejection trends are
observed as a function of the density rafio(a) St for light particles and
(b) St, for heavy particles.

center. For the sake of convenience, weNgtand\; denote
the real and imaginary parts of the largest eigenvalye
respectively. The second term in E40) represents an ini-
tial transient, which persists for longer times &sis in-

‘ . : ‘ . creased.
05 1 15 2 25 3 35 4 Figure Xa) represents a contour plot of, in the
®) St St,8-plane. The negative values for>1 indicate that light

. e ) particles, in agreement with the above discussion, are en-
FIG. 1. Particle motion in a solid body vortex: Contour plotq@fthe real,

and(b) the imaginary parts of the eigenvalue with the largest real part. Thetrapped ”,1 the core, so that they approach th? vortex center
real part represents the long time ejection and entrapment rates, which agsymptotically. For every>1, there is an optimal Stokes
optimized for intermediate values &t(5). The imaginary part expresses number St, for which the entrapment rate is maximized.

the Io_ng tim_e rotation ratg. While light particles rotate faster than the SUrThe value OfSl] decreases a8 is increased: cf. Fig.(a). In

rounding fluid, heavy particles rotate more slowly. the limit as 6—«, the problem should be treated with the
modified Stokes numbeBt’. Here the entrapment rate be-
comes optimal wherst' =0.74, in agreement with Ruetsch

first the roots of a quartic polynomial for the eigenvaluesand Meiburg'*

need to be obtained. By treating the problem in the complex Heavy partic|eS, on the other hand, are ejected, as is

variablez=x+1y, it is reduced to the quadratic equation in evident from the positive values af [Fig. 1(a)]. For a given

Z, value of St, the ejection rate decreases with increasig
s 1 However, for a given value of the ejection rate is maxi-
(1+68/2)2+ §t_i 2 z+ Z_i Z—St)z=0, 9 mized for an intermediate value of the Stokes numBdy,
St, increases with decreasing [Fig. 2(b)]. The optimal
which has solutions of the form ejection of intermediate-sized particldas expressed by
7=x+iy=cetttc,ehe, (10 St,) is in agreement with both experimental and computa-

tional investigations of particle dispersion in mixing layers,
Aio=(—b+ JbZ—4ac)/(2a), a=1+68/2, (11) jets, and wakes, as discussed in the Introduction.

. . Because the balance of forces responsible for the ob-
b=1/St-io/4, c=5l4—i/(2SY). 12 served entrapment/ejection trends is intricately related to the

It is clear from Eq.(10) that particles either approach the rotation rates of the particles, we first analyze the trends in
origin (z=0) or asymptotically recede away to infinity, de- the rotation rates, before continuing the discussion on
pending on whether the sign of the largest real part of théntrapment/ejectior\; corresponds to the circular frequency
eigenvaluesRe(\4), is negative or positive, respectively. or rotation ratep of the particle, after the initial transient has
For heavy particles,Re(\;) is always positive, while decayed. After this decay, the particle trajectory can be vi-
Re(\,) is negative. For light particles, the real parts of bothsualized as a spiral centered about the origin. Heavy particles
eigenvalues are negative, witRe(\;)>Re(\,). Conse- spiral outward, while light ones spiral inward. Along this
quently, heavy particles are ejected from the vortex corespiral, the rotation rate, plotted in Fig(d}, is a constant
whereas light particles asymptotically approach the vortexexpressed by;. The figure shows that the rotation rate of
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heavy particles is less than the constant value of one-half for
the fluid, and that, for a give#, it decreases with increasing  4s}
St This behavior is mostly due to the drag force, which
accelerates the heavy particle as it reaches larger radii. As
Stis increased, the drag force and hence the particle accel- as}
eration become proportionally weaker, thereby resulting in
lower rotation rates.

For light particles, the converse of the above effectsw2s;
hold, i.e., light particles rotate faster than the local fluid, and
for a given 4, their rotation rate increases with increasing
St Now the Stokes drag decelerates the particle’s azimuthal 1.5
motion. However, since the drag force per mass decreases

4|

0
wih increasingSt, the rotation rate of light particles increases k : 0.005
with increasingSt. The increasgdecreasgin the rotation 05 0.1 - ]
rate for light (heavy particles with increasingSt can be oﬂ"'\, 075~ , , , , , ,
demonstrated by means of a brief mathematical analysis as 05 1 15 2 25 3 35 4

well; cf. the Appendix. S

We now return to the entrapment/ejection trends diSIG. 3. Contour plots of the drag forée/St. The sign of the contour levels
cussed earlier. The force balance responsible for entrapmeritfiicates the direction of the force. For a given valugathe magnitude of
ejection can be understood more easily by casting the equ%‘-srg;zg Jrereases for both heai@<1) and light(6>1) particles if Stis
tions of motion in polar coordinates. We obtain '

(1+ 5/2)£: — 5l4— S58l4— ir +(1+4 612) 62, (13)  given d. The first three terms on the rhs of H3.3) oppose
r Str the outward motion of the particle, while the fourth term
. causes the outward motion. Wh&t is increased, the out-
(1+ 5/2)“@ +2fi9): ﬁ + i (r /2_“9)_ (14) ward centrifugal force decreases because the rotation rate
St decreases, as discussed earlier. The sum of the three inward
These equations are nonlinear, and hence difficult to solv{aprce.s can also be shown to decreas8tis increased. The
analytically. However, further simplifications are possible if Irst inward force fr.om the rhs of Eq13) do?s not d.epend )
on St. The second inward force decreases in magnitude with

we limit ourselves to the long time behavior. Per our earlier, inaSt b h . q The third
discussion, the rotation rate becomes a constant after the idpcreasmg t, because the rotation rate decreases. The thir

tial transients have died out. Its value can be obtained as '§Ward force decreas_es as well with increas§tyas can be
function of the ejection/entrapment rate a8d by setting Seen from the following argument. Recall that the raiio,

