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The transport in vortical and stagnation point flow fields is analyzed for particles across the entire
range of density ratios, based on the Maxey–Riley equation@Phys. Fluids26, 883 ~1983!# without
history effects. For these elementary flow fields, the governing equations simplify substantially, so
that analytical progress can be made towards quantifying ejection/entrapment trends and
accumulation behavior. For a solid body vortex, the analysis shows that optimal ejection or
entrapment occurs for all density ratios, as the difference between inward and outward forces
reaches a maximum for intermediate values of the Stokes number. The optimal Stokes number value
is provided as a function of the density ratio. Gravity is shown to shift accumulation regions,
without affecting the entrapment or ejection rates. For a point vortex flow, the existence of up to
three different regimes is demonstrated, which are characterized by different force balances and
ejection rates. For this flow, optimal accumulation is demonstrated for intermediate Stokes numbers.
The stagnation point flow gives rise to optimal accumulation for heavy particles, whereas light
particles do not exhibit optimal behavior. The analysis furthermore indicates that nonvanishing
density ratios give rise to a finite Stokes number regime in which the particle motion is oscillatory.
Above and below this regime, the motion is overdamped. ©1997 American Institute of Physics.
@S1070-6631~97!00202-X#
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I. INTRODUCTION

The transport of heavy particles, drops, and bubbles
variety of flow fields has received wide attention in rece
years, owing to its importance in both engineering and na
ral flows. Technological applications concern, for examp
pollution reduction and efficiency enhancement through
proved mixing of the fuel droplets in an internal combusti
engine. Similarly, control over the droplet dynamics in t
final stages of large turbines can avoid impact erosion of
blades. A different, but related issue arises in the rece
developed experimental technique of particle image velo
metry ~PIV!. Here, the fluid motion is to be tracked by eith
droplets or solid particles. An obvious question concerns
tracking ability of particles whose density or initial veloci
does not quite match the fluid properties.

Over the last decade, both experimental and comp
tional investigations have addressed the issue of the dis
sion of heavy particles and bubbles, with particular empha
on free shear flows, such as mixing layers, jets, and wa
Numerous studies have demonstrated the strong influenc
the coherent vortical flow structures. These are observe
preferentially disperse heavy particles whose aerodyna
response time is of the same order as the characteristic
time scale, i.e., particles whose Stokes numberSt is near
unity. For these particles of intermediate size, bo
numerical1–5 and experimental6–9 investigations demonstrat
the ejection of the particles from the vortex centers, as w
as their accumulation in the outer regions of the vortices

a!Corresponding author: Department of Aerospace Engineering, Unive
of Southern California, Los Angeles, California 90089-1191. Phone: 2
740-5376; Fax: 213-740-7774.
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in the neighborhood of stagnation points. The formation
streaks of high particle concentrations plays an import
role in the overall dynamics of the dispersion process.
recent review of the relevant work is given by Croweet al.10

For bubbly flows, numerical simulations have demonstra
the preferential entrapment11,12 of bubbles of intermediate
St, along with the modification of the flow by the bubbles.13

In contrast to the behavior of heavy particles, the bub
concentration is found to decrease in the outer regions of
vortices.

From the above experimental and computational inve
gations, it becomes clear that the global features of bub
and particle dispersion are dominated by their dynamics
three distinctly different regions of the flow field: the vis
cously dominated vortex core, the outer region of the vo
ces, and the stagnation zones. Several investigations
addressed the dynamics of particles and bubbles in ideal
representations of these flows.3,4,11,14–17However, these stud
ies were mostly limited to situations in which the ratio b
tween particle and fluid density is either zero or infinity. T
present investigation aims at analyzing in detail the dyna
ics of particles across the entire spectrum of density ra
and St values, and at elucidating the governing force b
ances in the different parameter regimes. A combination
analytical and numerical approaches will be employed
wards this end. The vortex core region will be approxima
as a solid body vortex, while the outer vortical region can
analyzed on the basis of a point vortex model. Finally,
stagnation zone will be modeled in a linear fashion as w
For all of these model flows, particular attention will be pa
to situations of interest in PIV applications, namely nea
neutrally buoyant particles, and particles with mismatch
initial velocities.
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-
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The equations governing the particle motion are outlin
in section II. In section III we address the core region, wh
in section IV we focus on the point vortex model. Subs
quently, the stagnation point flow is analyzed in section
while in section VI we summarize the results and pres
several conclusions.

II. EQUATIONS GOVERNING THE PARTICLE MOTION

We consider the dilute limit, in which there is only on
way coupling from the fluid to the particle. The concentr
tion of the particles is assumed to be small enough so
both the particle–particle and particle–fluid interactions
negligible. The resulting equation of motion for the particl
is then obtained by neglecting the the Faxen correction te
in the relationship first derived by Maxey and Riley18

Vrp

dvp
dt

53pfm@u~x,t !ux5xp~ t !2vp~ t !#1V~rp2r f !g

1Vr f

Du

Dt U
x5xp~ t !

1
1

2
Vr f

d

dt
@u~x,t !ux5xp~ t !

2vp~ t !#2
3

2
pf2m

3E
0

tH d/dt@vp~t!2u~x,t !ux5xp~ t !#

@pm~ t2t!/r f #
1/2 J dt. ~1!

Herevp andu denote the particle and fluid velocity, respe
tively. While r f , andm are the density and dynamical vis
cosity of the surrounding fluid, the symbolsf, V, and
xp(t) represent the diameter, volume, and position of
particle, respectively. The total derivative with respect to
particle is denoted byd/dt, while that with respect to the
fluid is given byD/Dt. The right hand side of this equatio
represents the forces acting on the particle. In order, these
the Stokes drag, gravity, a pressure gradient force accoun
for the acceleration of the displaced fluid and the virtu
mass, and the Basset history term. Manton14 and Auton19

argue thatDu/Dt should be used in the added mass te
instead ofdu/dt. Ruetsch and Meiburg11 show that, for ex-
ample, in a solid body vortex the particle trajectory is nea
independent of the form of the added mass term. Con
quently, in the following we will employ the respective form
of the added mass term that keeps the mathematics simp
Equation ~1! describes the particle motion accurately pr
vided

f

g
!1, Rep5

fŪ

n
!1,

f2U

gn
!1, ~2!

where Ū is the slip velocity between the particle and t
surrounding fluid,g andU denote the characteristic leng
and velocity scales of fluid motion, respectively, andn is the
kinematic viscosity.

Recently, the Basset history term has been exami
more closely by several research groups.20–29 Through a
combination of analytical and computational investigatio
they find that the history term decays initially ast21/2 and
later ast22. As a result, history effects are less importa
300 Phys. Fluids, Vol. 9, No. 2, February 1997
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than originally thought, so that within the present investig
tion we neglect them entirely. The forces driving the partic
motion in our model are the particle inertia, the press
gradient, the added mass term, and the viscous Stokes
In some situations, we will analyze the effect of gravity
well. It should be mentioned that all of the above forces w
included in Maxey’s30 study of particle dynamics in cellula
flows as well.

