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The dispersion and settling of small, heavy, spherical particles in a temporally evolving 
two-dimensional mixing layer under gravity is investigated. The dilute limit is assumed, in which 
both the effect of the particles on the fluid flow and the interaction among the particles is negligible. 
The particle dynamics is quantified as a function of the dimensionless Stokes and Froude numbers, 
St and Fr, which express the ratios of the three time scales related to {i) the fluid flow, (ii) the 
particles’ inertia, and (iii) their settling velocity, respectively. For horizontal Row in which the upper 
stream is the seeded one, the mixing layer accelerates the settling of particles with small St, whereas 
particles with large St are slowed down in their settling motion. At intermediate St and for moderate 
settling velocities, root-mean-square (RMS) data for the particle concentration field demonstrate the 
generation of strong inhomogeneities by the mixing layer. These regions of high particle 
concentration have the form of bands in the initially unseeded stream. Scaling laws for their angles 
and the distance between them are given. Furthermore, analytical results for linearized flow fields 
are derived that demonstrate the optimal efficiency of the dispersion and settling process at 
intermediate St. The numerical simulations show the existence of different parameter regimes, in 
which the particle motion is dominated by the coherent vortices and by gravity, respectively. Scaling 
laws are derived for the particle dispersion and settling for both of these regimes, which show 
reasonable quantitative agreement with the simulation data. Flows that exhibit a vortex pairing 
process show a reduced tendency of the particles toward suspension. For vertically upward flow in 
which the faster stream is seeded, is observed a sharp maximum in the particle dispersion measures 
for intermediate St and settling velocities equal to one-half the difference between the free-stream 
velocities. Under these conditions, the cross-stream fluid velocity components become optimally 
efficient in ejecting particles into the unseeded stream. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

The present study continues our computational investi- 
gation into the topic of particle dispersion by forced mixing 
layers. While part 1 (Martin and Meiburg,r hereafter referred 
to as MM) focused on the effect of the mixing layer alone, 
we now aim at identifying and quantifying the mechanisms 
that arise through the interaction of gravity-induced particle 
settling, with the dispersion process caused by the large-scale 
structures of the mixing layer. This subject is motivated by 
both environmental and technical flows. Areas that have been 
the focus of a good deal of recent research include the atmo- 
spheric settling of dust and aerosol particles, as well as the 
fallout of sediments in rivers and estuaries. In addition, ap- 
plications involving droplet and particle dispersion abound in 
the fields of mechanical, chemical, and civil engineering. Ex- 
amples concern spray combustion and droplet dispersion in 
the final stages of large turbines. As discussed in MM; within 
the present study we limit ourselves to small spherical par- 
ticles with densities much larger than that of the carrier fluid. 
Furthermore, our investigation targets the dilute regime, in 
which the interaction among particles, as well as the effect of 
the particles onto the fluid are negligible. In MM, we had 
confirmed and extended earlier numerical (Crowe, Gore, and 
Troutt’ and Chein and Chung’) and experimental (Lazaro 

and Lashera&” and Longmire and Eaton7) findings of maxi- 
mum dispersion for those particles with an aerodynamic re- 
sponse time, also called relaxation time, comparable to the 
characteristic flow time, i.e., a Stokes number of order unity. 
For the purpose of quantifying the dispersion process, we 
defined two integral length scales, one of which represents 
the number of particles that cross the mixing layer, whereas 
the second one is formed by weighting with the distance. Our 
simulations showed that, while the number of particles dis- 
persed into the initially unseeded stream does not exhibit a 
maximum for intermediate Stokes numbers, the distance- 
weighted dispersion measure does. 

By taking gravity into account, we now introduce a third 
time scale into the problem in the form of a particle settling 
time. An obvious question that arises concerns the potential 
modification of the above findings by the inclusion of grav- 
ity. It is unknown if optimum dispersion for intermediate 
Stokes numbers persists as gravity gains importance, and if it 
does, whether or not the optimally dispersed particle size 
depends on the strength of gravity. Furthermore, it is of in- 
terest to evaluate the effect of the mixing layer on the gravi- 
tational settling process. For example, it is unknown if set- 
tling is enhanced or delayed by the vertical flow structures. 
The overall goal is the derivation of quantitative models for 
the transport of heavy particles in mixing layers under the 
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added inliuence of gravity. Such models will have to distin- 
guish between those conditions under which the particle 
transport from the seeded to the unseeded stream is domi- 
nated by gravity and those when the effect of the coherent 
vertical structures is more important. In order to address the 
above issues, we have to investigate the coupling mecha- 
nisms between settling and dispersion. Some guidance on 
this matter is provided by the investigations of Stommel’ and 
Maxey and Corrsin.’ These authors study the settling of par- 
ticles under gravity in doubly periodic cellular flow fields, 
both with and without particle inertia. They find that particles 
without inertia can become suspended indefinitely along 
closed trajectories, while particles with inertia are observed 
to accumulate in bands and settle out at rates that are usually 
larger than the gravitational settling rate in a still fluid. For 
settling in homogeneous turbulence, the findings by Maxey” 
and by Wang and Maxeyr’ point toward a larger settling 
velocity of particles with inertia as well. In particular, Wang 
and Maxey find increases in the settling velocity up to 50% 
and larger for particle response times and terminal settling 
velocities that are comparable to the Kolmogorov scales. 
However, both particles without inertia and particles with an 
aerodynamic response time much larger than the AOW’S inte- 
gral time scale are expected to settle at the same rate as in 
still fluid. Manton,” on the other hand, had studied the dy- 
namics of an isolated particle in an axisymmetric eddy with 
a horizontal axis. The observation of approximately closed 
trajectories and temporary suspension had led this author to 
argue that the settling rate of heavy particles might be dimin- 
ished considerably by turbulence. Further interesting tindings 
in this regard are reported by Gafian-Calvo and Lasheras,13 
as well as by Tio, Gaiian-Calvo, and Lasheras14 for more 
regular, nonturbulent llows. Employing the model of a peri- 
odic Stuart vortex array, these authors observe the suspen- 
sion of heavy particles both above and below the mixing 
layer for moderate values of gravity, cf. also the findings by 
McLaughlin.” In contrast to the Maxey and Corrsin obser- 
vations for cellular flow, they report suspension in the mixing 
layer along open periodic, quasiperiodic, and chaotic trajec- 
tories. This example clearly indicates that the dispersion pro- 
cess in a mixing layer under gravity cannot be quantified by 
linearly superimposing the effect of gravity onto the disper- 
sion by the mixing layer alone, and that instead a careful 
study of the combined flow field is necessary to elucidate the 
coupling mechanisms. Comprehensive recent reviews of ex- 
Retimental and computational research on particle dispersion . 
in* fluid flows have been grven by Crowe, Chung, and 
Troutt,16 as well as by Eaton and Fessler.17 

. :.In most practical applications of particle dispersion by 
mrxmg layers, initially only one of the two streams is seeded. 
If the mean flow direction is horizontal and particle disper- 
sion is to be maximized, the upper stream will be the seeded 
one: Immediately after the two streams are brought together, 
the lower stream will contain only very few particles. During 
this initial transient phase, the growing mixing layer still 
effectively marks the edge of the seeded how, i.e., it resides 
between the seeded and the unseeded stream. However, far- 
ther downstream gravity may have caused many particles to 
enter the lower, initially unseeded stream. For this asymp- 

totic regime of the particle concentration evolution we can 
hope to derive scaling laws that hold independently of the 
specific initial conditions. 

The paper is organized as follows: In Sec. II, the set of 
governing equations is briefly reviewed, and the computa- 
tional approach employed in the present study is outlined. In 
Sec. III we begin by discussing general aspects of the effects 
of gravity on particle dispersion in a mixing layer, before 
presenting specific results for both horizontal and vertical 
flows, including the influence of vortex pairing. Scaling laws 
for vortex and gravity dominated regimes are derived and 
compared with the current computational results. Finally, in 
Sec. IV we discuss and summarize the main tindings, and 
present some conclusions. 

II. GOVERNING EQUATIONS AND DIMENSIONLESS 
PARAMETERS 

The aim of this investigation is to study the spatiotem- 
poral evolution of the concentration of heavy particles, in 
response to the forcing provided by gravity and the large- 
scale structures of the growing shear layer. The particles are 
assumed to be in the dilute regime, in which the evolution of 
the continuous fluid’phase is not affected by the particle con- 
centration. Consequently, the fluid velocitiescan be obtained 
independently of the particle motion. In the present study, as 
in MM, the flow we consider is a temporally evolving two- 
dimensional mixing layer, whose inviscid evolution can be 
computed in an efficient way by using a vortex blob tech- 
nique in conjunction with a fourth-order RungelKutta time 
integration scheme. In this way, the dominant effect of the 
large-scale vortex structures on the particle dispersion can be 
captured at a low computational cost. By employing vortex 
blobs with a Gaussian vorticity distribution, we obtain the 
unperturbed velocity profile, 

uiy ) = kerf(y ), 

where erf(y> = (2/&)J;e-” d0. 

(1) 

Here, as well as below, lengths are rendered dimension- 
less by referring them to the mixing layer thickness 6, 
whereas velocities are nondimensionalized by the difference 
velocity AU between the two free streams. To trigger the 
growth of the coherent structures, a streamwise sinusoidal 
perturbation of amplitude 0.05 and wavelength L is given to 
the inifial vorticity field. Based on the inviscid linear stability 
analysis of Michalkers for the very similar hyperbolic tan- 
gent velocity profile, we choose the wave number to be that 
of maximum growth, i.e., LY= 27r/L = 0.8892. Further, if a 
vortex pairing event is to be triggered, the initial vorticity is 
given a subharmonic perturbation, in ,addition to the basic 
disturbance. This subharmonic perturbation is of wavelength 
twice that of the basic one, .while its phase is such that its 
amplitude reaches a maximum midway between the two 
evolving vortices, so that vortex pairing is obtained. As dis- 
cussed in MM, we calculate the particle motion from the 
following truncated version of the full equations given by 
Maxey and Riley,lY 

“VP _ 1 
~-~C~ix.t)/~=~~~~-~p(f)l+~e~, 

P 
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The Froude number itself is the square root of the product of 
the two time scale ratios, 

which describe the evolution of particle velocity and location 
under the effect of inertial, gravitational, and viscous drag 
forces. Here u and vP represent the fluid and the particle 
velocity, respectively. Also, x,, denotes the particle location, 
where the fluid velocity is obtained by means of an interpo- 
lation procedure, as described in detail in MM. The time 
integration is performed by a fourth-order Runge-Kutta 
scheme. Gravity has the magnitude g and acts in the direc- 
tion of the unit vector eR . We will consider the two cases in 
which the direction of gravity is parallel or perpendicular to 
the direction of the free streams. The particle motion is char- 
acterized by the dimensionless parameters, 

Ppd; Au 
st=-- 

18,~. 6’ 
Fr= $. 