=0 in Eq. (14), present in the numerator, is the ejection rate The third
term can then be expressedgdSt. Contour plots of this
14 (814)(rlr) St ratio, shown in Fig. 3, reveal that for a givér< 1, this ratio
0= —. (15  decreases aStis increased. Thus both the outward and the
1+ (24 6)St(r/r)

inward forces decrease with increasfag However, it is the
With r/r representing the long term ejection/entrapment rat&lifférencebetween the inward and the outward forces that
\,, this yields causes the pa_lrtlcles to move. We therefore analyze h_ow this
difference varies as a function 8ft for a givens. From Fig.
1+ (8/4)\,St 4, which depicts this difference as contours in the
o= 1+ (2+0)S,” (16) St s-plane, we can conclude that it is maximized at interme-
r . : . S
diate values ofSt, thereby causing the optimal ejection of
We now consider the different forces acting along theheavy particles.
radial direction. The last term in Eq13), which combines For light particles, the inward forces are due to the first
the rotation rate dependent component of the ingidén-  two terms on the rhs of Eq13), whereas the outward forces
trifugal force with the pressure gradient and added massare due to the last two terms. The sum of the inward forces
forces, always points outward. With the vortex center corregrows with increasingt, because of an increase in the rota-
sponding to a pressure minimum, the pressure gradient ford@n rate. The third term, expressing the Stokes drag force,
is directed inward, as reflected by the sign of the first term omow points outward. This force decreases with increasing
the rhs of Eq.(13). The added mass, on the other hand,St (Fig. 3). The fourth term, a combination of centrifugal,
contributes to several forcegl) it increases the inertia pressure gradient, and added mass forces, which increases
(8/2 term on the Ihk (ii) it increases the centrifugal force, with St. Via graphical inspection of a contour plot, one finds
and (i ) it adds an inward forcésecond term on the rhs that the sum of these two outward forces increases as well.
The Stokes drag, may it be inward or outward, always op-Thus both the inward and the outward forces increase with
poses motion. St However, as demonstrated in Fig. 4, their difference is
Let us now analyze how the different radial fordess = maximized for intermediate values &t thereby causing
of Eq. (13)] acting on a heavy particle vary witBt for a  optimal entrapment.
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the initial velocity of the particle differs from that of the
fluid, the particle trajectory can be analyzed using Bd).
When §=1, the eigenvalues can be expressed as

)\1:0_| %,

2 1
Noy=— 3—St+l §
The solution then takes the form

= Cl eXFI)\lt) + C2 eXF()\zt).

The second term vanishes &s>». By evaluatingc,, we
find that the particle asymptotically deviates to another ra-
dius located at a distance equal to the initial velocity differ-

. . o0z . . ence times the square 8ft At this new radius, it will track
% 0.5 1 15 2 25 3 the fluid motion accurately. It should be pointed out, how-

s ever, that the above argument neglects history effects, which,

FIG. 4. Thedifferencebetween the outward and inward radial forces plotted Under some circumstances, might modify the short time con-
as contours in thét o-plane. AsSt is increased, this difference is maxi- sequences of velocity mismatches.
m|z¢d for intermediate values &t for both heavy(6<1) and light(6>1) A common situation arises when particles with a density
particles. . . .
slightly different from that of the fluid are used to track the
fluid motion, for example due to density variations in the
flow field. Hence it is of interest to analyze the effect of
If =1 and the particle velocity is equal to that of the small density variations on the particles’ tracking capability,
surrounding fluid, the radial force acting on it is identically i.e., situations with=1+ €. From the above it follows that
equal to zero according to E@l3). As a result, neutrally particles are ejected iE<0 and entrapped i>0. The
buoyant particles follow the fluid exactly, provided their ini- ejection/entrapment rate can be obtained from @&€) by
tial velocity matches that of the fluid. If, on the other hand,performing a smalk expansion of the eigenvalue

N —[1/St+i(8/4)]+ V1ISP— 95%/16— 5+i(2/St+ 8/2St)

1_ 2+6 ' (17
|
The real part is given by tracks the fluid accurately. From the definition of the Stokes
number, we can infer that the tracking accuracy can be im-
— (1St + V(d+ yd?+£?)/2 proved by increasing the viscosity or by decreasing the di-
re 2(1+ 612) d (18) ameter. The accuracy also improves if the vorticity is
reduced.
1 96

(190  A. Effect of gravity

= ———=9,
S 16 _ _ o o
When gravity acts in the-y direction, a characteristic
S 2 length scale emerges, which is related to the terminal veloc-

f=3sit s (200 ity 4, of the particle in still fluid,
2
When 6=1, one can show that vt=(pf—pp)g@. (23)
%: — —Sttz— (21) and the eddy turnover time Q4. After making the govern-
dé 4(1+255t7/16) ing equations dimensionless with this length scale, they take
so that the form
1 6 1 . 1 y .
Ste (1+—5 5‘<=——x——5y+—<———x), (24)
AN=— m (22 2 4 4 St 2
1 1/(x . 1
Hence, the particle tracks the motion of the fluid accurately 1+ 55 y=— 4y+ Zax+ Sil2 y I§[, (25
only for t<4(1+25St/16)/(|€|St), provided that history
effects are negligible. Therefore, the smaller the particle pp¢)2
; ; ; ; 5=psl St= Q (26)
Stokes number, the larger is the time for which the particle PtiPp: 18y =0
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where the minus/plus sign holds for heavy/light particles. In 1
these scaled coordinates the terminal velocity i& depend-
ing upon whether the patrticle is lighter or heavier than the
fluid. oer
The complementary function for this fourth order linear o4} light particle
system is the same as for the case without gravity, and its
eigenvalues are not modified by the presence of gravity.
Consequently, the complete solution now consists of this= of sts=o
complementary function and a particular integral, both of
which are again easily evaluated in the complex variable