III. VORTEX CORE REGION

As a first step, we analyze the motion of a particle in t
core region of a vortex, which we approximate as a so
body vortex with the velocity components,

ux52
V0

2
y, ~3!

uy51
V0

2
x, ~4!

whereV0 is the vorticity of the solid body vortex. The prob
lem exhibits a characteristic time scale in the form of t
eddy turnover timeT51/V0, whereas length or velocity
scales are absent. Consequently, after neglecting the B
history and gravity terms, the dimensionless version of
~1! takes the form

S 11
1

2
d D ẍ52

d

4
x2

1

4
d ẏ1

1

StS 2
y

2
2 ẋD , ~5!

S 11
1

2
d D ÿ52

d

4
y1

1

4
d ẋ1

1

StS x22 ẏD , ~6!

d5r f /rp , St5
rpf

2

18m
V0 , ~7!

where d is the density ratio andSt denotes the particle
Stokes number. In the present context,St can be interpreted
as the ratio of the particle’s aerodynamic response time
the characteristic time scaleT of the fluid motion. A larger
particle density results in a lower density ratio and an
creased Stokes number. On the other hand, a change in
affectsSt only. In the following, we will refer to light par-
ticles if d.1, and to heavy particles ifd,1. For the limit of
very heavy particles (d→0), Raju and Meiburg4 discuss the
ejection trends in a solid body vortex under the effects
particle inertia and Stokes drag only. They present a qua
tative scaling argument that explains the preferential disp
sion of particles withSt near unity in free shear flows. Ru
etsch and Meiburg,11 on the other hand, address the bubb
limit ( d→`), which can most conveniently be treated b
redefining the Stokes number as

St85Std5
r ff

2

18m
V0. ~8!

This definition reflects the importance of the added mass
the bubble limit. In the present investigation we address
entire range between the heavy particle and the bubble
its.

The current problem represents a fourth order linear
namical system. In order to solve the governing equatio
N. Raju and E. Meiburg
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first the roots of a quartic polynomial for the eigenvalu
need to be obtained. By treating the problem in the comp
variablez5x1 iy , it is reduced to the quadratic equation
z,

~11d/2!z̈1S 1St2 i
d

4D ż1S d

4
2 i

1

2StD z50, ~9!

which has solutions of the form

z5x1 iy5c1e
l1t1c2e

l2t, ~10!

l1,25~2b6Ab224ac!/~2a!, a511d/2, ~11!

b51/St2 id/4, c5d/42 i /~2St!. ~12!

It is clear from Eq.~10! that particles either approach th
origin (z50) or asymptotically recede away to infinity, de
pending on whether the sign of the largest real part of
eigenvalues,Re(l1), is negative or positive, respectively
For heavy particles,Re(l1) is always positive, while
Re(l2) is negative. For light particles, the real parts of bo
eigenvalues are negative, withRe(l1).Re(l2). Conse-
quently, heavy particles are ejected from the vortex co
whereas light particles asymptotically approach the vor

FIG. 1. Particle motion in a solid body vortex: Contour plots of~a! the real,
and~b! the imaginary parts of the eigenvalue with the largest real part.
real part represents the long time ejection and entrapment rates, whic
optimized for intermediate values ofSt(d). The imaginary part expresse
the long time rotation rate. While light particles rotate faster than the
rounding fluid, heavy particles rotate more slowly.
Phys. Fluids, Vol. 9, No. 2, February 1997
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center. For the sake of convenience, we letl r andl i denote
the real and imaginary parts of the largest eigenvaluel1,
respectively. The second term in Eq.~10! represents an ini-
tial transient, which persists for longer times asSt is in-
creased.

Figure 1~a! represents a contour plot ofl r in the
St,d-plane. The negative values ford.1 indicate that light
particles, in agreement with the above discussion, are
trapped in the core, so that they approach the vortex cen
asymptotically. For everyd.1, there is an optimal Stokes
numberStl , for which the entrapment rate is maximized
The value ofStl decreases asd is increased; cf. Fig. 2~a!. In
the limit asd→`, the problem should be treated with th
modified Stokes numberSt8. Here the entrapment rate be
comes optimal whenSt850.74, in agreement with Ruetsch
and Meiburg.11

Heavy particles, on the other hand, are ejected, as
evident from the positive values ofl r @Fig. 1~a!#. For a given
value of St, the ejection rate decreases with increasingd.
However, for a given value ofd the ejection rate is maxi-
mized for an intermediate value of the Stokes number,Sth .
Sth increases with decreasingd @Fig. 2~b!#. The optimal
ejection of intermediate-sized particles~as expressed by
Sth) is in agreement with both experimental and comput
tional investigations of particle dispersion in mixing layer
jets, and wakes, as discussed in the Introduction.

Because the balance of forces responsible for the o
served entrapment/ejection trends is intricately related to
rotation rates of the particles, we first analyze the trends
the rotation rates, before continuing the discussion
entrapment/ejection.l i corresponds to the circular frequenc
or rotation rate,u̇ of the particle, after the initial transient ha
decayed. After this decay, the particle trajectory can be
sualized as a spiral centered about the origin. Heavy partic
spiral outward, while light ones spiral inward. Along thi
spiral, the rotation rate, plotted in Fig 1~b!, is a constant
expressed byl i . The figure shows that the rotation rate o

e
are

r-

FIG. 2. Stokes number for which optimal entrapment/ejection trends
observed as a function of the density ratiod. ~a! Stl for light particles and
~b! Sth for heavy particles.
301N. Raju and E. Meiburg
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heavy particles is less than the constant value of one-hal
the fluid, and that, for a givend, it decreases with increasin
St. This behavior is mostly due to the drag force, whi
accelerates the heavy particle as it reaches larger radii
St is increased, the drag force and hence the particle ac
eration become proportionally weaker, thereby resulting
lower rotation rates.

For light particles, the converse of the above effe
hold, i.e., light particles rotate faster than the local fluid, a
for a given d, their rotation rate increases with increasi
St. Now the Stokes drag decelerates the particle’s azimu
motion. However, since the drag force per mass decre
wih increasingSt, the rotation rate of light particles increas
with increasingSt. The increase~decrease! in the rotation
rate for light ~heavy! particles with increasingSt can be
demonstrated by means of a brief mathematical analysi
well; cf. the Appendix.

We now return to the entrapment/ejection trends d
cussed earlier. The force balance responsible for entrapm
ejection can be understood more easily by casting the e
tions of motion in polar coordinates. We obtain

~11d/2!
r̈

r
52d/42du̇/42

1

St

ṙ

r
1~11d/2!u̇2, ~13!

~11d/2!~r ü12ṙ u̇ !5
d ṙ

4
1

1

St
~r /22r u̇ !. ~14!

These equations are nonlinear, and hence difficult to so
analytically. However, further simplifications are possible
we limit ourselves to the long time behavior. Per our ear
discussion, the rotation rate becomes a constant after the
tial transients have died out. Its value can be obtained
function of the ejection/entrapment rate andSt by setting
ü50 in Eq. ~14!,

u̇5

1
2 1 ~d/4!~ ṙ /r ! St

11~21d!St~ ṙ /r !
. ~15!

With ṙ /r representing the long term ejection/entrapment r
l r , this yields

u̇5

1
2 1 ~d/4! l rSt

11~21d!Stl r
. ~16!