Here pP indicates the density of the particle, dp refers to its 
diameter, and p denotes the fluid viscosity. The Stokes num- 
ber St expresses the relative importance of particle inertia to 
viscous drag for the evolution of the particle trajectory. It can 
be interpreted” as the ratio of the particle’s aerodynamic re- 
sponse time, 

and the characteristic flow time, 

s 
TF-z* 

By including gravity in our investigation, we introduce a 
third time scale into the problem, namely, the particle setting 
time, 

which indicates the amount of time it takes a particle falling 
with its terminal velocity to cover a distance equal to the 
width of the mixing layer. It is important to appreciate a 
fundamental difference between rn and 7s: While rA ex- 
presses the time it takes the particle to respond to unsteady 
forcing by fluctuating fluid velocities, rs represents a time 
scale related to the steady forcing by gravity. It characterizes 
the residence time of the particle in the mixing layer, i.e., the 
time interval during which the mixing layer can affect the 
particle in order to enhance or delay settling, or to create 
nonuniformities in the particle concentration field. The par- 
ticle motion equation (2) takes gravity,into account by means 
of the Froude number Fr, which is, related to the ratio of the 
particle’s settling time to its aerodynamic response time by 

rS /-i-A = F,?/2/st2, 

or, alternatively, to the ratio of the settling time to the char- 
acteristic flow time, 

. 

III. RESULTS 

A. Preliminary considerations 

Before discussing the detailed results of specific calcu- 
lations, it is helpful to consider some general physical con- 
sequences of the nature of the governing system of equa- 
tions. The first one concerns the importance of the initial 
conditions for the particle velocity. It is well known that in 
the absence of gravity the particle relaxation time, i.e., the 
time after which the particle velocity is not affected by the 
initial velocity, is proportional to St. By rewriting Eq. (2) for 
still fluid in terms of vj( = vP - St/Fr2.eg), i.e., the dif- 
ference between the instantaneous particle velocity and its 
terminal settling velocity, we obtain .’ 

dv;- v; ~ . 
dt--St7 

and when the mixing layer is present, 

dv; _ u-v; 
--- 
dt St 

Hence, even in the presence of gravity the particle relaxation 
time depends on St only. Fr merely affects the magnitude of 
the terminal settling velocity. 

The second important fact that follows from the govern- 
ing equations applies to the formation of particle concentra- 
tion inhomogeneities. In the absence of gravity, the mixing 
layer has the ability to create quite strong concentration gra- 
dients, especially for intermediate values of St. On the other 
hand, in a still fluid, gravity cannot create concentration gra- 
dients, because gravity will uniformly accelerate all the par- 
ticles without creating any velocity differences among them. 
Consequently, the only way in which gravity can affect the 
appearance of concentration inhomogeneities is through the 
interaction with the effects of the mixing layer. 
s A final point .concerns the modification of the overall 

settling rate by the mixing layer in the case of initially uni- 
form particle concentration in the entire flow field. In the 
absence of gravity, the mixing layer vortices will transport 
just as many particles from the upper stream into the lower 
one as vice versa, so that no net settling will take place. 
However, this symmetry is broken in the presence of gravity, 
and it is possible for the mixing layer to interact with the 
gravity-induced settling in such a way as to hinder or pro- 
mote it. The suspension effect mentioned above provides an 
example in this regard. 

The latter two of the above remarks emphasize the im- 
portance of the nonlinear interaction effects between the 
mixing-layer-induced particle motion and that caused by 
gravity. Consequently, we will analyze these interactions in 
quantitative detail below. 
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B. Horizontal flow 

In the following temporally growing simulations, the 
flow is from left to right in the upper stream, and from right 
to left inthe lower stream. Gravity points in the direction 
perpendicular to the free-stream velocity and from the seeded 
to the unseeded stream. For this configuration, the equations 
of particle motion are 

where u and u denote the horizontal and vertical fluid veloc- 
ity components at the particle location. These equations rep- 
resent a fourth-order, nonlinear dynamical system with two 
parameters, St and Fr, cf. Ganan-Calvo and Lasheras.13 The 
nonlinearity is present in the fluid velocity terms u and v. 

In both engineering flows and natural flows, particles are 
usually seeded in one of the two streams. When the tiow is in 
the horizontal direction, one expects gravity to maximize dis- 
persion, i.e., the particle transport from the seeded to the 
unseeded stream, if the particles are originally seeded in the 
upper stream. Hence, in the present study particles are 
seeded uniformly in the upper stream with an initial velocity 
equal to the local fluid velocity. We will investigate this issue 
in more detail below. In the following sections, two types of 
mixing layer simulations are considered: (i) an evolving mix- 
ing layer with only a basic perturbation; and (ii) an evolving 
mixing layer with both basic and subharmonic perturbations. 

1. Basic pkturbation only 

Here, the initial vorticity field is perturbed with a sinu- 
soidal fundamental wave only. We initially seed the upper 
stream of the mixing layer by randomly distributing 
100 000-200 000 particles and giving them a velocity equal 
to that of the fluid velocity at the seeded location. The par- 
ticles are initially seeded between y = 0 and y =y r ,I where 
for most simulations yr = 5. However, for some combina- 
tions of St/Fr2, other values of y1 are employed, so that a 
steady supply of falling particles is maintained for suffi- 
ciently long times. The particles then evolve according to the 
forcing produced by the vorticity field and by gravity. In 
order to obtain information on the cross-stream particle con- 
centration profile c(y), the y direction is divided into bins of 
height Ay = 0.05. The instantaneous number of particles in a 
bin divided by by serves as the particle concentration aver- 
aged over one streamwise wavelength. In order to render our 
results independent of the total number of particles, we will 
discuss only profiles c(y)/cm , where c, is the initial uniform 
concentration in the seeded free stream. 

We begin by giving a phenomenological description of 
the dispersion and sedimentation process for various param- 
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eter combinations, in order to illustrate the physical mecha- 
nisms that- dominate the different regions of our two- 
dimensional St,St/Fr2-parameter plane. Subsequently, we 
will proceed to a quantitative analysis of the different effects 
and their interactions. 

The first simulation was carried out for St=O.l and 
StiFr2=6.25X10-3. From the investigation by MM of par- 
ticle dispersion in the absence of gravity, we know that for 
such low values of St, the particles tend to follow the fluid 
motion, with only a small slip velocity. In order to obtain an 
estimate for the extent to which gravity affects the particle 
velocity, it is helpful to remember that St/Fr2 represents the 
terminal settling velocity of the particles in still fluid. We 
recognize that for the present parameter combination, this 
settling velocity is much smaller than the free-stream veloo 
ity of 0.5, so that gravity can be expected to have a small 
influence. Figure 1 shows the evolution of the isocontours of 
the vorticity field, along with the locations of 4000-5000 
representative particles. To the right of each figure,‘which for 
clarity shows two wavelengths of the flow, the streamwise- 
averaged concentration profiles c(y)/c, are given. Figure 
l(a) shows the early stages of the Kelvin-Helmholtz insta- 
bility at time t = 6, when weak vortices are beginning to 
form. By time t = 12, these vortices have grown much stron- 
ger, and only a small amount of vorticity is left in the braid 
region. In a three-dimensionally evolving flow, this vorticity 
is known to undergo a reorientation into the direction of 
extensional strain, thereby forming strong counter-rotating 
streamwise vortices (Bernal and Roshko,?-e Ashurst and 
Meiburg,“r and Lasheras and Choi”). The influence of these 
three-dimensional flow structures on the dispersion process 
is currently analyzed elsewhere. Figures l(c) and l(d) show 
that, in the absence of a subharmonic perturbation, the vor- 
ticity field has reached a nearly steady state by time t = 18. 
The particle concentration distribution, however, continues 
to develop in time, as it is a function of a time integral over 
the fluid velocities. Figure 1 clearly shows the tendency of 
small St particles to follow the fluid elements, as long as the 
influence of gravity is weak. This leads to a point-symmetric 
transport of the particle-laden iluid and the clear fluid i.e., the 
particle laden fluid entering’ the bottom stream and the clear 
fluid entering the upper stream are symmetric about the cen- 
ter of the vortex. It furthermore results in an antisymmetric 
c(y)Ic, profile with a plateau-like region having a value of 
approximately 0.5. These symmetries are further enhanced 
by the temporal nature of our simulation; they would be less 
pronounced in a spatially growing flow. No significant over- 
shoots appear in the concentration profile, which indicates 
the absence of regions of high particle concentrations. In this 
context, it is worthwhile to point out that there are generally 
two ways in which the flow can promote the development of 
concentration inhomogeneities: ii) by creating a compress- 
ible particle velocity field (cf. MM), i.e., by causing particles 
to become less concentrated in some regions and more con- 
centrated in others; and (ii) by deforming initially present 
isocontour lines of the particle concentration field, such as 
the ones at the lower boundary of the seeded region. For 
small values of the Stokes numbers, the deformation of pre- 
existing isocontour lines is the predominant mechanism of 
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FIG. 1. Mixing layer with a basic perturbation only. Shown are vorticity 
contours as well as a few thousand representative particle positions for 
St=O.l and St/Pra=0.006 25. (a) t=6; (b) t= 12; (c) t=18; and (d) t=24. 
To the right, the normalized concentration profile averaged over one stream- 
wise wavelength is given. The particles tend to foIlow the fluid, even in the 
presence of weak gravity. The point symmetry between the particle-laden 
fluid and the clear fluid is reflected in the plateau region of the concentration 
profile. 

producing concentration inhomogeneities. As we wiIl see be- 
low, for larger Stokes numbers the compressibility effect is 
the predominant mechanism. 

Next we discuss a simulation for St=O.l and 

(4 

FIG. 2. Particle positions and concentration for St=O.l and St/Frs=0.123. 
(a) t=12; (b) t=24; and (c) t=60. The particle motion is dominated by 
gravity. The reduced concentration in the region of the mixing layer is due to 
the void regions near the vortex cores. It indicates enhanced particle settling 
as a result of the presence of the mixing layer. For long times, an asymptotic 
concentration field develops in which the concentration is unity above (y 
> 1 S) and below (y < - 1.5) the mixing layer region. 

St/Fr*=O.123; cf. Fig. 2. Compared to the previous case, the 
ratio of particle response time to characteristic flow time has 
not changed. However, the ratio of characteristic flow time to 
particle settling time scale has increased by a factor of almost 
20, so that gravity is expected to dominate the particle dy- 
namics to a much larger extent than before. As a result, the 
above symmetry properties of the particle concentration field 
do not appear. Instead, the particles settle in a nearly uniform 
fashion, again without forming regions of high concentra- 
tions. The evolving mixing layer does not have enough time 
to pull strands of clear fluid up into the seeded stream, or to 
eject bands of particle carrying fluid into the unseeded 
stream. Only near the upstream edge of the vortices, a region ’ 
of reduced particle concentration forms as a result of cen- 
trifugal effects. This demonstrates that even for the present 
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parameter combination, the fluid velocity still has the ability 
to create slight nonuniformities in the particle concentration 
field by causing small compressibility effects in the particle 
velocity field. The influence of the fluid velocities on the 
particle dynamics is furthermore reflected in the deformation 
of the lower boundary of the particle-laden region, which 
initially was located at y = 0. Under the influence of gravity 
only, this boundary would remain horizontal for all times. By 
time t=24, the particle concentration in the lower stream 
just below the mixing layer slightly exceeds unity, which is 
due to the initial transient evolution of the fluid and particle 
velocities. In the absence of permanent particle suspension,. 
and for a steady-state vorticity field, an asymptotic particle 
concentration field has to develop with c(y)/coo = 1 at some 
distance above and below the mixing layer, as can be seen 
for t = 60 in the region - 2 Cy (: - 1.5. For the present pa- 
rameter combination, on average, c(y)lc,< 1 between these 
regions, which indicates that the particle settling is acceler- 
ated by the existence of the mixing layer. Since both 
Stommel,* as well as Maxey and Corrsin,’ showed that par- 
ticles without inertia settling under gravity create an incom- 
pressible particle velocity field, we have to conclude that 
even for such small values of St as 0.1, the particles have 
enough inertia for compressibility effects in the particle ve- 
locity field to be generated. 