0.8

Sts=co ' St§=0

-0.2

1 :
z=x+iy=c eM'+c et Fi —, 27) o8l heavy particle
Stc
. . . 0.8 St§=2
in which A, , andc, are given by Eqs(11)—(12). Thus the
ejection/entrapment rate is not modified by the presence of -,— Q5 Y s v X 5 )
Xo

gravity. The trends in the particle motion outlined earlier
remal_n the S_ame' except fo_r two_dlffer_ences. First, the aCCl"flG. 5. Focus on the logarithmic spirals plotted as a parametric function for
mulation point for the particles is shifted from the vorteX the entire range of the fact@®ts. The branch on the right is for heavy
center to a new location given byi (1/cS9. Light particles  particles(5<1), while that on the left is for light ones>>1). Light particles
follow an inward Iogarithmic spiral which asymptotically ap- spiral towards the focal point, whereas heavey ones spiral away from it.
proaches this new location. Heavy particles placed a small

distance away from the equilibrium location follow an out-

ward spiral. Second, the presence of gravity modifies th&t, depending on their initial location. Such a situation

constantsc; andc,. should be avoided, so that we use an arbitrary length scale
The location of the focusxg,yg) of the logarithmic spi- v instead.
ral can be obtained from the particular integral of E2y), By analyzing the particle dynamics in polar coordinates,
1 some interesting simplifications in the particle equations can

(28)  be obtained, if we follow Mantort and Autort® and replace
the derivative with respect to the particlelu/dt) in the

or added mass term of E@l) by the total derivative with re-

spect to the fluid Du/Dt). The particle motion is then gov-

+iyo=Fi=—
XO |y0 +IStC

-8 4St6
Xo+iYo=T SFw, +i Sl (29)  erned by the fourth order system,
. . . r :
where the minus sign holds for heavy particles and the plus  (1+ 6)Fr=— —+(1-8)ré?, (32
sign for light ones. It is possible to eliminate the fac&® St
from the above equation and represgptas a function of 1 \d(r2s) 1/ 1
X0, - R .y
0 ( *3 ) at St(27-r r 0)’ 33
yOZI\_Xo(IZ'i"Xo), (30) p ¢2F
0
where again the minus sign holds for heavy particles and the 6=p¢/p,, St= # 7 (34
plus sign for light ones. The loci of the resulting spiral foci # ]
are plotted in Fig. 5. A preliminary numerical investigation by karo and

Lashera$' in the heavy particle limit §—0), for which the
pressure gradient and added mass terms drop out, demon-
strates that particles of larger size are ejected farther. In the

This model is used as a basis for analyzing the transpomresent study we address the entire range between the heavy
of particles in the outer regions of a vortex, where the azijparticle and the bubble limits. Equatiq33) can be inte-
muthal velocity of the fluid decreases with increasing dis-grated once to obtain

IV. POINT VORTEX MODEL

tance from the vortex center. The fluid velocity components 1 t
are Cy R
i r<e 27_r+c exy{ S(1+02)) (35
u0=ﬁ, u,=0, (31) The integration constart is identically equal to zero, pro-

vided that the initial azimuthal velocity of the particle is
wherel’y denotes the circulation of the vortex. There are noequal to that of the surrounding fluid. This assumption is
characteristic velocity or time scales associated with the fluidjuite realistic for small values dbt, for which the initial
motion. The only length scale contained in the problem is thevelocity difference decays quickly. For larg&t values,
particle’s initial distance from the vortex center. However, however, this velocity difference may be felt for longer
using this scale in making the equations dimensionles§imes. Along the radial direction, the equation describing
would result in identical particles having different values of particle motion can be obtained by substituting B3§) into
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Eq. (32), which results in the decoupling of the equations inand would overtake the other two eventually. Consequently,
ther- and #-directions. By assuming=_0, i.e, by setting the inertia and drag do not provide the proper balance for long
initial azimuthal velocity of the particle equal to that of the times. If instead inertia is balanced by the centrifugal forces,

surrounding fluid, we get we obtain
1), ot (1/(2))? ES Vi (42)
Tgofr=rgt=-9—m— 38 resulting in
From left to right, the three terms correspond to one compo- =V (2¢;t+c)+1. (43

nent _of the inertial force, Qrag force, and a combination OfWith this solution, however, the neglected term) @ould
centrifugal, pressure gradient, and added mass forces. T%

b t b led with the i dl t%;ain overake the other two terms for long times. Conse-
above equation can be rescaled wi € time and leng uently, this balance is invalid as well. That only leaves the

scales balance between drag and centrifugal forces,
1/2 .
T=St(1+6/2), L:(E) |1— 8| Y4(1+ 6/12) V4, r=+1/3, (44
(37)  Wwhich leads to
to obtain r=(cxt)* (45)

3 , In this case, the inertia term given liy= —3(c+t)~ "4/16

F:{ L if 670, (39) indeed becomes negligible for long times, confirming this
—r, if 6=0, balance as the only valid one. The plus sign holds for heavy

particles, while the minus sign holds for light ones. It should

where the plus sign holds for heavy particles and the minuge noted that for light particles there is a possibility that the
sign for light ones. From both Eq36) and Eq.(38), itis  palance between drag and centrifugal forces may never be
clear that for vanishing initial radial velocity light particles established, if the particle reaches the vortex center in a finite

move inward while heavy ones move outward. The advantime. This point will be discussed in more detail below.

tage of the rescaled Eq38) is that it does not have any Heavy particles of alSt values always attain this final bal-
parameters, i.e., the solution for all valuesSdfandé can be  gnce.
obtained by merely Changing the initial conditions. HOWeVer, For small values oSt, some interesting asymptotic re-

we have been unable to find a closed form solution to Eqsyits can be obtained, as will be discussed in the following.
(38). Consequently, one needs to solve it by numerical or

approximate methods. Hence, a disadvantage of the rescaléd St~ €
Eqg. (39) is that, unlike Eq.36), it is not conducive to any 1. Heavy particles
type of perturbation expansion in terms $f and 6.