We now consider the different forces acting along t
radial direction. The last term in Eq.~13!, which combines
the rotation rate dependent component of the inertia~cen-
trifugal force! with the pressure gradient and added m
forces, always points outward. With the vortex center cor
sponding to a pressure minimum, the pressure gradient f
is directed inward, as reflected by the sign of the first term
the rhs of Eq.~13!. The added mass, on the other han
contributes to several forces:~1! it increases the inertia
(d/2 term on the lhs!, ~ii ! it increases the centrifugal force
and ~iii ! it adds an inward force~second term on the rhs!.
The Stokes drag, may it be inward or outward, always
poses motion.

Let us now analyze how the different radial forces@rhs
of Eq. ~13!# acting on a heavy particle vary withSt for a
302 Phys. Fluids, Vol. 9, No. 2, February 1997
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given d. The first three terms on the rhs of Eq.~13! oppose
the outward motion of the particle, while the fourth term
causes the outward motion. WhenSt is increased, the out-
ward centrifugal force decreases because the rotation
decreases, as discussed earlier. The sum of the three inw
forces can also be shown to decrease ifSt is increased. The
first inward force from the rhs of Eq.~13! does not depend
onSt. The second inward force decreases in magnitude w
increasingSt, because the rotation rate decreases. The th
inward force decreases as well with increasingSt, as can be
seen from the following argument. Recall that the ratioṙ /r ,
present in the numerator, is the ejection ratel r . The third
term can then be expressed asl r /St. Contour plots of this
ratio, shown in Fig. 3, reveal that for a givend,1, this ratio
decreases asSt is increased. Thus both the outward and t
inward forces decrease with increasingSt. However, it is the
differencebetween the inward and the outward forces th
causes the particles to move. We therefore analyze how
difference varies as a function ofSt for a givend. From Fig.
4, which depicts this difference as contours in th
St,d-plane, we can conclude that it is maximized at interm
diate values ofSt, thereby causing the optimal ejection o
heavy particles.

For light particles, the inward forces are due to the fir
two terms on the rhs of Eq.~13!, whereas the outward force
are due to the last two terms. The sum of the inward forc
grows with increasingSt, because of an increase in the rot
tion rate. The third term, expressing the Stokes drag for
now points outward. This force decreases with increas
St ~Fig. 3!. The fourth term, a combination of centrifuga
pressure gradient, and added mass forces, which incre
with St. Via graphical inspection of a contour plot, one find
that the sum of these two outward forces increases as w
Thus both the inward and the outward forces increase w
St. However, as demonstrated in Fig. 4, their difference
maximized for intermediate values ofSt, thereby causing
optimal entrapment.

FIG. 3. Contour plots of the drag forcel r /St. The sign of the contour levels
indicates the direction of the force. For a given value ofd, the magnitude of
the drag increases for both heave~d,1! and light ~d.1! particles ifSt is
increased.
N. Raju and E. Meiburg
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If d51 and the particle velocity is equal to that of th
surrounding fluid, the radial force acting on it is identicall
equal to zero according to Eq.~13!. As a result, neutrally
buoyant particles follow the fluid exactly, provided their ini
tial velocity matches that of the fluid. If, on the other hand

FIG. 4. Thedifferencebetween the outward and inward radial forces plotte
as contours in theSt,d-plane. AsSt is increased, this difference is maxi-
mized for intermediate values ofSt for both heavy~d,1! and light ~d.1!
particles.
el
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the initial velocity of the particle differs from that of th
fluid, the particle trajectory can be analyzed using Eq.~10!.
Whend51, the eigenvalues can be expressed as

l1502 i 1
2,

l252
2

3St
1 i

1

3
.

The solution then takes the form

z5c1 exp~l1t !1c2 exp~l2t !.

The second term vanishes ast→`. By evaluatingc1, we
find that the particle asymptotically deviates to another
dius located at a distance equal to the initial velocity diffe
ence times the square ofSt. At this new radius, it will track
the fluid motion accurately. It should be pointed out, ho
ever, that the above argument neglects history effects, wh
under some circumstances, might modify the short time c
sequences of velocity mismatches.

A common situation arises when particles with a dens
slightly different from that of the fluid are used to track th
fluid motion, for example due to density variations in th
flow field. Hence it is of interest to analyze the effect
small density variations on the particles’ tracking capabili
i.e., situations withd511e. From the above it follows tha
particles are ejected ife,0 and entrapped ife.0. The
ejection/entrapment rate can be obtained from Eq.~10! by
performing a smalle expansion of the eigenvaluel1
l15
2@1/St1 i ~d/4!#1A1/St22 9d2/162d1 i ~2/St1d/2St!

21d
. ~17!
es
im-
di-

loc-

ake
The real part is given by

l r5
2~1/St! 1A~d1Ad21 f 2!/2

2~11d/2!
, ~18!

d5
1

St2
2
9d2

16
2d, ~19!

f5
d

2St
1

2

St
. ~20!

Whend51, one can show that

dl r

dd
52

St

4~1125St2/16!
, ~21!

so that

l r52
Ste

4~1125St2/16!
. ~22!

Hence, the particle tracks the motion of the fluid accurat
only for t!4(1125St2/16)/(ueuSt), provided that history
effects are negligible. Therefore, the smaller the part
Stokes number, the larger is the time for which the parti
y

e
e

tracks the fluid accurately. From the definition of the Stok
number, we can infer that the tracking accuracy can be
proved by increasing the viscosity or by decreasing the
ameter. The accuracy also improves if the vorticityV0 is
reduced.

A. Effect of gravity

When gravity acts in the2y direction, a characteristic
length scale emerges, which is related to the terminal ve
ity v t of the particle in still fluid,

v t5~r f2rp!g
f2

18m
, ~23!

and the eddy turnover time 1/V0. After making the govern-
ing equations dimensionless with this length scale, they t
the form

S 11
1

2
d D ẍ52

d

4
x2

1

4
d ẏ1

1

StS 2
y

2
2 ẋD , ~24!

S 11
1

2
d D ÿ52

d

4
y1

1

4
d ẋ1

1

StS x22 ẏD7
1

St
, ~25!

d5r f /rp , St5
rpf

2

18m
V0 , ~26!
303N. Raju and E. Meiburg
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where the minus/plus sign holds for heavy/light particles.
these scaled coordinates the terminal velocity is6 1 depend-
ing upon whether the particle is lighter or heavier than
fluid.

The complementary function for this fourth order line
system is the same as for the case without gravity, and
eigenvalues are not modified by the presence of grav
Consequently, the complete solution now consists of
complementary function and a particular integral, both
which are again easily evaluated in the complex variablez,

z5x1 iy5c1e
l1t1c2e

l2t7 i
1

Stc
, ~27!

in which l1,2 andc, are given by Eqs.~11!–~12!. Thus the
ejection/entrapment rate is not modified by the presenc
gravity. The trends in the particle motion outlined earl
remain the same, except for two differences. First, the ac
mulation point for the particles is shifted from the vorte
center to a new location given by7 i (1/cSt). Light particles
follow an inward logarithmic spiral which asymptotically ap
proaches this new location. Heavy particles placed a sm
distance away from the equilibrium location follow an ou
ward spiral. Second, the presence of gravity modifies
constantsc1 andc2.