The simulation shown in Fig. 3 tracks particles with 
St=3 and St/F?=6.25X10-3. The ratio of characteristic 
flow time and settling time is the same as in the calculation 
of Fig. 1. However, the ratio of the particle response time to 
the characteristic flow time is now larger by a factor of 30. In 
the absence of gravity, we know that these St values lead to 
the ejection of particles from the vortex centers, a tendency 
that is reflected in the present simulation as well. The areas 
near the vortex centers become depleted of particles, and 
bands of high particle concentration form in the braid region 
by time t = 18. Furthermore, we observe the evolution of an 
overshoot in the concentration profile just above the mixing 
layer, initially between y = 1 and y = 1.5. The maximum of 
this overshoot grows with time while moving to slightly 
larger y values. Simultaneously, the high concentration bands 
in the braid region become weaker. The later stages of the 
calculation suggest that for this particular parameter concen- 
tration, the band formation is a purely transient process, 
whereas soon most of the particles become suspended above 
the mixing layer. This situation reflects the identification of a 
suspension mode for heavy particles settling under the influ- 
ence of moderate gravity by Gaiian-Calvo and Lasheras,13 as 
well as by Tio, Gaiian-Calvo, and Lasheras.14 We will inves- 
tigate below to what extent this suspension mechanism re- 
mains important in the presence of a vortex pairing event. 

The calculations shown in Figs. 1 and 3 allow us to draw 
some preliminary conclusions about the settling of particles 
through a mixing layer for weak gravity, i.e., for St/Fr*41. 
Under these circumstances, the particles will spend a fairly 
long time in or near the mixing layer, and the unsteady fluid 
velocity fluctuations they see are much larger than their ter- 
minal settling velocity. For St41 the particles follow the 
fluid elements closely, with a small slip velocity due to grav- 
ity. Consequently, no strong compressibility effects can be 
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FIG. 3. Particle positions and concentration for St=3.0 and 
St/F?=O.O06 25. (a) t=12; (b) t=lS; (c) t=24; and (d) t=30. The in- 
creased particle inertia leads to their ejection from the vortex cores, upon 
which they accumulate in bands in the braid region. Weak gravity permits 
suspension to occur for the present parameters, which leads to the growing 
overshoot in the concentration profile. 

created in the particle velocity field. For large enough values 
of Fr, suspension will be possible in this low terminal veloc- 
ity regime, provided the particles have sufficient inertia to be 
able to bounce from one vortex to the next, a prerequisite for 
suspension along open trajectories as shown by Gaiian-Calvo 
and Lasheras.13 If St-l, the particles’ aerodynamic response 
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time is comparable to the characteristic fluid time, so that for 
the present small settling velocities, the mixing layer vortices 
will be able to affect the particle velocities and create particle 
concentration nonuniformities. Suspension is again possible 
under these circumstances for sufficiently large values Fr. 
For St%l, on the other hand, we expect the slowly settling 
particles to be almost unaffected by the vertical structures, 
due to their large inertia. In this case, the particle path will 
for a time interval O&t) be dominated by the initial condi- 
tion for the particle velocity. The initial particle velocity, and 
the amount of time it takes the particle to reach the mixing 
layer, will be important in deciding whether the particle will 
settle through the mixing layer or become suspended. If the 
parameter values and initial conditions are such that suspen- 
sion occurs, the mixing layer can represent an effective bar- 
rier to the settling particles. The result will be an upper free 
stream out of which the particles settle into a high concen- 
tration boundary layer just above the mixing layer. The lower 
stream will remain largely void of particles under these con- 
ditions. 

We conclude the phenomenological part of our descrip- 
tion by discussing the simulation shown in Fig. 4 of particle 
settling for St=3 and St/Fr’=O.333. The ratio of particle 
response time to characteristic flow time is the same as be- 
fore, however, the ratio of characteristic flow time to settling 
time has increased by a factor of approximately 50. The re- 
sulting increase in the importance of gravity makes perma- 
nent suspension impossible. Even though an overshoot still 
forms in the concentration profile above the mixing layer, 
this overshoot reaches a statistically steady state, reflecting 
the fact that after a transient period just as many particles 
enter from above as leave below. The overshoot furthermore 
indicates the tendency of the mixing layer to slow down the 
settling process of St=3 particles, in contrast to particles of 
St=O.l, for which we observed accelerated settling in Fig. 2. 
The increase in St furthermore allows much more pro- 
nounced inhomogeneities in the particle concentration field 
to form. Their most prominent feature is a band-like struc- 
ture, which begins very near the vortex center and extends 
far into the lower free stream. These bands of high particle 
concentrations are separated by regions of fluid nearly de- 
void of particles. They persist in the lower stream, as the 
particle velocity components asymptotically approach -0.5 
in the horizontal and -St/F? in the vertical direction. As a 
result, the asymptotic angle that the parallel bands form with 
the horizontal axis [Fig. 4(c)] is given by 

VP 2 St 
tanff=Up=g. 

For the distance between two adjacent bands, we obtain 

d=L sin (y=L. sin[ tan-r( gj]. 

(8) 

For the case without gravity, a scaling law was derived 
in MM for the accumulation of particles in the braid region 
connecting the coherent vortices. It shows that this accumu- 
lation in bands near the free stagnation points proceeds in an 
optimal fashion for St=l. In the following, we will extend 
this scaling law to include gravity. 

(W 

FIG. 4. Particle positions and concentration for St=3.0 and St/Pr2=0.33. (a) 
t= 12; (b) t=24; and [c) t=36. The interaction of particle ejection from 
the vortex cores, accumulation in the braids, and gravity leads to particle 
settling in the form of bands. The overshoot in the concentration profile 
indicates the tendency toward particle suspension. However, the overshoot 
saturates, as permanent suspension does not occur. The scaling laws for the 
asymptotic angle of the bands and the distance between them are shown in 
frame (c). 

The particle behavior in the braid region can be studied 
analytically by representing the flow field as a time- 
independent row of point vortices located at x =, . . . , - 3Ll2, 
-L/2, L/2,3L/2,. . . , and y = 0, and by subsequently linear- 
izing near the free stagnation point at the origin. If for sim- 
plicity we take L = 2n, which is close to the wavelength 
employed in the numerical simulation, this linearized veloc- 
ity field is given by 

u=ay, v=ax, 

where the strain rate a for the present case has the value $. 
The equations governing the particle motion are 
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(11) 

Through a coordinate transformation the above equations can 
be decoupled. Let t= (x+y)lfl and v=(y -x)/d. The .$ 
axis forms an angle 8~45” with the x axis, while the ‘17 axis 
is at an angle a=135” (Fig. 5). On adding l/v? times Eq. 
(10) and l/a times Eq. (ll), 

d”5 1 d5 a 1 
dt2+&;=g-- 

d- 2Fr2’ 

and on subtracting l/a times Eq. (10) from l/v? times Eq. 
w, 

The solution for the 17 equation is 

St 
r=cle*l*+ C2eh*- ____ 

afiFra’ 

x1,2= 

-lfdl--4aSt 
2st ’ 

where ci is of the form kil(St/Fr’)+kizv(t=O)+ki3ti/Xt=O) 
and kij depends on St. Clearly, both hr and X2 have negative 
real parts and the particle asymptotically approaches 
?I=-Stlav?Fr? as t--em, instead of ~=0 in the case without 
gravity. Just as in the absence of gravity, the system is criti- 
cally damped for St= 1, so that the same particles experience 
optimal accumulation. 

In order to demonstrate the above-mentioned effects, the 
trajectories of particles in the linearized flow field are plotted 
for various values of St and for the settling velocities St/Fr’ 
equal to zero {Fig. 5) and 0.5 (Fig. 6). Shown in each figure 
are the particle trajectories for St values of 0.1, 1, and 5 
(solid lines), along with the streamlines of the linearized ve- 
locity field (dotted lines). The fourth frame in Fig. 6 com- 
pares the streamlines of this velocity field (dotted lines) with 
those of the modified velocity field v’ =v -St/Fr2 (solid 
lines). It is the separatrix of this modified velocity field that 
serves as the attractor for the particles. In other words, the 
location of the band is shifted along the -q axis by a dis- 
tance equal to St/afiFr’, compared to the case without grav- 
ity. These figures confirm that, for constant settling velocity, 
the accumulation rate of the particles is highest for St= 1, 
due to the critical damping. For lower values of St, the par- 
ticle motion is overdamped, which leads to the widening of 
the band. For larger values of St, the system is underdamped, 
thereby causing the particles to overshoot, which, in turn also 
widens the band. When the settling velocity is increased for 
the same value of St, the particle residence time near the 
stagnation point decreases, so that the flow has less time to 
concentrate the particles. As a result, the width of the bands 

-5 0 

(a) 

-5 

PC, 

5 x 

FIG. 5. ParticIe trajectories (solid lines) in the linearized flow field near the 
free stagnation point for the case without gravity. Shown by dashed lines is 
the streamfunction. (a) St=O.l; (b) St=l; (c) St=5; and (d) streamlines and 
transformed coordinate axes for the linearized velocity field. For St= 1, the 
particles display optimal focusing along the 6 axis. The particle motion is 
underdamped for SC-l, critically damped for St=l, and overdamped for 
SKl. 

again increases. In the limit as Fr-0, gravity dominates, and 
the particles fall down uniformly without accumulating in 
bands. 

While it was shown in MM that St-l leads to optimal 
particle accumulation by the strain field in the absence of 
gravity, the above analysis demonstrates that this finding 

-5 0 5 Y -5 0 5 x 

(a) .. U-3 

-5 5 x -5 

(:I 
5 x 

FIG. 6. Particle trajectories (solid lines) and streamfunction (dashed lines) 
in the linearized flow field for St/Pra=0.5; (a) St=O.l; (b) St=l; (c) St=5; 
and (d) streamfunction for the linearized flow field (dashed lines) along and 
for the modified velocity field (solid lines); Increasing gravity shifts the line 
of accumulation (taxis) to the right and widens the bands (compare Fig. 5). 
The damping characteristics remain unchanged. 
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translates to situations with gravity as well. In the following, 
we conduct a similar linear analysis for the core region of the 
vortices, in order to investigate if the ejection mechanism 
reaches an optimum for intermediate values of St as well. 
For this purpose, we linearize the flow field around the vor- 
tex center, where we assume that the velocity field ap- 
proaches that of a solid body vortex. If we denote the local 
vorticity by aa, the linearized fluid velocity components are (4 

-0.1 0 
x 

fh 00 
u=3y, v=--x. 

ti 2 

The particle motion, in the absence of gravity, is governed by L 

j2( 2+-j), 
which has a solution 

~=c~e~l~+c~e~~~fcge*3~+c~e~4~, 

v=i(c,e X,t- c2e hf.+ Cge~3t-C4e~4f), 

x1-‘&= 
-1tJiZ&% 

2st . 