Some qualitative scaling arguments based on (B)
are helpful. These scaling arguments can then be used
study Eq.(36) in more detail for small and large values of \ofjacteq in the “exact” numerical solutions of E@®6). Fig-

St In addition, small deviations fromi=1 can be addressed ;.o g shows the magnitude of these three forces acting on a
as well, in order to investigate the effect of slight dens'typarticle with a density ratio of 0.1 arit=0.1. The particle
variations on the particle’s ability to track the fluid motion. o .ojaased at a radius of 0.3 units with the velocity of the

Throughout this section on the point vortex model, Weg, 5 nding fluid. As discussed above, the centrifugal forces
assume that the initial radial velocity of the particle vanlshesare initially balanced by inertia, whereas for long times they
i.e., r(t=0)=0. Therefore, initially the term on the Ihs of are in balance with the drag. This behavior is qualitatively
the equatior{called “inertia term” for shor} has to balance the same for all density ratios smaller than one.
the_ last term on the rhigalled “centrifugal term” for short _ Hence it is possible to obtain the innehort time so-

This balance, however, may not hold for all times. Equationytion, to first order, by balancing inertia with the centrifugal
(38) allows us to find the proper balancetas <. There are  force. But this balance lasts only up te-10~2. Therefore,
three possibilities: Inertia balances drag, inertia balances thgeglecting it is not likely to add a significant error to the
Centl’ifugal force, or drag balances the Centl’ifugal force. Fobartic|e disp|acement for |Onger timesy so that an approxi_

The force balances discussed earlier, i.e., the initial bal-
ance between inertia and centrifugal forces and the long time
ymptotic balance between drag and centrifugal forces, are

a balance between inertia and drag, mate solution to Eq(36), valid for all but very small times,
Pl _; (39) can be obtained by balancing drag with the centrifugal force,
’ F=(rd+4(1— §)ktSHt, (46)
so that
Here
r=c.e '+c,. (40) 1
For thisr (t) relationship, however, the neglected centrifugal k= (2m)? (47)

term is of the form . . . S .
For small times the radial particle motion is proportional to

1r3~e®, (41)  t, while for later times it is proportional to**. Further, if
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10 : ‘ . , using a fourth order Runge—Kutta scheme. In obtaining the

8=01 numerical solutions, for each initial condition, two values of

St=041 6 (=0.1,0.9) were chosen while the Stokes number was
3 maintained aSt=0.1.

Whether or not particles accumulate in the point vortex
depends on the divergence of the particle velocity field: Par-
ticles accumulate only in regions where this divergence is
negative. The Eulerian description of the particle motion can
be obtained on the basis of the above Lagrangian informa-
tion. Equation(46) yields the particle velocity as

; (1—6)kSt
o : E A 41— d)ktsp (50
? \\_ where the denominator in the above equation is identical to
00 e - =S s, 13 Therefore
' . (1- 8)kSt
FIG. 6. St=0.1, 6=0.1. Absolute values of all three forces as function of r=uv.= r3 ! (51)

time. Dashed lines—centrifugal force; solid line—drag; dash—dot—inertia.
The balance is initially between inertia and centrifugal forces, while later it This relationship can be interpreted in a Lagrangian way, i.e.,

is between drag and centrifugal for(_:es. This behavior remains qualitativelyg the velocity of an individual particle as a function of its
the same for all values af below unity. radial locationr, or in a Eulerian way, for example as the

local convection velocity of a particle concentration field.
either the particle density or the Stokes number are inWith our earlier observation that the azimuthal particle ve-

creased, the radial particle location grows more rapidly.  locity is identical to the fluid velocity, we obtain

By scaling time with 41— §|kSt, 1
7=4|1- 5|ktSt 49) Vo= 2 (52
Eq. (46) leads to the scaling law, which completes the Eulerian description of the particle ve-

locity field. It indicates that the particle velocity field is

uniquely determined by the particle location, §). For the

where the plus sign holds for heavy particles and the minuslivergence of the particle velocity field we obtain

sign for light ones. Below, it will become clear that this law 2(1- 5)St

is modified for large values dbt. Vovy=——5—. (53
This particle parameter independent scaling law, plotted r

in Fig. 7 for two initial conditionsy=0.3 andry=0.6, isin  From the governing equation for the particle concentration

excellent agreement with the “exact” numerical solutions. field,

These were obtained by integrating the governing equations

r=(ro+n)Y4 (49)

SV (v0) =0, (54)

10 T T

we thus obtain

ldc
cdt
whered/dt is the total derivative with respect to the patrticle.
This equation states that the relative rate of change of the
particle concentration is given by the negative divergence of
the particle velocity field. We can hence define an instanta-
neous accumulation rate, ,
1dc
“cdt
which for the present case results in

- xS - 2 2(1-0)St
10t 10 ar:(r—4). (57)

=V.v,, (55)

ay

-V-vp, (56)

FIG. 7. St=0.1. Radial displacement of heavy patrticles. The scaling law of : ; i : ;
Eq. (50) is plotted as solid lines for two initial conditionsy=0.3 and The accumulation rate is positive for heavy particles, and it

ro=0.6. “Exact” numerical solutions represented kiy dashed lines for ipcreases with the particlg density asd _ln the simplified
5=0.1 and(ii) dotted lines for§=0.9 are almost identical to the scaling law. limit of ( §—0), our equations for the point vortex flow cor-
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10 | 1 e

FIG. 9. St=0.1. Radial displacement of light particles. The scaling law of
Eqg. (50) is plotted as solid lines for two initial conditionsy=0.5 and
ro=0.7. “Exact” numerical solutions plotted &$) dotted lines for6=1.1
and(ii) dashed lines fo6=2.0 are in reasonable agreement with the scaling
law.

Forces

does not take place, as reflected by the negative accumula-
tion rate. In summary, the transport trends for light particles
are again opposite to those for heavy patrticles.