The location of the focus (x0 ,y0) of the logarithmic spi-
ral can be obtained from the particular integral of Eq.~27!,

x01 iy057 i
1

Stc
~28!

or

x01 iy057S 28

St2d214
1 i

4Std

St2d214D , ~29!

where the minus sign holds for heavy particles and the p
sign for light ones. It is possible to eliminate the factorStd
from the above equation and representy0 as a function of
x0,

y057A2x0~721x0!, ~30!

where again the minus sign holds for heavy particles and
plus sign for light ones. The loci of the resulting spiral fo
are plotted in Fig. 5.

IV. POINT VORTEX MODEL

This model is used as a basis for analyzing the trans
of particles in the outer regions of a vortex, where the a
muthal velocity of the fluid decreases with increasing d
tance from the vortex center. The fluid velocity compone
are

uu5
G0

2pr
, ur50, ~31!

whereG0 denotes the circulation of the vortex. There are
characteristic velocity or time scales associated with the fl
motion. The only length scale contained in the problem is
particle’s initial distance from the vortex center. Howev
using this scale in making the equations dimensionl
would result in identical particles having different values
304 Phys. Fluids, Vol. 9, No. 2, February 1997
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St, depending on their initial location. Such a situatio
should be avoided, so that we use an arbitrary length s
g instead.

By analyzing the particle dynamics in polar coordinate
some interesting simplifications in the particle equations
be obtained, if we follow Manton14 and Auton18 and replace
the derivative with respect to the particle (du/dt) in the
added mass term of Eq.~1! by the total derivative with re-
spect to the fluid (Du/Dt). The particle motion is then gov
erned by the fourth order system,

~11 1
2 d! r̈52

ṙ

St
1~12d!r u̇2, ~32!

S 11
1

2
d D d~r 2u̇ !

dt
5

1

StS 1

2p
2r 2u̇ D , ~33!

d5r f /rp , St5
rpf

2

18m

G0

g2 . ~34!

A preliminary numerical investigation by La´zaro and
Lasheras31 in the heavy particle limit (d→0), for which the
pressure gradient and added mass terms drop out, dem
strates that particles of larger size are ejected farther. In
present study we address the entire range between the h
particle and the bubble limits. Equation~33! can be inte-
grated once to obtain

r 2u̇5
1

2p
1c expS 2

t

St~11d/2! D . ~35!

The integration constantc is identically equal to zero, pro
vided that the initial azimuthal velocity of the particle
equal to that of the surrounding fluid. This assumption
quite realistic for small values ofSt, for which the initial
velocity difference decays quickly. For largerSt values,
however, this velocity difference may be felt for long
times. Along the radial direction, the equation describi
particle motion can be obtained by substituting Eq.~35! into

FIG. 5. Focus on the logarithmic spirals plotted as a parametric function
the entire range of the factorStd. The branch on the right is for heav
particles~d,1!, while that on the left is for light ones~d.1!. Light particles
spiral towards the focal point, whereas heavey ones spiral away from i
N. Raju and E. Meiburg

to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



in

e

po
o
T
g

nu

s
an
y

er
Eq
o
a

d
of
d
ity
.
e
es
f

io

t
Fo

a

tly,
ng
es,

se-
the

is
avy
ld
he
r be
nite
w.
l-

-
ng.

al-
ime
are

on a

he
ces
ey
ly

al

e
xi-

ce,

to
Eq. ~32!, which results in the decoupling of the equations
the r - andu-directions. By assumingc50, i.e, by setting the
initial azimuthal velocity of the particle equal to that of th
surrounding fluid, we get

S 11
1

2
d D r̈52

ṙ

St
1~12d!

~1/~2p!!2

r 3
. ~36!

From left to right, the three terms correspond to one com
nent of the inertial force, drag force, and a combination
centrifugal, pressure gradient, and added mass forces.
above equation can be rescaled with the time and len
scales

T5St~11d/2!, L5S St2p D 1/2u12du1/4~11d/2!1/4,

~37!

to obtain

r̈5H 2 ṙ61/r 3, if dÞ0,

2 ṙ , if d50,
~38!

where the plus sign holds for heavy particles and the mi
sign for light ones. From both Eq.~36! and Eq.~38!, it is
clear that for vanishing initial radial velocity light particle
move inward while heavy ones move outward. The adv
tage of the rescaled Eq.~38! is that it does not have an
parameters, i.e., the solution for all values ofSt andd can be
obtained by merely changing the initial conditions. Howev
we have been unable to find a closed form solution to
~38!. Consequently, one needs to solve it by numerical
approximate methods. Hence, a disadvantage of the resc
Eq. ~38! is that, unlike Eq.~36!, it is not conducive to any
type of perturbation expansion in terms ofSt andd.

Some qualitative scaling arguments based on Eq.~38!
are helpful. These scaling arguments can then be use
study Eq.~36! in more detail for small and large values
St. In addition, small deviations fromd51 can be addresse
as well, in order to investigate the effect of slight dens
variations on the particle’s ability to track the fluid motion

Throughout this section on the point vortex model, w
assume that the initial radial velocity of the particle vanish
i.e., ṙ (t50)50. Therefore, initially the term on the lhs o
the equation~called ‘‘inertia term’’ for short! has to balance
the last term on the rhs~called ‘‘centrifugal term’’ for short!.
This balance, however, may not hold for all times. Equat
~38! allows us to find the proper balance ast→`. There are
three possibilities: Inertia balances drag, inertia balances
centrifugal force, or drag balances the centrifugal force.
a balance between inertia and drag,

r̈52 ṙ , ~39!

so that

r5c1e
2t1c2 . ~40!

For thisr (t) relationship, however, the neglected centrifug
term is of the form

1/r 3;e3t, ~41!
Phys. Fluids, Vol. 9, No. 2, February 1997
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and would overtake the other two eventually. Consequen
inertia and drag do not provide the proper balance for lo
times. If instead inertia is balanced by the centrifugal forc
we obtain

r̈561/r 3, ~42!

resulting in

r5A6~2c1t1c2!
211. ~43!

With this solution, however, the neglected term (ṙ ) would
again overake the other two terms for long times. Con
quently, this balance is invalid as well. That only leaves
balance between drag and centrifugal forces,

ṙ561/r 3, ~44!

which leads to

r5~c6t !1/4. ~45!

In this case, the inertia term given byr̈523(c6t)27/4/16
indeed becomes negligible for long times, confirming th
balance as the only valid one. The plus sign holds for he
particles, while the minus sign holds for light ones. It shou
be noted that for light particles there is a possibility that t
balance between drag and centrifugal forces may neve
established, if the particle reaches the vortex center in a fi
time. This point will be discussed in more detail belo
Heavy particles of allSt values always attain this final ba
ance.

For small values ofSt, some interesting asymptotic re
sults can be obtained, as will be discussed in the followi

A. St;e

1. Heavy particles

The force balances discussed earlier, i.e., the initial b
ance between inertia and centrifugal forces and the long t
asymptotic balance between drag and centrifugal forces,
reflected in the ‘‘exact’’ numerical solutions of Eq.~36!. Fig-
ure 6 shows the magnitude of these three forces acting
particle with a density ratio of 0.1 andSt50.1. The particle
is released at a radius of 0.3 units with the velocity of t
surrounding fluid. As discussed above, the centrifugal for
are initially balanced by inertia, whereas for long times th
are in balance with the drag. This behavior is qualitative
the same for all density ratios smaller than one.