The largest real part of the eigenvalues hi is given by 

2 St 

For the present mixing layer, the maximum vorticity of the 
unperturbed velocity profile [Eq. (l)] is l/G. For the two- 
dimensional inviscid evolution considered heie, this value 
continues to represent the maximum vorticity in the flow 
field (if the amplitude of the initial perturbation is negli- 
gible), i.e., the vorticity level at the vortex’center. For this 
aa, the real part of the positive eigenvalue is maximized 
when St=3.5. In other words, particles with this Stokes num- 
bers are thrown out of the vortex core region at an optimal 
rate. It should be mentioned that for the solid body vortex, a 
more appropriate definition of the Stokes number should use 
2/L& as the fluid time scale, rather than S/Au. Ejection from 
the vortex is then maximized when this modified Stokes 
number has a value of 1. Some of the particles experiencing 
optimal ejection enter the unseeded stream directly, while 
some others move toward the stagnation point streamline, 
where they are optimally focused by the- strain field. Com- 
bined, the two effects of optimal particle;.ejection and opti- 
mal particle focusing maximize dispersion for intermediate 
St values. The ejection process becomes clearer when the 
particle equation is cast in polar coordinates, 

i . . 
r=- E+rm’, 

i 1 no ~+2-~=..-- ----, 
r i i St 2 

where r is the radius and w is the angular velocity of the 
particle. In Eq. (13), the first term on the right-hand side 

0.1 

__...__-__-4-e- 
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’ 5 10 

08 
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t 

FIG. 7. Particle trajectories (a) and the distance from the center for various 
times (b) in a linearized flow field that approximates the vortex core as a 
solid body vortex; ---, St=0.3; -, St=3.5, and -.-, St=20. By t=ZO, op- 
timal ejection is seen for St=3.5 because, at this value of St, the difference 
between the centrifugal force per unit mass and the opposing drag is maxi- 
mized. The effect of the particular initial conditions chosen here prevents 
St=3.5 from showing optimality for early times. 

corresponds to the drag force while the second term is pro- 
portional to the centrifugal force per unit mass. Both the 
centrifugal force and the opposing drag force decrease uni- 
formly as St increases, However, the resultant force, which is 
the vectorial sum of these two forces, is maximized for in- 
termediate values of St, which results in optimizing disijer- 
sion. For low values of St, the drag term in the radiai equa- 
tion strongly reduces any radial acceleration by forcing the 
particle to follow the fluid motion closely, thereby preventing 
it from quickly moving to larger radii. For large values of St, 
the fluid is unable to impart a significant angular velocity on 
the particle, which, in turn, prevents the generation of strong 
centrifugal forces that would accelerate the particle toward 
larger radii. At the optimal value of St (Fig. 7), the fluid has 
just enough viscosity to spin the particle up to significant 
angular velocities without suppressing the resulting radial 
motion. Consequently, the centrifugal force accelerates the 
particle toward larger radii, where it will acquire larger cir- 
cumferential velocities, which, in turn, will lead to larger 
centrifugal forces, etc. 

The calculations described in Figs. 2 (St/F?=O.l23) and 
4 (St/Fr’=O.33) indicate. some general trends for particle set- 
tling under fairly strong gravity, i.e., St/Fr*--O(l). Under 
these conditions, suspension above the mixing layer will not 
be possible. Furthermore, the particles settle through the 
mixing layer quite rapidly, so that the capability of the non- 
uniform velocity field to create particle concentration inho- 
mogeneities will be limited. For small values of St, such 
inhomogeneities can only be generated through the deforma- . tion of isoconcentration lines already present at earher times. 
For intermediate values of St, high concentration particle 
bands form, which become less sharp as the importance of 
gravity increases. For St%& inhomogeneities will not form, 
except as a direct consequence of the initial particle veloci- 
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ties. As the importance of gravity increases further, i.e., for 
St/Fr’%- 1, concentration inhomogeneities will become less 
pronounced for all values of St, as the time interval during 
which the vertical structures can affect the particle dynamics 
becomes even shorter. 

In order to quantify the effect of St and Pr on concen- 
trating the particles along preferential paths, we analyze the 
root mean square @MS) of the particle concentration field. 
For this purpose, we divide the entire flow field into M X N 
rectangular bins, within, which the number of particles ni,j, 
i= l,M, and j = 1 ,N is counted. Care has to be taken in 
selecting appropriate values for M and N. For the sake of 
resolving the details of the particle concentration field, we 
would like the bins to be as small as possible. On the other 
hand, the smaller the bins, the fewer particles are located 
within each bin, so that the relative fluctuations due to the 
random seeding increase. However, there is a range for M 
and N in which the structure of the concentration field is 
adequately resolved, and the random fluctuations are much 
smaller than those due to the effect of the flow field structure 
on the particle concentration field. In order to stay in this 
range, M was typically taken to be 20 per wavelength, while 
N was selected, such that there are 5 bins per unit length in 
the cross-stream direction. The streamwise-averaged number 
of particles nj in the row of bins centered around yj is 

Xf$Q,j n.=--‘---- I M . (15) 

The streamwise RMS value nj of the number of particles at 
this y location is then 

$= J----- 
C~,(fZli-ni)2 

M . 06) 

In order to render the results independent of the total number 
of particles, we divide this number by the average initial 
number of particles per bin, ao, in the seeded stream. Here 
nilno is plotted in Figs. 8 (t= 18) and Y (~730) for differ- 
ent values of St and Fr. Larger values of nl/n,o indicate more 
pronounced concentration inhomogeneities. The data for the 
seeded free stream indicate the level of the RMS fluctuations 
that is due to the initial random seeding. As seen above, for 
St=O.l and St/Fr2=0.006 25 the particles tend to move with 
the fluid, and gravity is not strong enough to alter the particle 
paths significantly. The nearly point-symmetric rollup of 
clear fluid, in which the concentration remains near zero, and 
particle-laden fluid, in which the concentration remains near 
unity~ leads us to expect RMS values of the particle concen- 
tration field on the order. of, but not larger than, one-half, 
which is confirmed by Fig. S(a) for the region containing the 
coherent vortices. As StfFr2 is increased to 0.123, the par- 
ticles fall more rapidly. Simultaneously, they experience a 
slight acceleration’ away from the vortex cores. Initially this 
leads only to a slight decrease of the concentration in those 
regions, and consequently to lower RMS values on the order 
of one-third in’ the vertical region. By time t = 30, however, 
the RMS values have increased to about 0.5. The second 
peak in the RMS values for lower y values is due to the 
deformation of the initially horizontal lower boundary of the 

st=o.1 
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x 

2 

0 

m 

.---- 
-2 

-4O------1 0.4 

(a) n:/n, 

FIG. 8. Root mean square of the particle concentration field along lines 
y=const, at r=18; (a) St=O.l, St/F?=O.OO62.5; [b) St=3, 
St/F?=O.OOS 25; (c) St=O.l, St/F?=O.l23; and (d) St=3, St/F?=O33. For 
St=O.l, the particles follow the fluid, and the local concentration is either 
zero or unity. Consequently, the RMS value cannot exceed 0.5. For St=3, 
regions of strong particle accumulation form, resulting in larger RMS val- 
ues. The RMS levels in the seeded free stream indicate the fluctuations due 
to the random seeding. 

seeded region. Here the alternating presence of clear fluid 
and fluid with a particle concentration near unity again leads 
to RMS values of about 0.5. 

For St=3, we observe considerably larger peak rms val- 
ues, indicating that for these higher Stokes numbers the fluid 
velocity field creates more pronounced accumulations of par- 
ticles. The graph for St/F?=O.O06 25 and t=30 [Fig. 9(b)] 
reflects the suspension of the particles in a wavy region 
above the vortices, whereas the large RMS values for 
St/Fr’==O.333 are due to the formation of the bands. In agree- 
ment with our observations from the calculations described 
above, these data show that the maximum RMS values de- 
pend more on St than on St/Fr’, indicating that the ability of 
the particles to accumulate in certain regions is mostly a 
function of St. However, it is the interaction between the 
fluid velocity field and gravity that determines the nature of 
this accumulation, i.e., whether there will be suspension or 
settling in bands, for example. In addition, this interaction 
determines whether gravity amplifies or attenuates the con- 
centration in the accumulation zones. As discussed earlier, 
increasing the relative strength of gravity has the effect of 
distributing the particles over a larger region, which is re- 
flected in the widening of the bands. Despite this widening, 
increasing gravity can amplify the rms values by bringing 
more particles into the strain field region, where the mixing 
layer accumulates the particles in bands [compare Fig. 8(d) 
with 8(b)]. 

The above simulations indicate the following tendencies 
of the settling process: Particle concentration inhomogene- 
ities can form for weak gravity as a result of suspension, and 
for intermediate values of St and moderate strengths of grav- 
ity in the form of concentrated particle bands. In general, for 
these bands to form the flow field needs to be able to affect 
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RIG. 9. Root mean square of the particle concentration field along lines 
v=const at t=30; (a) St=O.l, St/Fr’?=O.OOS 25; (bj St=3, St/Fra=0.006 2.5; 
‘ic) St=O.l, St/F?=O.l’23; and cd) St=3, St/F4=0.33. While for weak grav- 
ity and St=3, suspension leads to large RMS vaIues in the upper, seeded 
free stream, for strong gravity the settling bands result in large rms values in 
the lower stream. 

the particles over sufficiently long times, i.e., for a given 
value of Fr, St has to be sufficiently small. On the other hand, 
the formation of the bands requires significant relative ve- 
locities between fluid and particles, i.e., sufficiently large 
values of St. As a result, the formation of the bands is opti- 
mized for intermediate St values. For large St, the situation 
depends strongly on the initial particle velocities. 

We  now proceed to analyze the above simulations, as 
well as many more for other combinations of St and Fr, in a 
more quantitative fashion, For this purpose, we employ the 
same two integraI scales as in MM. The first one is the dis- 
placement thickness ad(t), which gives a measure of the 
number of particles below y = 0, i.e., in the initiaIly unseeded 
stream. It is defined as 

Sd(t) =  I 
0  C(YJ) 

___ dv. 
-co cm 

071 

The weighted displacement thickness s,(t), on the other 
hand, is formed by weighting with the distance of penetra- 
tion, 

6,(t) = f- 
4YA ~)d y--“y. il8) 

The ratio of these two thicknesses 8,(t)/ad(t) gives the av- 
erage distance of penetration j(t). We  will compare these 
two thicknesses with those effected by gravity alone, acting 
on particles initially at rest in still fluid. For this special case, 
the governing equations are linear and analytical expressions 
can be found for the instantaneous velocity v , displacement 
thickness a+ and weighted displacement thiskness S,, : 

St 
~~=(l-e-“~~) -7 eR, Fr (19) 

(a) 6 1.2 i4 36 46 fro 
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FIG. 10. (a) Displacement thickness, (b) weighted displacement thickness, 
and (cj average distance of penetration for St=O.l; X, Fr=m; +, Fr=2; A, 
Fr=1.5; and D, Fr=0.9. Solid lines indicate the case where both the mixing 
layer and gravity are present, while dashed lines are for settling in still fluid. 
As gravity increases, both the number of particles, their weighted displace- 
ment thickness, and the average distance by which they penetrate the bottom 
layer increase. All three dispersion measures are enhanced by the presence 
of the mixing layer. Notice the saturation of the contribution by the mixing 
layer alone (X line) for t>20. 

St2 St 
sdg=g tee t’St- 1) + - t, 

Fr- 

w 

As t-+a, vP +(St/F?e,), which is the terminal velocity. 
For St=O.l, Fig. 10 compares these two integral scales, 

as well as the average distance of penetration, for settling in 
still fluid (dashed line) with settling through a mixing layer 
(solid line). Fr varies from strong gravity (Fr=0.9) to no 
gravity (Fr=m). For this small St case, the number of par- 
ticles crossing the x axis departs significantly from the result 
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for settling in still fluid, particularly for early times and large 
values of Fr; cf. Fig. ‘lo(a). During these early stages and for 
a moderate strength of gravity, the strands of particle-laden 
fluid that are pulled Gzross the x axis as a result of the vor- 
tical motion represent the main mechanism by which par- 
ticles enter the lower stream. However, beyond t-20, the 
mixing layer contribution saturates due to the absence of a 
subharmonic perturbation, and the settling of the particles 
becomes increasingly dominated by gravity. The number of 
particles entering the lower stream increases uniformly with 
gravity. 