10 10 B. St~1/e

FIG. 8. St=0.1, light particle regime. Absolute values of all three forces 1. Heavy particles

plotted as a function of time fofa) 6=1.1, and(b) 5=2. Dashed lines— |f the injtial velocity of the particle is identical to that of
centrifugal force; solid line—drag; dash—dot—inertia. The balance is ini- h di uid. th . | initiall in h
tially between inertia and centrifugal forces while later it is between dragt e surroun. |ng_f uid, t e_(?'ent”fUQa forge initially aga'r_] as
and centrifugal forces. For larger values &fthe particle approaches the t0 balance inertia. In addition, for large times drag again has
vortex center faster. As a result, the particle inertia may gain importance afg balance the centrifugal forces, as discussed earlier. How-
later times, as seen ifb). ever, it now takes much longer to achieve this final balance,
and an intermediate regime in which inertia is balanced by

. ; : _drag can arise, as shown by numerical resultsSt+ 10.0
respond to those derived by Druzhiffifor the Rankine vor and 6=0.1; cf. Fig. 10. Here, the initial particle location is

tex. This author furthermore outlines an equation for the ra-

dial particle velocity in an arbitrary axisymmetric vortex. His ;ia%ag]rr ?: d(i)é?.r;-:rﬁég;[s;:n?mdla;ts:ﬁ?t?aelIhac?nltfa(rmgmalp— the
equation agrees with our E451) for the case of a point 9 P y Gd p

: . o ticles by the centrifugal forces. For intermediate times, some
vortex in the heavy particle limit. of this momentum is dissipated by the drag force. Only after
a significant slowing of the particle is the final regime at-
2. Light particles tained, in which drag is balanced by centrifugal forces.

Computational solutions of the full equations for light Qualitatively similar behavior is observed for all density ra-
particles of mass ratios 1.1 and 2.0 display the same qualitdios less than unity.
tive force balances as for heavy particles; cf. Fig&,!8. It is straightforward to obtain a first order approximate
Figure &b) indicates that with increasing, the inertia term  solution for short and intermediate times. Wit~ 1/, Eq.
gains importance for these inward moving particles. Again(36) becomes
the long time solution Eq(48) approximates the particle . .
motion ?airly well; cf. Fig.q9. Thepsrz:aling law is pIoEc)ted for (1+812)F = —er+(1= Hk/r°. (58
two initial conditions ofr =0.5 andr,=0.7. For both initial  The inner, short time solution in our expansion expresses the
conditions, in obtaining the numerical solutions, two valuesbalance between inertia and centrifugal forces, while the in-
of 6 (=1.1,2.0) were chosen, while the Stokes number wasermediate time solution balances inertia and drag. These two
maintained atSt=0.1. As can be seen from E@6), the solutions can then be matched to arrive at the composite
radial motion of these light particles becomes stronger if eisolution.
ther their density decreases or their Stokes number increases. The initial balance between inertia and centrifugal forces
Accumulation in the regions away from the vortex centerleads to the following inner solution:
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FIG. 10. St=10.0,6=0.1. Absolute values of all three forces plotted against FIG. 11. St=10. Radial displacement of heavy particles: “Exact” numeri-
time. Dashed lines—centrifugal force; solid line—drag: dash—dot—inertia.cal solution(dahsed linesand asymptotic expansigsolid line9. The ex-
The initial and final balances are the same as those for the small Stokgsansion is in reasonable agreement with the numerical solution.
number case plotted in Fig. 6: Initially, the balance is between inertia and
centrifugal forces, while the final balance is between drag and centrifugal
forces. There now is a new intermediate regime in which drag and inertia

1-5k
match each other. ( 1/4
—t +(c+4(1-5)ktSt 2
211 512) (c+4(1-9)ktSH™, (62
, . (1= 6)kt? 5 (1- )V 1+ 612) 1’25t (63
inner= + : c=
linner o mg ( ) ro
The balance between inertia and drag results in the goverrrigure 11 shows that this first order solution agrees reason-
ing equation for the intermediate regime, ably well with the “exact” numerical solution. The radial
. velocity of a particle increases witht, similarly to our ear-
(1+6/2)r +r/St=0, lier findings for the smalSt regime. This trend agrees with
which has the solution the experimental observations by laaa and Lasheraswho

—t find that particles of larger diameter accumulate farther away
Finter=a+Db exp(m : from the vortex centers. .
Within the intermediate range, the two terms with the

The constantsa and b can be evaluated by matching the radical signs in Eq(60) cancel out for large times. Hence
intermediate and inner solutions;nie; and ripper- Upon

matching, the composite solution takes the form (1- O)YAKYA 1+ 5/2)2/2
) (1— o)kt Meilt=1= r
ch_: ro+ P E— 0
(1+68/2)rg 4
_ 5\l2,1/2 1/2 X St 1—exr{—)). 64
Jr(1 8) kM 1+ 8/2) Sy1—e VL+a2SY (1+ 6/2)St €4
To All particle characteristics can be eliminated from this rela-
—t\/(l— 5)k/r§(1+ 512). (60) tionship by rescaling the radial displacement as well as time.
Let

We can proceed to obtain the solution for the outer regime in .

which drag is balanced by inertia. Similar to the solution for  {_ S— (65)
the smallSt case we obtain (1- 62— 5°14) Stk
Fouter=(C+4(1— 8)ktSHY4, 61 and
wherec is a constant to be obtained by matching. The com-
posite expansion valid for all three regimes can now be ob- T— t (66)
tained by matching the above solution witky to obtain - (1+6/2)St
, (1-8)kt?
re=1\/rg+ —(1+ 5/2)r§ We then obtain for the radial displacement,
_ S\ 2102 12 1 _
_(1-9)7 K1+ 612) Ste~V(1+ 28 R=—(1-e 7). (67)
ro 0
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Notice the difference between this scaling law and the one 3 - . - .