Hence it is possible to obtain the inner~short time! so-
lution, to first order, by balancing inertia with the centrifug
force. But this balance lasts only up tot'1022. Therefore,
neglecting it is not likely to add a significant error to th
particle displacement for longer times, so that an appro
mate solution to Eq.~36!, valid for all but very small times,
can be obtained by balancing drag with the centrifugal for

r5~r 0
414~12d!ktSt!1/4. ~46!

Here

k5
1

~2p!2
. ~47!

For small times the radial particle motion is proportional
t, while for later times it is proportional tot1/4. Further, if
305N. Raju and E. Meiburg
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either the particle density or the Stokes number are
creased, the radial particle location grows more rapidly.

By scaling time with 4u12dukSt,

t54u12duktSt, ~48!

Eq. ~46! leads to the scaling law,

r5~r 0
46t!1/4, ~49!

where the plus sign holds for heavy particles and the min
sign for light ones. Below, it will become clear that this law
is modified for large values ofSt.

This particle parameter independent scaling law, plott
in Fig. 7 for two initial conditionsr 050.3 andr 050.6, is in
excellent agreement with the ‘‘exact’’ numerical solution
These were obtained by integrating the governing equatio

FIG. 6. St50.1, d50.1. Absolute values of all three forces as function o
time. Dashed lines—centrifugal force; solid line—drag; dash–dot—inert
The balance is initially between inertia and centrifugal forces, while late
is between drag and centrifugal forces. This behavior remains qualitativ
the same for all values ofd below unity.

FIG. 7. St50.1. Radial displacement of heavy particles. The scaling law
Eq. ~50! is plotted as solid lines for two initial conditions:r 050.3 and
r 050.6. ‘‘Exact’’ numerical solutions represented by~i! dashed lines for
d50.1 and~ii ! dotted lines ford50.9 are almost identical to the scaling law
306 Phys. Fluids, Vol. 9, No. 2, February 1997
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using a fourth order Runge–Kutta scheme. In obtaining
numerical solutions, for each initial condition, two values
d (50.1,0.9) were chosen while the Stokes number w
maintained atSt50.1.

Whether or not particles accumulate in the point vort
depends on the divergence of the particle velocity field: P
ticles accumulate only in regions where this divergence
negative. The Eulerian description of the particle motion c
be obtained on the basis of the above Lagrangian infor
tion. Equation~46! yields the particle velocity as

ṙ5
~12d!kSt

~r 0
414~12d!ktSt!3/4

, ~50!

where the denominator in the above equation is identica
r 3. Therefore

ṙ5v r5
~12d!kSt

r 3
, ~51!

This relationship can be interpreted in a Lagrangian way,
as the velocity of an individual particle as a function of
radial locationr , or in a Eulerian way, for example as th
local convection velocity of a particle concentration fiel
With our earlier observation that the azimuthal particle v
locity is identical to the fluid velocity, we obtain

vu5
1

2pr
, ~52!

which completes the Eulerian description of the particle
locity field. It indicates that the particle velocity field i
uniquely determined by the particle location (r ,u). For the
divergence of the particle velocity field we obtain

“•vp52
2~12d!St

r 4
. ~53!

From the governing equation for the particle concentrat
field,

]c

]t
1“•~vpc!50, ~54!

we thus obtain

1

c

dc

dt
52“•vp, ~55!

whered/dt is the total derivative with respect to the particl
This equation states that the relative rate of change of
particle concentration is given by the negative divergence
the particle velocity field. We can hence define an instan
neous accumulation rate,a r ,

a r5
1

c

dc

dt
52“•vp , ~56!

which for the present case results in

a r5
2~12d!St

r 4
. ~57!

The accumulation rate is positive for heavy particles, an
increases with the particle density andSt. In the simplified
limit of ( d→0), our equations for the point vortex flow co

.
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respond to those derived by Druzhinin32 for the Rankine vor-
tex. This author furthermore outlines an equation for the
dial particle velocity in an arbitrary axisymmetric vortex. H
equation agrees with our Eq.~51! for the case of a poin
vortex in the heavy particle limit.

2. Light particles

Computational solutions of the full equations for lig
particles of mass ratios 1.1 and 2.0 display the same qua
tive force balances as for heavy particles; cf. Figs. 8~a,b!.
Figure 8~b! indicates that with increasingd, the inertia term
gains importance for these inward moving particles. Aga
the long time solution Eq.~48! approximates the particle
motion fairly well; cf. Fig. 9. The scaling law is plotted fo
two initial conditions ofr 050.5 andr 050.7. For both initial
conditions, in obtaining the numerical solutions, two valu
of d (51.1,2.0) were chosen, while the Stokes number w
maintained atSt50.1. As can be seen from Eq.~46!, the
radial motion of these light particles becomes stronger if
ther their density decreases or their Stokes number increa
Accumulation in the regions away from the vortex cen

FIG. 8. St50.1, light particle regime. Absolute values of all three forc
plotted as a function of time for~a! d51.1, and~b! d52. Dashed lines—
centrifugal force; solid line—drag; dash–dot—inertia. The balance is
tially between inertia and centrifugal forces while later it is between d
and centrifugal forces. For larger values ofd, the particle approaches th
vortex center faster. As a result, the particle inertia may gain importanc
later times, as seen in~b!.
Phys. Fluids, Vol. 9, No. 2, February 1997
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does not take place, as reflected by the negative accum
tion rate. In summary, the transport trends for light particl
are again opposite to those for heavy particles.

B. St;1/e

1. Heavy particles

If the initial velocity of the particle is identical to that of
the surrounding fluid, the centrifugal force initially again ha
to balance inertia. In addition, for large times drag again h
to balance the centrifugal forces, as discussed earlier. H
ever, it now takes much longer to achieve this final balan
and an intermediate regime in which inertia is balanced
drag can arise, as shown by numerical results forSt510.0
andd50.1; cf. Fig. 10. Here, the initial particle location i
againr 050.3. This intermediate balance has its origin in th
larger radial momentum imparted initially on largeSt par-
ticles by the centrifugal forces. For intermediate times, so
of this momentum is dissipated by the drag force. Only af
a significant slowing of the particle is the final regime a
tained, in which drag is balanced by centrifugal force
Qualitatively similar behavior is observed for all density ra
tios less than unity.

It is straightforward to obtain a first order approxima
solution for short and intermediate times. WithSt;1/e, Eq.
~36! becomes

~11d/2! r̈52e ṙ1~12d!k/r 3. ~58!

The inner, short time solution in our expansion expresses
balance between inertia and centrifugal forces, while the
termediate time solution balances inertia and drag. These
solutions can then be matched to arrive at the compo
solution.

The initial balance between inertia and centrifugal forc
leads to the following inner solution:

-
g

at

FIG. 9. St50.1. Radial displacement of light particles. The scaling law
Eq. ~50! is plotted as solid lines for two initial conditions:r 050.5 and
r 050.7. ‘‘Exact’’ numerical solutions plotted as~i! dotted lines ford51.1
and~ii ! dashed lines ford52.0 are in reasonable agreement with the scali
law.
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21

~12d!kt2

~11d/2!r 0
2. ~59!