The weighted displacement thickness shows very similar 
tendencies; cf. Fig. 10(b): For moderate values of gravity, it 
is also initially dominated by the mixing layer contribution. 
At later times, after saturation of the mixing layer, gravity 
becomes the dominant factor, causing particles to cross into 
the lower stream. The dominance of the mixing layer during 
the early stages is reflected in the average displacement plot 
as well; cf. Fig. 10(c). Here, the oscillatory behavior for 
weak gravity and large times results from the particle bands’ 
wrapping around the vertical structures. In summary, for the 
small value St=O.l, the presence of the mixing layer leads to 
an increase in all three measures of the particle settling pro- 
cess for all values of Fr. This is in agreement with the dip in 
the c(y)/c, profile observed to develop in the vertical region 
for St=O.l and St/Fr’=O.123 (Fig. 2). 

The quantitative results for St=1 reflect the increasing 
importance of the particles’ inertia (Fig. 11). It can be seen 
that both integral scales increase monotonically with de- 
creasing Fr. For the mixing layer alone, the displacement 
thickness, i.e., the number of particles ejected into the oppo- 
site stream, increases until about t=20 and stays constant 
thereafter. For relatively weak gravity, Fr=5, the presence of 
the mixing layer initially enhances the number of ejected 
particles, but for long times lowers it. This reflects the ten- 
dency of the vortices to suspend the settling particles. How- 
ever, even at long times, for Fr=5, particles keep entering 
the lower stream, indicating that the mixing layer has not 
become an impenetrable barrier to the particles. For cases 
with stronger gravity, the mixing layer makes no significant 
contribution to the number of settling particles, and the dis- 
placement thickness is nearly identical to that caused by 
gravity alone. It should be pointed out that, in contrast to 
particle suspension, particle settling in bands does not affect 
the integral scales. The band formation will, however, be 
reflected in the RMS characteristics of the concentration 
field. 

For the weighted dispIacement thickness the picture 
looks somewhat different [Fig. 11(b)]: Here the presence of 
the mixing layer consistently leads to an increase compared 
to settling under gravity alone. As gravity becomes more 
important, the increase first becomes more pronounced, but 
then levels off. This behavior indicates that while the mixing 
layer does not lead to a sigmlicant increase in the number of 
particles for St=l, it ejects them farther into the lower 
stream. The plot of the average penetration distance [Fig. 
11(c)] confirms this effect of the presence of the mixing 
layer, for all times and Fr values. 

For St=3, the calculations described above in detail 
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FIG. 11. (a) Displacement thickness, (b) weighted displacement thickness, 
and (c) average distance of penetration for St=l; X, Fr=m, 0, Fr=3; and 
f, Fr=2; Solid lines denote the case of settling through the mixing layer, 
while dashed lines indicate settling in still fluid under gravity. For weak 
gravity (Fr=5), the mixing layer initially enhances the number of particles, 
hut later lowers it by suspending them in the seeded stream. For strong 
gravity, the mixing layer sIightly decreases the number of dispersed par- 
ticles, but increases their distance of penetration. 

demonstrate the existence of the suspension mode, a mecha- 
nism that is confirmed by the quantitative data shown in Fig. 
12. For Fr=8, we find that the number of particles in the 
lower stream stays approximately constant after t=24, indi- 
cating that the mixing layer has become an impenetrable 
barrier to the particles, which, under the effect of gravity 
alone, would settle into the lower stream. Those particles that 
do settle into the lower stream during the initial transient 
phase, however, acquire a larger penetration distance [cf. Fig. 
12(c)], so that even at time 60 the weighted displacement 
thickness for Fr=8 is the same as for particles settling into 
still fluid. Eventually it will, of course, have to fall behind, as 
the supply of further particles entering into the lower stream 
is cut off. Even for Fr=5, the mixing layer still reduces the 
number of particles entering the lower stream, but this effect 
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FIG. 12. (a) Displacement thickness, (b) weighted displacement thickness, 
and (c) average distance of penetration for St=3; X, Fr=m, 0, Fr=8; 0, 
Fr=5; and 0, Fr=3. Solid lines indicate particle settling through the mixing 
layer, while dashed lines denote particle settling in still fluid. The suspension 
mode is clearly identifiable for Fr=8, as 6, remains constant for t>25, i.e., 
no more particles enter the lower stream. Even for stronger gravity, the 
tendency toward suspension reduces the number of dispersed particles. 

decreases monotonically as gravity becomes relatively more 
important. For Fr=3, all three of the scales shown in Fig. 12 
are nearly unaffected by the presence of the mixing layer. 
The figure furthermore suggests that in the limit as Fr-+O, 
the mixing layer does not affect the quantitative measures of 
particle dispersion at all. This means that in this limit, the 
difference in the displacements of a particle falling in still 
fluid and one falling through the mixing layer vanishes. This 
displacement difference can be obtained by taking the time 
integral over the velocity difference between the two par- 
ticles. In the limit of Fr--tO, the mixing layer affects the 
particle over a shorter and shorter time, meaning that a ve- 
locity difference exists over a shorter and shorter time. Con- 
sequently, the net displacement between the two particles 
approaches zero. A more mathematical argument to this end 

is presented in the Appendix. One has to keep in mind, how- 
ever, that for very strong gravity the slip velocity between 
particle and fluid will become quite large, so that a nonlinear 
drag law should be applied instead of the present Stokes drag 
law. 

The above results lead to an important conclusion: For 
small values of St, the presence of the mixing layer increases 
the number of settling particles, whereas for larger values of 
St it tends to reduce it slightly. The weighted displacement 
thickness, which for small St also shows an increase due to 
the presence of the mixing layer, remains largely unaffected 
by it for larger St. The calculations indicate the existence of 
three distinct settling regimes: For large values of St/Fra, 
gravity dominates the transport of particles into the lower 
stream, with a modulation due to the contribution of the co- 
herent vortices. For intermediate values of St/Fr2, the 
Kelvin-Helmholtz vortices provide the main mechanism for 
ejecting particles into the opposite stream. In this regime, the 
coherent vortices can furthermore create large concentration 
nonuniformities for particles of intermediate St values. Fi- 
nally, for small St/Fr2 complete suspension can occur, so that 
after an initial transient period the transport of particles from 
the upper into the lower stream is cut off completely. For the 
purpose of distinguishing these different settling regimes, it 
is useful to rescale both time, displacement thickness, 
weighted displacement thickness, and average distance of 
penetration, 

Fr2 
Y”=Y $7. 

(22) 
From the above equations, (20) and (21), we then obtain 

for settling under gravity, in still fluid, the universal relation- 
ships, 

6&=e-f*-1+t*k, C$=$(e-‘*-l+t*j2, 

f*=$[(e-f*-l+f*), (23) 
-6 

which are valid for all values of St and Fr. In Fig. 13, these 
relationships are shown, along with the results for the four 
calculations discussed in detail above in Figs. l-4. The com- 
putational results for the two gravity-dominated cases follow 
the universal relationships quite accurately. 

The derivation of a scaling law for the particle transport 
into the initially void stream in a turbulent mixing layer 
without gravity is not as straightforward. For single-phase 
turbulent mixing layers forming from laminar boundary lay- 
ers, Browand and LatigoZ3 were able to measure the growth 
of the vorticity thickness I with streamwise distance x as a 
function of the velocity ratio X, 

$=0.170h, 
where 

AU X=--.-..- 
u,+u; (25) 

For a temporally growing turbulent mixing layer in a refer- 
ence frame moving with (Ut + U&2, this results in 
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FIG. 13. Resealed (a) displacement thickness, (b) weighted displacement 
thickness, and (c) average distance of penetration for the flows described in 
Figs. 1-4. Comparison between simulation data (disconnected symbols) and 
scaling laws (lines): 0, st=os, st/l?2=0.123; 0, st=o.1, 
St/F?=O.OOS 25; 0, St=3, St/Frs=O.33; and A, St=3, St/Fr’=O.O06 25. 
The solid lines denote the scaling laws derived for settling in still fluid. The 
data for settling through the mixing layer in the presence of strong gravity 
show good quantitative agreement with these scaling laws. The dashed lines 
describe the scaling Iaws derived for a turbulent mixing layer with self- 
similar growth. The permanent suspension observed in the calculation for 
St=3, St/F8=0.006 25 prevents agreement, as does the lack of additional 
subharmonic perturbations that could fuel further growth. 

In order to obtain a rough estimate for the number of 
particles transported from the upper stream to the lower 
stream through the effect of the coherent vortices, we assume 
that by time t the mixing layer has entrained all the particles 
that in the unperturbed flow are located between y=O and 
y=Z(t)/2, and redistributed them evenly between y 
= -Z(t)/2 and y=Z(t)/2. This assumption can be expected 
to hold approximately for small values of St, where particles 
follow the fluid, and fluid from the upper and lower stream is 
mixed approximately evenly. For larger St, the accuracy of 
the assumption obviously is more questionable, since earlier 
we found that the particle concentration generally is nonuni- 

form in the mixing layer, but it can still serve as a first 
estimate for comparison purposes. For the displacement 
thickness, weighted displacement thickness, and average dis- 
tance of penetration, we then obtain 

Fr’ 
s&r=o.021 St t*, 

Fr4 
s,~~=o.ooo 44 3 t”2, 

jz=o.o21 g t”. 
(27) 

Lazaro and Lasheras’ scale their data for particle disper- 
sion in a spatially growing mixing layer in a corresponding 
fashion. They present data for a,/% as a function of x/St. 
Here Sr, indicates the 0.1-0.9 level thickness, and x denotes 
the downstream distance measured from the trailing edge of 
the splitter plate. Their data show collapse for various values 
of St. Unfortunately, the authors do not present data for a 
scaled integral thickness of the concentration field. On the 
other hand, our concentration data at times show several 
crossings of the 0.1 and 0.9 levels, so that we cannot directly 
compare with their results. For the two calculations St=3, 
St/Fr2=0.006 25 and St=O.l, St/Fra=0.006 25, the above re- 
lationships are plotted in Fig. 13, along with the results of the 
corresponding computations. We find that the order of mag- 
nitude given by the above relationships (25) is correct, but 
the agreement is far from accurate. For early times, the dis- 
agreement is mostly due to the fact that the growth of the 
mixing layer is determined by the growth rate of the Kelvin- 
Helmholtz instability and not yet the Browand-Latigo23 re- 
lationship. At later times, the calculation for St=3, 
St/Fr2=0.006 25 leads to suspension and thereby to a com- 
plete cutoff of the particle transport into the lower stream. 
Even the simulation for St=O.l, St/Frs=0.006 25 cannot be 
expected to follow the similarity law accurately, since no 
subharmonic perturbations are present to fuel the continued 
growth of the mixing layer according to the 
Browand-Latigo= relationship. Hence, for long times this 
simulation is expected to approach the similarity laws (21) 
for the gravity dominated case. An additional point concerns 
the importance of the initial perturbation amplitude in the 
numerical simulation. Its value determines how long it takes 
before the Kelvin-Helmholtz instability first saturates and 
before vortex pairing can affect the mixing layer growth. In 
this way, different values for the initial perturbation ampli- 
tude can shift the computational results to smaller or larger 
dimensionless times. Consequently, the comparison between 
computational results and scaling laws should focus more on 
the slope of the data than on the values themselves. 