for small Stokes numbers in E¢6).
In the limit as 6—0, the above arguments further sim- |
plify. With '
r at
Ri=g5qan (68)
and ?1.5-
T,= ! 69 )
1~ Stl ( )
we obtain
1 0.5
Ri=—(1—e ). (70
)
0
The scaling relationships of Eq&8)—(69) are related to the ° : c

ones proposed by Laro and Lasher8gor obtaining a scal-
ing law for hea\/y partic|es in unforced mixing |ayers that FIG. 12. Ratio of the particle concentration to the initial concentration in a
does not depend on the particle parameters. These auth int-vortex flow, plotted for5=0.0 and three values &t Dashed line—

. . . . . t=0.1; solid line—St=1.0; dash—dot-St=10.0. Particles with intermedi-
scale their particle dispersion measel—0.9 level thick- o valles oSt experience optimal accumulation.
nes$ and the downstream distangg by pquzl (18w). This
factor, when nondimensionalized, becomes 8trKeeping

in mind that their dispersion measure axgdirectly corre-  surfacer, than that it forces to exit through the surface
Spond to our radial displacement and time, the relationship:rz_ Further, the Ve|0city of the partic|es entering at
with the above scaling becomes obvious. r=r, is by Eq.(51), more than that of those exiting at
Let us compare the radial displacement expressed by Eq=r,. Stokes drag tends to oppose this accumulation be-
(64) for two particles with identical parameters but starting atcause it, being proportional to the velocity, is higher for the
different locations o; andr o, with ro;<rq,. The particle at  particles that are entering the given region, i.e., it hinders the
the smaller initial radius o, eventually moves to a larger entering particles more than it hinders the exiting particles.
radial location. This leads to the formation of concentrationas St is increased, the drag decreases and as a result the
waves with propagating crests. This behavior results frongentrifugal force can accumulate the particles more effec-
the fact that the particle starting at a smaller radius obtains @vely. Nevertheless, the accumulation remains somewhat

higher angular momentum from the surrounding fluid, whichlimited in this smallSt regime, due to the relatively large
eventually drives it to larger radii. It leads to a situation drag force.

where two particles at the same radial location can have dif- |n the largeStregime, initially the centrifugal force bal-

ferent velocities, so that the particle velocity field cannot beances inertia. The Centrifuga| force again causes accumula-
described as a single-valued function of the radius. tion. However, this balance between inertia and centrifugal
Computations shown in Fig. 12 demonstrate that parforce holds for only short durations. In the intermediate re-
ticles of intermediateSt accumulate optimally in the point gime, the centrifugal force is small, and the balance is be-
vortex flow field. The figure shows particle concentrationstween inertia and drag_ Consequenﬂy, the signiﬁcance of the
for =0 andSt=0.1, 1, and 10. To obtain these figures, centrifugal force decreases as we incregsérom small to
90 000 particles were seeded uniformly in the annular regiomarge values. The drag force, which opposes the accumula-
bounded byr;=0.3 andr,=4, with a velocity equal to the tjon, also decreases, since it is inversely proportiongbto
local fluid velocity. Subsequently, these particles werein other words, the forces causing accumulation and the
tracked untilt=10 by numerically integrating Eq$32) and  force opposing accumulation both become smalleGass
(33) with a fourth order Runge—Kutta scheme. increased. We can therefore conclude that the difference be-
We next address the question of why particles of intertween these two opposing forces is maximized for interme-
mediate values oSt are optimally accumulated. For accu- diate values ofSt, thereby leading to the observed optimal

mulation to occur in a region, more particles should beaccumulation for particles with intermedia$e
driven into that region than that driven out. Let us consider

an annular region bounded by the two radii, and r,
(=r1+Ar). Heavy particles enter this region through the
surfacer =r, and exit it through the surface=r,. Let us Again we start with numerical simulations to obtain the
first treat the smalBtregime. Recall that for small values of force balancegsee Fig. 13 Light particles approach the
St, the drag force is balanced by the centrifugal force, whichcenter of the point vortex rapidly and reach the origin in a
decreases rapidly with increasingthereby causing accumu- finite time because of the unphysical singularity at the origin.
lation in an initially constant concentration field: because theAs a result, there is not enough time for the particle to dis-
centrifugal force is higher at=r, than that atr=r,, it  play the second and third balances observed in the previous
forces more particles to enter the given region through thesection on heavy particles. The balance is between inertia

2. Light particles
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10 ; . . . wherek=1/(27)2. We can expand the solution as a power

, series in €),
10’ 5=2 i
/' r=Rp+eRy+€’Ry+ ... . (72
] / ] To first order,
F | 3Ry2=—Ry/St  Ry(0)=ry,  Ry(0)=0. (73
§‘°'2' 3 Therefore, to first order the drag balances inertia. Dte)
N equation is
10°F E
. 3R,/2= —R,/St-k/R, R.(0)=0, Ry(0)=0.
0 ; (74)
107 1 The solution toO(e€) is
- . . . L 3kSt kSt
e 107 107 107 10° 10’ r=rote—=(1—-e" 2u3sty e—5t. (75
t 2ry ro

FIG. 13. St=10, §=2: The absolute values of all three forces plotted agains T € second term on the rhs of the above solution is negli-

time. Dashed line—centrifugal force; solid line—drag; dash—dot—inertia.gible for small values o5t. Therefore the error in tracking
The balance is always between inertia and centrifugal forces. These Iigktthe fluid is

particles approach the vortex center in a finite time and therefore do not
remain in the flow field long enough to attain the final balance observed in

; kSt )
Figs. 6, 8, and 10. e=|r—ro|=|¢€ r—3t+0(6 ). (76)
0

and centrifugal forces for all times. The first order solution isThe same error can be qbtamed frqm the siBaitxpansion
the same as the inner solution from the previous section e)gerformed earllgr by Iett|pg§:1+ € In Eq. (46).' Thus the
pressed by Eq59). These solutions, plotted for three differ- error increases if the particle Stokes number is |.ncre§sed.
ent density ratios, are in good agreement with the numerical . _We ne>_<t analyze the_ effect of_gmall deV|at|9ns n _the
solutions; Fig. 14. In this case, particles are rapidly forcedmt'al velocity on the tracking capability of the particle. With

towards the origin and hence no accumulation is possible. =1, Eq.(36) becomes

C.6=1+e 3r/2=r/St, (77
This expansion is performed to analyze if the particles  ((g)=r,, r(0)=e.
used in DPIV are robust with respect to density variations. ] )
On substitutingd=1+ ¢ in Eq. (36), The resulting error is
3+el. 1 ek e=|r—ro|=3lelSt(1—e" 212,
2 |'" st 7D Hence, the particle deviates by a distance approximately pro-

portional toSt, again provided that history effects are negli-
gible.