The balance between inertia and drag results in the gove
ing equation for the intermediate regime,

~11d/2! r̈1 ṙ /St50,

which has the solution

r inter5a1b expS 2t

St~11d/2! D .
The constantsa and b can be evaluated by matching th
intermediate and inner solutions,r inter and r inner . Upon
matching, the composite solution takes the form

r c15Ar 0
21

~12d!kt2

~11d/2!r 0
2

1
~12d!1/2k1/2~11d/2!1/2

r 0
St~12e2t/~11d/2!St!

2tA~12d!k/r 0
2~11d/2!. ~60!

We can proceed to obtain the solution for the outer regime
which drag is balanced by inertia. Similar to the solution f
the smallSt case we obtain

r outer5~c14~12d!ktSt!1/4, ~61!

wherec is a constant to be obtained by matching. The co
posite expansion valid for all three regimes can now be o
tained by matching the above solution withr c1 to obtain

r c5Ar 0
21

~12d!kt2

~11d/2!r 0
2

2
~12d!1/2k1/2~11d/2!1/2

r 0
St~e2t/~11d/2!St!

FIG. 10.St510.0,d50.1. Absolute values of all three forces plotted again
time. Dashed lines—centrifugal force; solid line—drag: dash–dot—inert
The initial and final balances are the same as those for the small Sto
number case plotted in Fig. 6: Initially, the balance is between inertia a
centrifugal forces, while the final balance is between drag and centrifu
forces. There now is a new intermediate regime in which drag and ine
match each other.
308 Phys. Fluids, Vol. 9, No. 2, February 1997
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2tA ~12d!k

r 0
2~11d/2!

1~c14~12d!ktSt!1/4, ~62!

c5
~12d!1/2k1/2~11d/2!1/2

r 0
St. ~63!

Figure 11 shows that this first order solution agrees reas
ably well with the ‘‘exact’’ numerical solution. The radia
velocity of a particle increases withSt, similarly to our ear-
lier findings for the smallSt regime. This trend agrees with
the experimental observations by Laz´aro and Lasheras,7 who
find that particles of larger diameter accumulate farther aw
from the vortex centers.

Within the intermediate range, the two terms with th
radical signs in Eq.~60! cancel out for large times. Hence

r c1u t@15
~12d!1/2k1/2~11d/2!1/2

r 0

3StS 12expS 2t

~11d/2!StD D . ~64!

All particle characteristics can be eliminated from this rel
tionship by rescaling the radial displacement as well as tim
Let

R5
r

~12d/22d2/4!1/2Stk1/2
~65!

and

T5
t

~11d/2!St
. ~66!

We then obtain for the radial displacement,

R5
1

r 0
~12e2T!. ~67!

t
.
es
d
al
ia

FIG. 11. St510. Radial displacement of heavy particles: ‘‘Exact’’ numer
cal solution~dahsed lines! and asymptotic expansion~solid lines!. The ex-
pansion is in reasonable agreement with the numerical solution.
N. Raju and E. Meiburg
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Notice the difference between this scaling law and the
for small Stokes numbers in Eq.~46!.

In the limit asd→0, the above arguments further sim
plify. With

R15
r

Stk1/2
~68!

and

T15
t

St
, ~69!

we obtain

R15
1

r 0
~12e2T1!. ~70!

The scaling relationships of Eqs.~68!–~69! are related to the
ones proposed by Laz´aro and Lasheras6 for obtaining a scal-
ing law for heavy particles in unforced mixing layers th
does not depend on the particle parameters. These au
scale their particle dispersion measure~0.1–0.9 level thick-
ness! and the downstream distancexd by rpf

2/(18m). This
factor, when nondimensionalized, becomes ourSt. Keeping
in mind that their dispersion measure andxd directly corre-
spond to our radial displacement and time, the relations
with the above scaling becomes obvious.

Let us compare the radial displacement expressed by
~64! for two particles with identical parameters but starting
different locationsr 01 and r 02 with r 01,r 02. The particle at
the smaller initial radiusr 01 eventually moves to a large
radial location. This leads to the formation of concentrat
waves with propagating crests. This behavior results fr
the fact that the particle starting at a smaller radius obtain
higher angular momentum from the surrounding fluid, wh
eventually drives it to larger radii. It leads to a situatio
where two particles at the same radial location can have
ferent velocities, so that the particle velocity field cannot
described as a single-valued function of the radius.

Computations shown in Fig. 12 demonstrate that p
ticles of intermediateSt accumulate optimally in the poin
vortex flow field. The figure shows particle concentratio
for d50 andSt50.1, 1, and 10. To obtain these figure
90 000 particles were seeded uniformly in the annular reg
bounded byr 150.3 andr 254, with a velocity equal to the
local fluid velocity. Subsequently, these particles we
tracked untilt510 by numerically integrating Eqs.~32! and
~33! with a fourth order Runge–Kutta scheme.

We next address the question of why particles of int
mediate values ofSt are optimally accumulated. For accu
mulation to occur in a region, more particles should
driven into that region than that driven out. Let us consid
an annular region bounded by the two radii,r 1 and r 2
(5r 11Dr ). Heavy particles enter this region through t
surfacer5r 1 and exit it through the surfacer5r 2. Let us
first treat the small-St regime. Recall that for small values o
St, the drag force is balanced by the centrifugal force, wh
decreases rapidly with increasingr , thereby causing accumu
lation in an initially constant concentration field: because
centrifugal force is higher atr5r 1 than that atr5r 2, it
forces more particles to enter the given region through
Phys. Fluids, Vol. 9, No. 2, February 1997
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surface r 1 than that it forces to exit through the surface
r5r 2. Further, the velocity of the particles entering a
r5r 1 is by Eq. ~51!, more than that of those exiting at
r5r 2. Stokes drag tends to oppose this accumulation b
cause it, being proportional to the velocity, is higher for th
particles that are entering the given region, i.e., it hinders th
entering particles more than it hinders the exiting particle
As St is increased, the drag decreases and as a result
centrifugal force can accumulate the particles more effe
tively. Nevertheless, the accumulation remains somewh
limited in this smallSt regime, due to the relatively large
drag force.

In the largeSt regime, initially the centrifugal force bal-
ances inertia. The centrifugal force again causes accumu
tion. However, this balance between inertia and centrifug
force holds for only short durations. In the intermediate re
gime, the centrifugal force is small, and the balance is b
tween inertia and drag. Consequently, the significance of t
centrifugal force decreases as we increaseSt from small to
large values. The drag force, which opposes the accumu
tion, also decreases, since it is inversely proportional toSt.
In other words, the forces causing accumulation and th
force opposing accumulation both become smaller asSt is
increased. We can therefore conclude that the difference b
tween these two opposing forces is maximized for interm
diate values ofSt, thereby leading to the observed optima
accumulation for particles with intermediateSt.