The above considerations suggest that the contribution 
of the coherent vortices to the particle transport into the 
lower stream will be dominant if 

(28) 

where V, denotes the settling velocity. This leads to the re- 
lationship 
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for the boundary between the vortex-dominated and the 
gravity-dominated settling regimes. 

The above data clearly show that the integral scales for 
particle settling through a mixing layer cannot be obtained 
by merely adding those for settling in still fluid and those for 
dispersion by a mixing layer, due to the inherent nonlinearity 
of the problem. Rather, the integral scales have to be inter- 
preted as having contributions from (i) the mixing layer 
alone, (ii) gravity alone, and (iii) the interaction between the 
mixing layer and gravity. The displacement thickness, which 
gives a measure of the number of particles dispersed into the 
unseeded stream, can thus be expressed as a sum of three 
contributions: 

sd= Sdm,f adg’ sdi, (30) 

where the subscript ml stands for mixing layer alone contri- 
bution, subscript g for the contribution from settling under 
gravity alone, and subscript i indicates the contribution from 
the interaction effect. Similarly, the average distance of pen- 
etration can be rewritten as 

j=jm*+yg+ji * (31) 

The weighted displacement thickness is the product of the 
displacement thickness and the average distance of penetra- 
tion, i.e., 

a,= 8&j, 

and it can be rewritten as 
(321 

+ji’ (adml+ &d& + sdi’ (jrn~+?~+ji). (33) 

From the above equation it is clear that in the absence of any 
interaction effect (i.e., 8dj=O and yi=O), the mixing layer 
and gravity contribute the first four terms on the right-hand 
side. Hence, it can be deduced that the interaction effect on 
the weighted displacement thickness is 

axi’ 6x- 8d&‘jml- 8d&f- ~ddm&- Sdg.?ml. (34) 
Figures 14 and 15 show the interaction effect for two Stokes 
numbers (St=O.l and 3.0) and various Froude numbers. The 
general trend is that it is negative for all three measures of 
the settling process, for all values of St and Fr. Furthermore, 
the magnitude of the interaction effect increases with de- 
creasing Fr. In other words, even though we observed en- 
hanced settling of particles with St=O.l and St/Fr2=0.123 as 
a result of the presence of the mixing layer, the dispersion 
measures are still lower than the sum of the separate mixing 
layer and gravity effects. The figures show that generally for 
early times, the magnitude of the interaction effect increases 
with growing importance of gravity. A strong initial growth 
of both number and distance is typically followed by a lev- 
eling off at later times. However, for those cases with weak 
gravity that tend to generate particle suspension, the magni- 
tude of the interaction effect for the displacement thickness 
can grow to levels larger than for strong gravity. 

Part 1 of this investigation (mm) had confirmed earlier 
findings of optimal dispersion in the absence of gravity for 
particles characterized by St values near unity. In particular, 
we had found that only the weighted displacement thickness 
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FIG. 14. The interaction effect on (a) displacement thickness, (b) weighted 
displacement thickness, and (c) average distance of penetration for St=O.l; 
0, Fr=5; IZI, Fr=3; +, Fr=2; and A, Fr=1.5. The interaction effect is 
negative and increases in magnitude with increasing importance of gravity. 
This indicates that the particle transport for settling through a mixing layer 
is smaller than the sum of the particle transport achieved by the mixing layer 
alone and the transport due to settling in still fluid. 

shows a maximum for intermediate values of St, whereas the 
number of dispersed particles decreases monotonicahy with 
increasing St. In order to see if this optimal dispersion per- 
sists in the presence of gravity, we conducted a series of 
simulations in which the value of St was varied, while the 
terminal settling velocity was held constant. Figure 16 shows 
that, after some time, both the number of particles and the 
weighted displacement thickness show a maximum for inter- 
mediate values of St. However, in contrast to the simulations 
without gravity, the optimal value of St decreases with time, 
to values near 0.5. 

2. Influence of particle Reynolds number 
So far we have assumed that the drag on the particle is 

given by the Stokes drag law, which is valid for small par- 
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FIG. 15. The interaction effect on (a) displacement thickness, (b) weighted 
displacement thickness, and (c) average distance of penetration for St=3; 0, 
Fr=8; 0, Fr=S; and Cl, Fr=3. For short times, the magnitude of the inter- 
action effect increases with gravity. For longer times, however, the nearly 
steady-state velocity field results in the suspension of the lighter particles, 
thereby cutting of their transport into the unseeded stream, which increases 
the size of the interaction effect (S,J for weak gravity. 

title Reynolds numbers only. At higher particle Reynolds 
numbers, the drag coefficient is higher than that predicted by 
the Stokes drag law. It is hence of interest to study how the 
above results are modified at higher particle Reynolds num- 
bers. To this end, we employ the following modified equa- 
tions: 

dUP _ f dt- g (u-u,), 

dvP- f ~-&p&7 

where f is given by the following empirical relation (Clift 
et al. 24): 

2.4 
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FIG. 16. (a) Displacement thickness and (b) weighted displacement thick- 
ness for St/Fr%.O6 25 as a function of St; 0, t= 12; Cl, t=24; A, t=36; 
and 0, t=48. For constant terminal velocity, the dispersion is maximized 
for intermediate values of St. The optimal value for St is slightly less than 1, 
and it tends to decrease with increasing time. 

Here III-v,j is the magnitude of the dimensionless slip ve- 
locity of the particle. The above drag law has been employed 
in the past by, among others, Chein and Chunga3 If we denote 
the quantity dp AUiu by 2, then there are now three pa- 
rameters: St, Fr, and %  in the governing equations. We study 
the case in which St=3, Fr = &%i, and %=lOO (Fig. 17), 
which typically leads to maximum particle Reynolds num- 
bers of O(30) in the vertical region of the flow field. Com- 
parison with Fig. 3(d), which shows the same case for 
Stokes’ drag law, indicates that in the present case the accu- 
mulation of particles in the braid region is more pronounced. 
In this sense, particles with St=3 and a larger particle Rey- 
nolds number behave similarly to particles with lower values 
of St and particle Reynolds number, as long as f/St remains 
comparable. 

In addition, the increased drag at higher particle Rey- 
nolds numbers reduces the settling velocity, so that again 
particles with larger values of St and Reynolds number be- 
have similar to those with lower values for both of these 
parameters. Thus, the present simulation suggests that the 
dispersion trends of particles at higher Reynolds numbers are 
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FIG. 17. Particle positions and concentration for St=3.0, St/Fra=O.OOS 25 
and ~&=100 at t=30. Increasing the Reynolds number increases the accu- 
mulation in the braid region apart from decreasing the average distance of 
penetration [compare with Fig. 3(d)]. 

qualitatively similar to those at lower Reynolds numbers, 
provided the Stokes number is reduced correspondingly. 
Having investigated how increasing the particle Reynolds 
number modifies the dispersion characteristics, we return to 
the low Reynolds number situation in the following sections. 

3. Effect of subharmonic perturbation 

Repeated vortex pairing is known to be the dominant 
growth mechanism in mixing layers (Winant and 
BrowandZ). It involves an ongoing reorganization of the 
mixing layer vorticity, and thereby maintains a continuously 
evolving fluid velocity field. Since the distribution of the 
particles in the flow depends on the time integral over the 
fluid velocities, we have to expect the dynamics of the pair- 
ing process to play a crucial role for the time-dependent de- 
velopment of the particle concentration field. This was con- 
firmed by the simulations of mixing layers without gravity 
by Chein and Chung3 and MM, as well as by the experiments 
of Kiger and Lasheras,% in which the effect of gravity was 
small as well. In the following, we will investigate the effects 
of one pairing event on the settling process of the particles 
through the mixing layer. It should then be possible to model 
the role of subsequent pairing events by appropriately rescal- 
ing the relevant quantities. In order to trigger vortex pairing 
in the numerical simulation, we double the length of the 
control volume and perturb the initial vorticity distribution 
by a subharmonic wave in addition to the basic disturbance. 
The phase of the subharmonic is chosen such that it reaches 
a maximum midway between the two evolving vortices. In 
this way, the two equally strong vortices will proceed toward 
a pairing event rather than a tearing process. In order to 
elucidate the effect of vortex pairing on the dispersion and 
settling process, we will focus on the same parameter com- 
binations for which we presented detailed results above. 

Figure 18 shows the evolution of both the vorticity field 
and the particle concentration field for St=O.l and 
St/Fr2=0.006 25. By time t=24, the vortices are well on 
their way toward a pairing event, and the effect of their mo- 
tion on the particle field is clearly visible. As for the case of 
a basic perturbation only, the strands of clear and particle- 
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FIG. 18. Mixing layer with basic and subharmonic perturbation. Particle 
positions and concentration for St=O.l, St/Pr*=O.O06 25. (a) t=24; (b) 
t= 36; and (c) t= 60. The particles have only a small slip velocity, so that 
the near point symmetry of the clear fluid and the particle-laden fluid is 
maintained. The unsteady vortex motion leads to a strong mingling and 
filamentation of the clear and particle-laden fluid regions. Compared to the 
case without a subharmonic perturbation, a larger part of the flow field is 
swept out by the vortices, which enhances the particle transport into the 
unseeded stream. 

laden fluid develop in a nearly point-symmetric fashion with 
respect to both the centers of the evolving pairs and the mid- 
point between vortex pairs. However, as a result of the un- 
steady vortex motion, a much larger section of the seeded 
stream is now affected by the vortices, so that the plateau- 
like region of the c(y)lc, distribution extends over a larger 
domain at t= 36. Furthermore, the continued motion of the 
coherent vortices around each other leads to a more intense 
stretching, deformation, and filamentation of the clear and 
particle-laden tluid strands; cf. the investigation by Meiburg 
et al.27 for ‘passive tluid particles. As a result, by the end of 
the pairing process around t= 60, we observe very distorted 
regions of particle-laden fluid intermingled with regions void 
of particles, so that the overall particle distribution is more 
homogeneous than for the case of a fundamental perturbation 
only. This is in agreement with the experimental findings of 
Riger and Lasheras.a6 

For St=O.l and St/Fr2=0.123, the effect of the subhar- 
monic perturbation is relatively minor. As for the case of a 
basic perturbation only, each vortex creates a relatively small 
region of lower particle concentration amid the rapidly set- 
tling particles. As the vortices pair, these void regions merge 
to form a slightly bigger one. Overall, the concentration dis- 
tribution c(y)/cm again shows a dip in the mixing layer re- 
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PIG. 19. Mixing layer with basic and subharmonic perturbation. Particle 
positions and concentration for St=J, St/P?=O.OOS 25. (a) t=24; (b) 
t=36; and (c) t= 60. The, intense strain between pairing vortices depletes 
this region of particles, so that the void regions around the individual vor- 
tices merge. The inertia of the particles leads to a complex shape of the void 
regions in unsteady flow, and it allows for the convection of void regions 
away from the vortices. 

gion, indicating that the coherent vortices speed up the set- 
tling process. 