V. STAGNATION POINT ZONE

The flow in this zone is represented by a linear strain
field,

| Uy= agy, Uy = agX, (78

where « is the strain rate. In the absence of gravity, the
characteristic time scale of this flow field is the inverse of the
) strain rate (1), whereas a characteristic length scale does
not exist. In order to nondimensionalize the governing equa-
1 tions, we hence choose an arbitrary length sgal&he par-
ticle motion is then governed by the equations

4 1\, 1. 1 :
1+ 58 |x=x+ 5oy + gt(y—x), (79
FIG. 14. St=10. Radial displacement of light particles. “Exact” numerical
solution (dashed linesand asymptotic expansiaiolid lineg. The expan- 1 1 1 1—-6
sion is in reasonable agreement with the numerical solution. Particles ap- 1+=6 y: Sy+ _5)'(+ —(X—Y)— — (80)
proach the vortex center faster if their mass is decreésed]). 2 2 St Fr<’
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ppd’ , yao? strain axest [=(x+y)/\2] and 5 [=(y—x)/2]
o=pslpy, St= ag, Fre= . (8D

18u g 1 1.1 1
Both Ramarao and Tiéh'’ and Morrisor® studied this 1+56 £= 66+ §5§+ §t(§_g)_Tf’ (82
problem in detail. By employing Laplace transforms, the lat- Frey2
ter author was able to derive a closed form solution that . 5
accounts for thg ol_d form'of the Basset history term. In light 14268|n=6n—=o6n— non ' 83
of the recent findings discussed above regarding the de- 2 2 St St Fr2\2

creased importance of the Basset history term, however, a

fresh look at the the dynamics of particles across the entir&@hese equations represent a set of two decoupled linear dy-

density spectrum in stagnation point flows is needed. namical systems. We first study the solution along the com-
Equations(79) and (80) can be decoupled along the pressional strain axig,

77=Cle)‘1t+ Cze)\zt'i‘ |0, (84)

1-6
o= , 85
O (82— 1/St)\2Fr2 (85)

_ —(USt+ 812) £ (1St+ 5/2)°~ 4(1+ 6/2)(1/St—6)
N2= 201+ o/2) :

(86)

While \, always has a negative real paxt, has a positive ‘“spring-constant”k in a positive fashion, as it tends to move

real part if St6>1, which indicates that the particle moves the particle towards the stagnation point. The pressure gradi-

against the flow towards infinity. This behavior, already ob-ent, on the other hand, lowers the spring constant by driving

served by Morrison, is caused by the pressure gradient forcéhe particle away from the stagnation point. The added mass

which overcomes the opposing influence of the drag. Undeincreases the “massin of the oscillator. The constant forc-

such circumstances, the third condition in E&) may not ing provided by gravity does not alter the particle damping

hold and as a result, the solution expressed8f) may be characteristics.

incorrect®® Critical damping occurs when the imaginary part of the
If, on the other handRe(A,) <0, the particles converge eigenvalue vanishes. By setting the discriminant in )

to a line parallel top=0, where they accumulate. The dis- equal to zero

tance of this line fromy=0, which increases with gravity, is

determined by the last term in E@4). The rate of approach 1\2 [(38\2 &5 4

is determined by the largest real part of the eigenvalues, §t> (7) “St 5t 4970

which is plotted in Fig. 1&). For a given density ratio

(6), the rate of approach for heavy particles is maximized forWe can solve foiSt,

intermediateSt values. Light particles, on the other hand, do

not display any optimal trend in the rate of approach: Their - B2=5—9)

rate of approach continues to decreas&ass increased. ) o= ot4+ V8(2 > &= 9) (88)
Figure 15b) shows the imaginary part of the largest ei- ' 86+96°72

genvalues. A nonzero value for a givéhand St indicates

oscillatory particle motion. Heavy particles exhibit this be- Between these two values 8t, the particle exhibits oscilla-

havior for a range of Stokes numbers, with maximum fre-tory motion. If 5>1, there is no physically meaningful so-

quencies for intermediatt values. lution for St, indicating that light particles never undergo
The behavior of the present second order linear systerfifitical damping. Light particles are overdampedSito<1.

can be interpreted as a damped harmonic oscillator. By re=0r Sto>1, on the other hand, they give rise to a negative

writing Eq. (83), we obtain spring constant. Consequently, light particles never undergo
an oscillatory motion.
. . 1-6 It is interesting to study the dynamics of heavy particles
m7y+cnt+ky=-— J2Fr?’ as St varies ands is held constant. In the limit aSt—0,
87) heavy particles behave like fluid particles. 8is increased,
S 1 8 1 they approach the accumulation line more and more rapidly
m=1+ 5 c= §t+ 5 k= St 0. unitl St; is reachedsee Fig. 18)]. At St;, they are criti-

cally damped and their rate of approach is maximized. For
The “damping” c is provided by both the Stokes drag and St;<St<St,, the particles are underdamped and exhibit os-
the added mass term. The Stokes drag also contributes to te#latory motion, so that they can cross=0 in finite time.
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Herec, andc, are constants that depend on the initial ve-
locity of the particle. The trajectory of a fluid particle starting
at the same location is

_ —t
Nfluid= M€ -

Comparingn;,ig With 7 provides as a necessary condition
for the particle’s ability to track the fluid motion accurately,

M<—1 (89
This condition translates to
St<2/5. (90)

Under this condition, the maximum eigenvalue of the neu-
trally buoyant particle is always the same as that of the fluid.