2. Light particles

Again we start with numerical simulations to obtain the
force balances~see Fig. 13!. Light particles approach the
center of the point vortex rapidly and reach the origin in
finite time because of the unphysical singularity at the origin
As a result, there is not enough time for the particle to dis
play the second and third balances observed in the previo
section on heavy particles. The balance is between iner

FIG. 12. Ratio of the particle concentration to the initial concentration in
point-vortex flow, plotted ford50.0 and three values ofSt: Dashed line—
St50.1; solid line—St51.0; dash–dot—St510.0. Particles with intermedi-
ate values ofSt experience optimal accumulation.
309N. Raju and E. Meiburg

to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



is
e
-
c
e
.

e
s

er

gli-

.
he
h

pro-
li-

ain

he
he
es
ua-

n
ia
ig
n

l

a

and centrifugal forces for all times. The first order solution
the same as the inner solution from the previous section
pressed by Eq.~59!. These solutions, plotted for three differ
ent density ratios, are in good agreement with the numeri
solutions; Fig. 14. In this case, particles are rapidly forc
towards the origin and hence no accumulation is possible

C. d511e

This expansion is performed to analyze if the particl
used in DPIV are robust with respect to density variation
On substitutingd511e in Eq. ~36!,

S 31e

2 D r̈52
ṙ

St
2

ek

r 3
, ~71!

FIG. 13.St510,d52: The absolute values of all three forces plotted agai
time. Dashed line—centrifugal force; solid line—drag; dash–dot—inert
The balance is always between inertia and centrifugal forces. These l
particles approach the vortex center in a finite time and therefore do
remain in the flow field long enough to attain the final balance observed
Figs. 6, 8, and 10.

FIG. 14.St510. Radial displacement of light particles. ‘‘Exact’’ numerica
solution ~dashed lines! and asymptotic expansion~solid lines!. The expan-
sion is in reasonable agreement with the numerical solution. Particles
proach the vortex center faster if their mass is decreased~or d↑!.
310 Phys. Fluids, Vol. 9, No. 2, February 1997
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wherek51/(2p)2. We can expand the solution as a pow
series in (e),

r5R01eR11e2R21 . . . . ~72!

To first order,

3R̈0/252Ṙ0 /St, R0~0!5r 0 , Ṙ0~0!50. ~73!

Therefore, to first order the drag balances inertia. TheO(e)
equation is

3R̈1/252Ṙ1/St2k/R0
3 , R1~0!50, Ṙ1~0!50.

~74!

The solution toO(e) is

r5r 01e
3kSt2

2r 0
3 ~12e2 2t/3St!2e

kSt

r 0
3 t. ~75!

The second term on the rhs of the above solution is ne
gible for small values ofSt. Therefore the error in tracking
the fluid is

e5ur2r 0u5ueu
kSt

r 0
3 t1O~e2!. ~76!

The same error can be obtained from the smallSt expansion
performed earlier by lettingd511e in Eq. ~46!. Thus the
error increases if the particle Stokes number is increased

We next analyze the effect of small deviations in t
initial velocity on the tracking capability of the particle. Wit
d51, Eq. ~36! becomes

3r̈ /25 ṙ /St, ~77!

r ~0!5r 0 , ṙ ~0!5e.

The resulting error is

e5ur2r 0u53ueuSt~12e2 2t/3St!/2.

Hence, the particle deviates by a distance approximately
portional toSt, again provided that history effects are neg
gible.

V. STAGNATION POINT ZONE

The flow in this zone is represented by a linear str
field,

ux5a0y, uy5a0x, ~78!

wherea0 is the strain rate. In the absence of gravity, t
characteristic time scale of this flow field is the inverse of t
strain rate (1/a0), whereas a characteristic length scale do
not exist. In order to nondimensionalize the governing eq
tions, we hence choose an arbitrary length scaleg. The par-
ticle motion is then governed by the equations

S 11
1

2
d D ẍ5dx1

1

2
d ẏ1

1

St
~y2 ẋ!, ~79!

S 11
1

2
d D ÿ5dy1

1

2
d ẋ1

1

St
~x2 ẏ!2

12d

Fr 2
, ~80!
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a0 , Fr 25

ga0
2

g
. ~81!

Both Ramarao and Tien16,17 and Morrison15 studied this
problem in detail. By employing Laplace transforms, the l
ter author was able to derive a closed form solution t
accounts for the old form of the Basset history term. In lig
of the recent findings discussed above regarding the
creased importance of the Basset history term, howeve
fresh look at the the dynamics of particles across the en
density spectrum in stagnation point flows is needed.

Equations~79! and ~80! can be decoupled along th
s
b
rc
d

s-
s

,

fo
do
e

i-

e-
re

te
r

d
o
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S 11
1

2
d D j̈5dj1

1

2
dj̇1

1

St
~j2 j̇ !2

12d

Fr 2A2
, ~82!

S 11
1

2
d D ḧ5dh2

1

2
dḣ2

h

St
2

ḣ

St
2

12d

Fr 2A2
. ~83!

These equations represent a set of two decoupled linear
namical systems. We first study the solution along the co
pressional strain axish,
h5c1e
l1t1c2e

l2t1 l 0 , ~84!

l 05
12d

~d221/St!A2Fr 2
, ~85!

l1,25
2~1/St1 d/2!6A~1/St1 d/2!224~11 d/2!~1/St2d!

2~11 d/2!
. ~86!
e
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ng

he

-
o
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idly

For
os-
While l2 always has a negative real part,l1 has a positive
real part ifStd.1, which indicates that the particle move
against the flow towards infinity. This behavior, already o
served by Morrison, is caused by the pressure gradient fo
which overcomes the opposing influence of the drag. Un
such circumstances, the third condition in Eq.~2! may not
hold and as a result, the solution expressed by~84! may be
incorrect.30

If, on the other hand,Re(l1),0, the particles converge
to a line parallel toh50, where they accumulate. The di
tance of this line fromh50, which increases with gravity, i
determined by the last term in Eq.~84!. The rate of approach
is determined by the largest real partl r of the eigenvalues
which is plotted in Fig. 15~a!. For a given density ratio
(d), the rate of approach for heavy particles is maximized
intermediateSt values. Light particles, on the other hand,
not display any optimal trend in the rate of approach: Th
rate of approach continues to decrease asSt is increased.

Figure 15~b! shows the imaginary part of the largest e
genvalues. A nonzero value for a givend andSt indicates
oscillatory particle motion. Heavy particles exhibit this b
havior for a range of Stokes numbers, with maximum f
quencies for intermediateSt values.

The behavior of the present second order linear sys
can be interpreted as a damped harmonic oscillator. By
writing Eq. ~83!, we obtain

mḧ1cḣ1kh52
12d

A2Fr 2
,

~87!

m511
d

2
, c5

1

St
1

d

2
, k5

1

St
2d.

The ‘‘damping’’ c is provided by both the Stokes drag an
the added mass term. The Stokes drag also contributes t
-
e,
er

r

ir

-

m
e-

the

‘‘spring-constant’’k in a positive fashion, as it tends to mov
the particle towards the stagnation point. The pressure gr
ent, on the other hand, lowers the spring constant by driv
the particle away from the stagnation point. The added m
increases the ‘‘mass’’m of the oscillator. The constant forc
ing provided by gravity does not alter the particle dampi
characteristics.

Critical damping occurs when the imaginary part of t
eigenvalue vanishes. By setting the discriminant in Eq.~86!
equal to zero

S 1StD
2

1S 3d

2 D 22 d

St
2

4

St
14d50,

we can solve forSt,

St1,25
d147A8~22d22d!

8d19d2/2
. ~88!

Between these two values ofSt, the particle exhibits oscilla-
tory motion. If d.1, there is no physically meaningful so
lution for St, indicating that light particles never underg
critical damping. Light particles are overdamped ifStd,1.
For Std.1, on the other hand, they give rise to a negat
spring constant. Consequently, light particles never unde
an oscillatory motion.