For heavier particles, the situation changes fundamen- 
tally. Figure 19 indicates that for St=3 and St/Fr2=0.006 25 
large void regions quickly form around the vortex centers, 
separated by concentrated bands of heavy particles. In be- 
tween pairing vortices the strain held is considerably more 
intense than in between vortex pairs, so that particles are 
ejected from this region, thereby ,allowing the void regions 
around the individual vortices to merge by t = 3 6, similarly 
to the scenario described by MM for the case without grav- 
ity. In the’following, the void regions around the vortex pairs 
undergo a strong deformation, partially due to the instanta- 
neous evolution of the quid velocity field and partially as a 
result of the time-integrated effect of the fluid velocities on 
the particles, which for these larger values of St is more 
important. The resulting complex shapes of these void ie- 
gions lead to the evolution of several sharp spikes in the 
+)/cm profile by t= 60,‘both above and below the mixing 
layer. Due to the time integration effect, hence it seems pos- 
sible that such void regions can be convected away from 
vortex cores and survive in irrotational flow regions for time 
intervals up to 0(St). Furthermore, it is obvious that the 
continued unsteadiness of the flow field renders suspension 
of the particles more unlikely. This suspension relies on the 
particles’ bouncing off the vortices in a very regular manner; 

PIG. 20. Mixing layer with basic and subharmonic perturbation. Particle 
positions and concentration for St=3, St/P?=O.33. (a) t=24; (b) t=36; 
and (c) .t=60. Particle bands emerge from regions near the vortex cores. 
The vortex pairing process leads to a merging of the particle bands as well. 

cf. Gaiian-Calvo and Lasheras,r3 which is most easily 
achieved in steady flows. Hence, we can conclude that the 
continued unsteadiness due to repeated vortex pairing ren- 
ders the suspension mode less important. 

For St=3 and StlFr2=0.333, during the early stages we 
again observe the formation of bands that emanate from near 
the vortices and reach into the lower, initially unseeded 
stream; cf. Fig. 20(a). However, as these vortices proceed 
toward a pairing event, they will move through the band of 
their pairing partner, Figs. 20(b), and 20(c), thereby effec- 
tively disrupting the connection between the band and its 
former vortex. The result is a partial merger of the bands of 
the two pairing vortices, similar to the observation by Kiger 
and Lashera? for the case with negligible gravity, so that 
the distance between neighboring bands effectively doubles. 
However, for these larger values of St time integration ef- 
fects remain important, so that the bands show some fila- 
mentation and ‘do not become as sharply focused as for the 
case of a basic perturbation only. 

The above mechanisms ‘are again reflected by the quan- 
titative data for the RMS values of the particle concentration 
fields at t=30 ‘(Fig. 21). For St=O.l, the particles again 
follow the fluid, so that the concentration levels are either 
zero or unity. Consequently, the RMS values are near one- 
half. For St=3, on the other hand, we observe RMS values in 
excess of 2, indicating’the ability of the vertical structures to 
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FIG. 21. Mixing layer with basic and subharmonic perturbation. Root mean 
square of the particle concentration field along lines y =const. at t=30; (a) 
St=O.l, St/Fr2=0.00625; (b) St=3, St@=O.O06 25; (c) St=O.l, 
St/F~=O.l~ and (d) St=3, St/F?=O.33. As for the basic perturbation 
case, the RMS values for St=O.l do not exceed h. The decreased importance 
of the suspension mode in the presence of vortex pairing leads to a broader 
peak in frame (b). 

create strong concentration nonuniformities, in the shape of 
suspension or bands. 

The results for the displacement thickness, the weighted 
displacement thickness, and for the average penetration dis- 
tance are also similar to the ones seen earlier for the case of 
a basic perturbation only. For small values of St, the mixing 
layer leads to an increase in the number of settling particles 
(Fig. 2X), while for larger St this number is slightly reduced 
(Fig. 23). Both weighted displacement thickness and average 
penetration distance are consistently enhanced by the pres- 
ence of the mixing layer. In addition, the effect of the mixing 
layer in dispersing the particles is more prominent here than 
in the basic perturbation case, for all values of the Froude 
number. This enhanced dispersion is caused by the increased 
unsteadiness in the flow field. In particular, the data for St=3 
and Fr=8 confirm the reduced importance of the suspension 
mode in the presence of vortex pairing. While in the absence 
of pairing the particle transport was effectively cut off once 
the basic disturbance had saturated, particle settling contin- 
ues in the presence of the subharmonic until the paired vor- 
tices reach a nearly steady state. It is reasonable to assume 
that in the presence of further subharmonic disturbances par- 
ticle settling will continue indefinitely. 

The comparison with the similarity laws derived earlier 
reflects the influence of the pairing as well (Fig. 24). For the 
two cases of larger terminal velocities, the data again agree 
well with the similarity laws for flows dominated by gravity. 
For the cases where dispersion is dominated by the coherent 
vortices, we get good agreement between the slope of the 
data and that of the similarity laws, once the initial transient 
has passed, during which the flow is dominated by the 
Kelvin-Helmholtz instability growth rather than by pairing 
processes. As discussed earlier, a change in the initial pertur- 
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FIG. 22. Mixing layer with basic and subharmonic perturbation. (a) Dis- 
placement thickness, (b) weighted displacement thickness, and (c) average 
distance of penetration for StdO.1; X, Fr=m; f, Fr=2; A, Fr=l.S; and 0, 
Fr=0.9. Solid lines indicate the case of particle settling through a mixing 
layer, while dashed lines denote settling in still fluid. The presence of the 
mixing layer’consistently leads to increased particle transport. Allthree dis- 
persion measures are enhanced by the subharmonic perturbation; and they 
grow with increasing importance of gravity. 

bation amplitude would shift the computational data in the 
horizontal direction, so that this slope represents the only 
meaningful quantity comparison. In particular, the graphs re- 
flect the breakup of the beginning suspension mode due to 
the growth of the subharmonic disturbance. 

C. Vertical flow 

If the mean flow is either aligned with or opposite to the 
direction of the gravitational acceleration, gravity cannot di- 
rectly affect the cross-stream particle velocity component 
and the quantitative dispersion measures. It can do so only 
indirectly by modifying the streamwise particle velocity. The 
set of governing equations now is 
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FIG. 23. Mixing layer with basic and subharmonic perturbation. (a) Dis- 
placement thickness, (b) weighted displacement thickness, and (c) average 
distance of penetration for St=3; X, Fr=y, 0, Fr=g; 0, Fr=5; and 0, 
Fr=3. Solid lines indicate the case of particle settling through a mixing 
layer, while dashed lines denote settling in still fluid. The subharmonic 
perturbation decreases the tendency of the particles to become suspended. 
Notice that, in particular, for Fr=S, particle settling now continues through- 
out the pairing process, until the fluid velocity field reaches a nearly steady 
state. This indicates that flow unsteadiness counteracts the tendency toward 
particle suspension. 
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FIG. 24. Mixing layer with basic and subharmonic perturbation. Resealed 
(a) displacement thickness, (b) weighted displacement thickness, and (c) 
average distance of penetration. Comparison between simulation data (dis- 
connected symbols) and scaling laws (lines): 0, St=O.l, St/Fr2=0.1Z3; 17, 
St=O.l, St/F?=O.O06 25; 0, St=3, St/Fr2=0.33; and A, St=3, 
St/F?=O.O06 25. The data for settling through the mixing layer in the pres- 
ence of strong gravity again show good quantitative agreement with scaling 
laws derived for settling in still fluid (solid lines). The dashed lines descriie 
the scaling laws derived for a turbulent mixing layer with self-similar 
growth. Up to the time at which further growth of the mixing layer is 
prevented by the absence of additional subharmonic disturbances, the slope 
of the data agrees reasonably well with that of the scaling laws. 

The “+” sign holds if the mean flow points in the di- 
rection of gravity, i.e., for downward flow, whereas the “-” 
sign applies to upward flows. Keeping in mind that either the 
faster or the slower of the two streams can be the seeded one, 
we then have to distinguish four different situations. How- 
ever, if we again adopt a reference frame that moves with the 
average of the two free-stream velocities, the number of dif- 
ferent situations is reduced to two: seeding the slower stream 
in an upward flow corresponds to seeding the faster stream in 
a downward flow; and seeding the faster stream in an upward 
flow is equivalent to seeding the slower stream in a down- 
ward flow. In other words, we only have to distinguish be- 
tween the two situations in which the relative velocity of the 
seeded stream is aligned with or opposite to the direction of 
gravity. 
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FIG. 25. Upward flow with the faster stream being the seeded one. Particle 
positions and concentration for St=1 and Fr=lS, (a) t= 12; (b) t=24. In 
the reference frame moving with the coherent vortices, the particles have 
only a small streamwise velocity, which gives the cross-stream fluid velocity 
component sufficient time to transport the particles across the mixing layer. 

We begin by discussing upward flow in which the faster 
stream is seeded, corresponding to the “-” sign in front of 
the gravitational term in the above equations. For the rela- 
tively small value of St=O.l and moderate to large values of 
Fr, the qualitative and quantitative evolution of the particle 
concentration field is very similar to the case described in 
Fig. 1. In other words, a flow with a small settling velocity 
opposite to the direction of the mean llow develops similarly 
to a flow with a small settling velocity in the cross-stream 
direction. For the vertical flow, there is, of course, no mecha- 
nism comparable to the suspension observed in horizontal 
flow, since there is no force present that brings particles 
ejected by the vortices back toward the mixing layer. 

For St=1 and Fr=lS, we encounter a very different 
situation. Now the settling velocity is nearly equal and op- 
posite to half the difference velocity between the two free 
streams. Consequently, the particles in the seeded stream 
move with approximately the same streamwise velocity as 
the vortices, so that in our moving reference frame they 
nearly stand still. In this way, the residence time of a particle 
near a vortex increases, which gives the cross-stream fluid 
velocity component induced by the vortices more time to 
affect the particle, thereby increasing its importance. In the 
upstream half of the braid region, where the cross-stream 
fluid velocity component points away from the seeded 
stream, the particles become entrained into the mixing layer 
[Fig. 25(a), t=12]. However, there they encounter smaller 
streamwise velocities, so that they begin to fall toward the 

00 
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0 1.2 2.4 3.6 4.6 6 

Fr 
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(c) Fr 
FIG. 26. Upward flow with the faster stream being the seeded one. (a) 
Displacement thickness, (b) weighted displacement thickness, and cc) aver- 
age distance of penetration for St=l. 0, t=24; A, t=36; 0, t=48; and 
f, t=60. Dispersion is optimized when the terminal settling velocity of the 
particles St/I? equals one-half the difference of the free-stream velocities, 
so that the particle motion is slow along the streamwise direction in the 
reference frame moving with the vortices. 

upstream vortex. As they approach this vortex, it ejects them 
into the initially unseeded stream [Fig. 25(b), t=24]. 