VI. DISCUSSION AND SUMMARY

In order to gain an improved understanding of the dif-
ferent mechanisms responsible for the dispersion trends ob-
served in vortical flows, we have investigated three simple
flow fields: solid body vortex, point vortex, and stagnation
point flow. These situations model the cores of concentrated
vortices, their outer regions, and irrotational regions in be-
tween vortices.

For all three model flows, we were able to reduce the
governing fourth order system to two second order equa-
tions. In particular, for the vortex core region we obtain a
second order linear system for a complex variable. The point
vortex situation translates into a nonlinear system for the
radial motion of the particles, while for the linear strain field,
FIG. 15. Stagnation point flow: Contour plots @) real and(b) imaginary two Ilnegr decoupled Secon_d Ord_er equatlon_s ar.e_ derwed for
parts of the eigenvalue with the largest real component. Particles with h@ motion along each strain axis. These simplifications al-
negative real part accumulate along the extensional strain axis. For a ranggw us to identify several new dispersion trends, and to ob-
St < St< Stz_, hea_vy particles oscillate, as can be seen from the nontriviali5iq gn improved understanding of others observed before.
values for the imaginary part. A neutrally buoyant partighe-1) can track Most i tantly. in th ti tigati dd th
the fluid motion accurately only iBt<2/5. Notice that if this condition O_S Importantly, in _e pres_en '_nves Igalion we adaress . €
holds,\,=—1, so that the particle approaches the stagnation point at th&ntire range of density ratios, in contrast to most earlier
same rate as the fluid. If this condition is not satisfied, the particle apstudies.
proaches the stagnation point more slowly than the field. For heavy particles in a solid body vortex, the centrifu-

gal force is the only force pointing away from the vortex
center, with pressure gradient, added mass, and Stokes drag

At St,, they are again critically damped. Subsequently, for N O )
St,<St<1/8 the particles are overdamped again, and forforce all pointing inward. ASStis increased, both the inward
St>1/5 they diverge to infinity and the outward forces decrease. However, the difference

While previous studies by Morrisdfi, Ramarao and between them reaches a maximum for intermed&tteal-

Tien'” and Matsufuji and Hasegaia(for —0) observed ues, resulting in optimal ejection at these valuesSbfThe
oscillatory behavior beyond a critical value 8t the present rotation rate of heavy patrticles is shown to be less than that

results indicate an upper limit to this oscillatory regime, be_of the surrounding fluid. Analytical expressions for both the

yond which the pressure gradient force is strong enough tgjection rate.and the rotational frequency demonstrate the
suppress any oscillations. Féx=0, the value ofSt, is in  2Pove behavior.

agreement with the analyses by Matsufuji and Hasedawa In many ways, light particles show the e_xact opposite
and Martin and Meiburd.As & is increased from zero to behavior to heavy ones. They are entrapped into the vortex,
unity, the St value for optimal rate of approactst) in- at a rate that reaches a maximum for intermediate values of

creases. For the case 6& 1, which is of interest in DPIV STL H_ere both the inV\_/ard a’Fd t_he outwa_rd forc_e S increase
studies, the eigenvalues are real, with m_creasmg_St while their difference is maximized at
these intermediate values.
2 N 2 The point vortex flow can be analyzed by perturbation
3st 3’ expansions for both small and large values of 8 In
so that we obtain for the trajectory of a neutrally buoyamagreement Vl\i'.th dpre\;lc;us eernmﬁntal a?]d numencgll studies
particle starting aty,, on various kinds of free shear flows, heavy particles are
shown to accumulate in the outer vortical regions. For a fixed
density ratio, the rate of accumulation is optimal for interme-

() St

)\1:

p=ceM+ce .
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diateStvalues. While the centrifugal force is shown to cause S 2

this accumulation, the drag force tends to oppose it. Theirnet  f= 2_St+ St (A3)
balance at intermediat&t values results in the above optimal )
accumulation. We require that the derivativdd/d(St) does not change

For largeSt values, a scaling law for the radial displace- sign for both light ¢>1) and heavy §<1) particles. We
ment is derived, which in the heavy particle limit corre- Prove this by showing that the sign changéé 6=1 and
Sponds to the Sca”ng argument derived by' draz and that this Sign Change does not depenCBdl.r‘lf pl’imes denote
Lashera&from their experiments on the dispersion of heavydifferentiation with respect t&t, then

particles in unforced mixing layers. 8'=0, (A4)
For stagnation point flows, the well-known result of op-
timum accumulation for heavy particles of intermediate size =—d'yd°+f°+dd" +ff'=0, (A5)
is extended by deriving an analytical expression for the op- =f2(d’2—f'2)—add ff'=0, (AB)
timal St value as a function of the density ratio. In the heavy )
. L . L . . . g (8/2+2)
particle limit, this expression is consistent with previous re - [(6—1)(8+2)]=0 (A7)
sults. In addition, we identify an upp&t limit to the under- st '
damped range, beyond which the motion ceases to be oscil-  _ 5-1 the other roots=—2 is meaningless.
latory. These trends are analyzed in terms of damped (A8)

harmonic oscillators. . . L
Interesting dynamical behavior can furthermore be obSinced#/d(SY can be zero only fo6=1, it cannot change

served for nearly neutrally buoyant particles, and for theiftS Sign for either heavy or light particles. As a result, after
tracking errors due to density mismatches. For stagnatiof"oWing computationally for at least one data point that the

point flows in particular, a restriction o8t exists, beyond c_ierlvatlv_e is negative for heavy Part'C|‘_35 and positive for

which the tracking error increases exponentially. light particles, one can conclude thatontinues to decrease
While the above results add to our general understandintj the particle is heavy, and to increase if the particle is light.
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