It is interesting to study the dynamics of heavy partic
asSt varies andd is held constant. In the limit asSt→0,
heavy particles behave like fluid particles. AsSt is increased,
they approach the accumulation line more and more rap
unitl St1 is reached@see Fig. 15~a!#. At St1, they are criti-
cally damped and their rate of approach is maximized.
St1,St,St2, the particles are underdamped and exhibit
cillatory motion, so that they can crossh50 in finite time.
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At St2, they are again critically damped. Subsequently,
St2,St,1/d the particles are overdamped again, and
St.1/d they diverge to infinity.

While previous studies by Morrison,15 Ramarao and
Tien17 and Matsufuji and Hasegawa33 ~for d→0) observed
oscillatory behavior beyond a critical value ofSt, the present
results indicate an upper limit to this oscillatory regime, b
yond which the pressure gradient force is strong enoug
suppress any oscillations. Ford50, the value ofSt1 is in
agreement with the analyses by Matsufuji and Hasegaw33

and Martin and Meiburg.3 As d is increased from zero to
unity, theSt value for optimal rate of approach (St1) in-
creases. For the case ofd51, which is of interest in DPIV
studies, the eigenvalues are real,

l152
2

3St
1
2

3
, l2521,

so that we obtain for the trajectory of a neutrally buoya
particle starting ath0,

h5c1e
l1t1c2e

2t.

FIG. 15. Stagnation point flow: Contour plots of~a! real and~b! imaginary
parts of the eigenvalue with the largest real component. Particles wi
negative real part accumulate along the extensional strain axis. For a r
St1 , St, St2, heavy particles oscillate, as can be seen from the nontri
values for the imaginary part. A neutrally buoyant particle~d51! can track
the fluid motion accurately only ifSt,2/5. Notice that if this condition
holds,l r521, so that the particle approaches the stagnation point at
same rate as the fluid. If this condition is not satisfied, the particle
proaches the stagnation point more slowly than the field.
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Here c1 and c2 are constants that depend on the initial v
locity of the particle. The trajectory of a fluid particle startin
at the same location is

h f luid5h0e
2t.

Comparingh f luid with h provides as a necessary conditio
for the particle’s ability to track the fluid motion accuratel

l1,21. ~89!

This condition translates to

St,2/5. ~90!

Under this condition, the maximum eigenvalue of the ne
trally buoyant particle is always the same as that of the flu

VI. DISCUSSION AND SUMMARY

In order to gain an improved understanding of the d
ferent mechanisms responsible for the dispersion trends
served in vortical flows, we have investigated three sim
flow fields: solid body vortex, point vortex, and stagnati
point flow. These situations model the cores of concentra
vortices, their outer regions, and irrotational regions in b
tween vortices.

For all three model flows, we were able to reduce t
governing fourth order system to two second order eq
tions. In particular, for the vortex core region we obtain
second order linear system for a complex variable. The p
vortex situation translates into a nonlinear system for
radial motion of the particles, while for the linear strain fiel
two linear decoupled second order equations are derived
the motion along each strain axis. These simplifications
low us to identify several new dispersion trends, and to
tain an improved understanding of others observed bef
Most importantly, in the present investigation we address
entire range of density ratios, in contrast to most ear
studies.

For heavy particles in a solid body vortex, the centrif
gal force is the only force pointing away from the vorte
center, with pressure gradient, added mass, and Stokes
force all pointing inward. AsSt is increased, both the inwar
and the outward forces decrease. However, the differe
between them reaches a maximum for intermediateSt val-
ues, resulting in optimal ejection at these values ofSt. The
rotation rate of heavy particles is shown to be less than
of the surrounding fluid. Analytical expressions for both t
ejection rate and the rotational frequency demonstrate
above behavior.

In many ways, light particles show the exact oppos
behavior to heavy ones. They are entrapped into the vor
at a rate that reaches a maximum for intermediate value
St. Here both the inward and the outward forces incre
with increasingSt, while their difference is maximized a
these intermediate values.

The point vortex flow can be analyzed by perturbati
expansions for both small and large values of theSt. In
agreement with previous experimental and numerical stu
on various kinds of free shear flows, heavy particles
shown to accumulate in the outer vortical regions. For a fix
density ratio, the rate of accumulation is optimal for interm
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diateSt values. While the centrifugal force is shown to cau
this accumulation, the drag force tends to oppose it. Their
balance at intermediateSt values results in the above optim
accumulation.

For largeSt values, a scaling law for the radial displac
ment is derived, which in the heavy particle limit corr
sponds to the scaling argument derived by Laz´aro and
Lasheras6 from their experiments on the dispersion of hea
particles in unforced mixing layers.

For stagnation point flows, the well-known result of o
timum accumulation for heavy particles of intermediate s
is extended by deriving an analytical expression for the
timal St value as a function of the density ratio. In the hea
particle limit, this expression is consistent with previous
sults. In addition, we identify an upperSt limit to the under-
damped range, beyond which the motion ceases to be o
latory. These trends are analyzed in terms of dam
harmonic oscillators.

Interesting dynamical behavior can furthermore be
served for nearly neutrally buoyant particles, and for th
tracking errors due to density mismatches. For stagna
point flows in particular, a restriction onSt exists, beyond
which the tracking error increases exponentially.

While the above results add to our general understand
of the dynamics of particle laden flows, we have to keep
mind that they were based on a series of simplifying assu
tions, such as two-dimensional flow, dilute particle conc
tration fields, negligible history effects, and one-way co
pling. Full Navier-Stokes simulations that account for t
effect of the particles on the flow field will certainly lead
observations of additional important phenomena.
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APPENDIX: ROTATION RATE IN A SOLID BODY
VORTEX

Here we prove that, ifSt is increased from zero to in
finity, the long term rotation rate of particles present in
solid body vortex, increasesi f f the particles are light and i
decreasesi f f the particles are heavy.

The functionu̇ continues to increase asSt is increased
i f f d u̇/d(St) remains positive and it continues to decrea
i f f d u̇/d(St) remains negative. Thusdu̇/d(St) should not
change sign whenSt is varied from zero to infinity. The
rotation rate may be expressed as

u̇5
d/41A~2d1Ad21 f 2!/2

2~11d/2!
, ~A1!

d5
1

St2
2
9d2

16
2d, ~A2!
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2St
1

2

St
. ~A3!

We require that the derivativedu̇/d(St) does not change
sign for both light (d.1) and heavy (d,1) particles. We
prove this by showing that the sign changesi f f d51 and
that this sign change does not depend onSt. If primes denote
differentiation with respect toSt, then

u̇850, ~A4!

⇒2d8Ad21 f 21dd81 f f 850, ~A5!

⇒ f 2~d822 f 82!2add8 f f 850, ~A6!

⇒ ~d/212!2

St4
@~d21!~d12!#50, ~A7!

⇒d51, the other rootd522 is meaningless.

~A8!

Sincedu̇/d(St) can be zero only ford51, it cannot change
its sign for either heavy or light particles. As a result, af
showing computationally for at least one data point that
derivative is negative for heavy particles and positive
light particles, one can conclude thatu̇ continues to decreas
if the particle is heavy, and to increase if the particle is lig
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