The above qualitative description suggests that the van- 
ishing streamwise relative velocity between the particles in 
the seeded free stream and the mixing layer vortices repre- 
sents a crucial prerequisite for the dispersion mechanism to 
be effective. Only under these conditions can the regions of 
cross-stream fluid velocities affect the particles long enough 
to entrain them into the mixing layer. As long as there is a 
sizable streamwise slip velocity between particles and vorti- 
ces, the particles will periodically encounter cross-stream 
fluid velocities of alternating signs, and thereby experience 
little net entrainment, This is confirmed by the quantitative 
measures of the dispersion process (Fig. 26). For a constant 
value of St, both the number of particles as well as the 

Phys. Fluids, Vol. 7, No. 6, June 1995 N. Raju and E. Meiburg 1261 

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



(a) 

0 
0 0.6 1.2 1.6 2.4 3 

St 

4l 

0 0.6 1.2 1.8 2.4 3 

(b) 
St 

2- 

1.5- 

‘3 l- 

0.5- 

4---?-?----- * I a I ‘-----I 
0 0.6 1.2 1.8 2.4 3 

(c) 
st 

FIG. 27. Upward flow with the faster stream being the seeded one. (a) 
Displacement thickness, (b) weighted displacement thickness, and (c) aver- 
age distance of penetration for S&=0.5.0, t=12; 0, t=24; A, t=36; 
and 0, t=48. For St-l, the number of dispersed particles shows a global 
optimum, whereas both weighted displacement thickness and the distance of 
penetration do not exhibit an optimum. For St>l, these quantities do not 
strongly depend on St. 

weighted displacement thickness exhibit a maximum when 
St/F?-0.5, i.e., when the settling velocity is about one-half 
the difference between the free-stream velocities. This was 
confirmed for other values of St as well. Only the average 
penetration distance does not show a maximum. The reason 
for this can be found in the relative motion of the particles in 
the initially unseeded stream with respect to the vortices. The 
relative streamwise velocity between particles and vortices 
increases monotonically with gravity, thereby rendering the 
cross-stream velocity component less and less influential. As 
a result, the average penetration distance decreases with in- 
creasing gravity. 

By keeping the value of St/Fr2 at one-half and varying 
St, we can study the Stokes number effect on the dispersion. 
For the number of dispersed particles, Fig. 27 shows a slight, 

but not very pronounced maximum, initially for St-l.& later 
for slightly smaller values. This indicates that even for ver- 
tical flows, the dispersion mechanism reaches optimum effi- 
ciency when the particle relaxation time approximately 
equals the characteristic flow time. However, both the 
weighted displacement thickness and the average distance of 
penetration do not show such a peak. 

A series of simulations in which the relative velocity of 
the seeded stream was aligned with the direction of gravity 
did not reveal any interesting new physical mechanisms. 
Even though we employed a wide variety of St,St/Fr2 com- 
binations, the particle transport into the unseeded stream was 
always very minimal. The reason for this lies in the large 
streamwise velocity difference between the particles and the 
coherent vertical structures. As a result, the particles encoun- 
ter rapidly changing cross-stream tluid velocity components 
of alternating sign, so that they never undergo a significant 
acceleration toward the unseeded stream. 

Iv. DISCUSSION AND CONCLUSION 

The above computational results and theoretical consid- 
erations are intended to provide a qualitative and quantitative 
understanding of the mechanisms that govern the dispersion 
and settling processes of a dilute particle field in the presence 
of a mixing layer. For horizontal flow, the two questions 
“How is the settling under gravity modified by the presence 
of the mixing layer?,” and “How is the particle dispersion by 
the coherent vertical structures affected by gravity?” repre- 
sent flip sides of the same coin, and their answers are inti- 
mately linked to the mechanisms by which strong nonunifor- 
mities can appear in the particle concentration field. 

By causing a uniform acceleration of all particles, grav- 
ity can introduce concentration inhomogeneities only 
through its interaction with the vortex-induced particle mo- 
tion. There are two principally different ways for these inho- 
mogeneties to be created and amplified. First, existing iso- 
lines of the particle concentration field can be deformed, 
stretched, and folded by the fluid velocity field. While this 
mechanism, in principle, applies to all combinations of St 
and St/IQ?, it often dominates for small values of St, where 
the slip velocity between particles and fluid is small. The 
result can be a complex filamentation of the particle field, 
which leads to the intermingling of clear and particle-laden 
fluid regions, as observed for St=O.l and St/Fr2=0.006 25. 
For these low slip velocities, similarities exist with the cha- 
otic transport of passive particles in subharmonically devel- 
oping mixing layers; cf. Meiburg et al.” Second, the fluid 
velocities can cause compressibility effects in the particle 
velocity field (also cf. MM), thereby leading to depletion of 
particles in some regions, and to their accumulation in oth- 
ers. For this mechanism to be effective, the particles need to 
be able to acquire a significant slip velocity, i.e., the value of 
St cannot be too small. An exception is the suspension 
mechanism identified by Gaiian-Calvo and Lasheras.t3 For a 
steady flow field, it can be effective over long times and 
thereby lead to strong particle accumulations in a narrow 
concentration boundary layer above the vortices, even for 
small relative velocities, i.e., small St. Under most circum- 
stances, however, repeated vortex pairing will prevent the 
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formation of a saturated and nearly steady-state flow field, so 
that the suspension mode decreases in importance. 

The above two mechanisms for the creation of an inho- 
mogeneous particle concentration field result in different rms 

The second one of the above-mentioned mechanisms 
represents the way in which vertical structures typically 
cause concentration nonuniformities: They create a positive 

characteristics. The distortion of previously existing isocon- 

divergence in the particle velocity field by ejecting them 
from their centers. A linear analysis demonstrates that this 

tours of the particle concentration for small St leads to a 

ejection proceeds with optimal efficiency for intermediate 
values of St--O(l). Near free stagnation points, negative 

concentration field in which the concentration is either near 

divergence then leads to the accumulation of particles. 
Again, linear theory shows that this accumulation mecha- 

zero or near unity, so that the RMS value of the concentra- 

nism works most efficiently for St-l, even in the presence 
of gravity. 

tion field cannot exceed one-half. For intermediate values of 
St, however, the compressibility effect was shown to result in 
RMS values in excess of 2. To achieve such strong nonuni- 
formities, the mixing layer must be able to affect the par- 
ticles for sufficiently long times, so that St/F? cannot be too 
large. 

In order to quantify the combined dispersion and settling 
process, we focus on the evolution of both the number of 
dispersed particles and their displacement thickness, as well 
as on the average distance by which they penetrate the un- 
seeded stream. We find that the number of settling particles is 
enhanced for small values of St, whereas it is slightly re- 
duced for larger values. The weighted displacement thick- 
ness is increased considerably for small St, whereas it re- 
mains nearly unchanged for larger St. These findings 
demonstrate that the effect of the large-scale mixing layer 
vortices on particle settling is different from that of homoge- 
neous turbulence, for which Wang and Maxeyl’ had ob- 
served enhanced settling for all values of St. For gravity 
dominated flow, we fmd excellent agreement between the 
computational data and scaling laws derived for settling in 
still fluid, which indicates that in the limit of strong gravity 
the influence of the coherent vorticity approaches zero. For 
weaker gravity, when the dispersion is dominated by the vor- 
tical structures, we derive scaling laws based on data for the 
self-similar growth of turbulent mixing layers according to 
Browand and Latigo.= Our data for the flow with one vortex 
pairing show reasonable agreement with this scaling. This 
agreement could probably be improved considerably if the 
scaling law were not derived, based on the assumption that 
all particles affected by the mixing layer were redistributed 
evenly, but if instead the value of St would enter into this 
particle distribution function. However, this effect should be 
evaluated in a flow field that behaves more like a truly tur- 
bulent mixing layer. 

For the case of horizontal flow, we can then distinguish 
three different settling and dispersion regimes: For relatively 
large terminal velocities, the particle settling is dominated by 
gravity, with a modulation due to the coherent vorticity, but 
without strong concentration nonuniformities. For intermedi- 

ate settling velocities, the Kelvin-Helmholtz vortices are 
driving the ejection of particles into the opposite stream, 
along with the creation of depleted regions and regions of 
strong particle accumulation for moderate values of the 
Stokes number. These regions of large particle concentration 
take the forms of bands that persist in the lower free stream. 
Their asymptotic angle depends on the terminal settling.ve- 
locity only, whereas their distance is also affected by the 
streamwise spacing between the vortices. Finally, for small 
terminal velocities there is a tendency of the mixing layer to 
suspend the particles. This tendency remains observable in 
the presence of vortex pairing, even though for such un- 
steady flows its importance diminishes. 

For upward flow in which the faster stream is seeded 
(equivalent to downward tlow with the slower stream being 
the seeded one), there exists a sharp optimum for the particle 
dispersion when the terminal settling velocity equals one- 
half the difference between the free-stream velocities. Under 
these conditions, the particles move at approximately the 
same streamwise velocity as the coherent vortices, so that the 
relatively small cross-stream fluid velocity components can 
affect the particles for sufficiently long times to entrain them 
into the mixing layer. Subsequently, the vortices eject them 
into the unseeded free stream. If the particles were seeded in 
the slower stream, cross-stream dispersion is very small. 

A natural extension of the present work will try to ac- 
count for the effect of the particles on the flow. Especially in 
regions of large particle accumulations and slip velocities, 
we have to expect significant momentum transfer from the 
particles to the fluid phase (Kiger and Lasheras26), which, in 
turn, will alter the fluid velocities. Furthermore, the coagula- 
tion and breakup of the particles and droplets may become 
important as well. 

ACKNOWLEDGMENTS 

Computing Resources were provided by the San Diego 
Supercomputer Center. 

This work has been supported by the National Science 
Foundation under Grant No. CTS-9196004, and by the Elec- 
tric Power Research Institute. 

APPENDIX: ASYMPTOTIC ANALYSIS IN THE LIMIT 
Fr+O 

In this appendix, we compare the y(t) displacement of a 
particle settling in still fluid with that of a particle settling 
through the mixing layer. The latter particle can, in the pro- 
cess of settling, encounter a net upward or downward fluid 
motion, and it is of interest to establish if such a net fluid 
motion can result in a net change of the overall settling rate 
in the limit of Fr+O. In this limit, only the y component of 
the equation of motion needs to be considered. Motivated by 
the velocity field of a mixing layer, and in the interest of 
mathematical simplicity, we approximate the upward fluid 
velocity component as exp( - 2 s-/L ly I), The following 
analysis would proceed similarly for other approximations 
and lead to the same end result, although some of the math- 
ematical details would be different. The resulting equation of 
motion is 
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(Al) 

Multiply Eq. (Al) by Fr’ and let E denote F?, so that 

++Gj--$exp --Fly] =-1, 
( 1 

W) 

with the initial conditions, y(O) =ya and j(0) = u,, . This is a 
highly singular problem and one can get a perturbation ex- 
pansion in terms of E. Before doing so, we solve the linear 
problem for the particle settling in still fluid, 

y=yo-St($+ua)[exp( -i)-I]-$t. L43) 

The exponential term in the above equation suggests the 
presence of a boundary layer solution. When the nonlinear 
mixing layer term is added, the above solution is modified. 
First, the inner expansion is done, for it can satisfy both of 
the initial conditions. Let T=t/,u(~), so that al&=(l/p)(J/ 
6’T). The equation becomes 

(A41 

where the derivatives are with respect to T. On matching the 
tirst term and the fourth term we get ,U = &. This distin- 
guished limit yields the inner expansion. With this value of 
p, the above equation becomes 

6.E 2r 
j;+sy-gexp --rlyl =-I, 

i 1 

and the expansion series is 

y=Yos. &Y+EY*+” . 

The resulting solution is 

(A6) 

y=y,-(~~~a)St[exp(--$)--I]-: &T 

y,,+ ,/&,T-; dT dT ‘1) 

+O(e3”). (A71 

The last term in the above equation gives the interaction 
effect due to the nonlinear fluid motion term, while the other 
terms correspond to the case of the particle settling in still 
fluid [Eq. (A3)]. Th e interaction term vanishes as Fr-+O. 
Since 8, and 6, are proportional to y and y”f2, respectively, 
their values approach those for settling in still fluid as Fr-+O. 
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