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Steady axisymmetric flow in an open cylindrical container with a partially
rotating bottom wall
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The steady motion of a viscous fluid in a cylindrical container with a partially rotating bottom wall
and a free surface is investigated by means of axisymmetric Navier—Stokes simulations. The flow
above the spinning disk at the center of the bottom wall is dominated by an Ekman boundary layer
that drives the fluid radiallputward In contrast, annward flow ensues along the outer, stationary

part of the bottom wall, where the radially increasing pressure distribution set up by the rotating
fluid motion near the free surface is not balanced by a corresponding centrifugal force. As a result,
flow separation occurs at an intermediate radial location close to the outer edge of the rotating disk.
Thus a flow configuration results that is dominated by a meridional vortex above the spinning disk,
and a counterrotating vortex above the stationary part of the bottom wall. Simulations are conducted
for various aspect ratios and Reynolds numbers, in order to evaluate the resulting changes in the
vortex breakdown configurations. As the ratio of container radius to disk radius increases above a
value of about 2.3, the influence of the lateral container wall on the features of the central flow in
the neighborhood of the spinning disk becomes insignificant. By means of a simplified model
problem, it is demonstrated that this rapid loss of influence is due to the exponential decay of the
azimuthal surface velocity beyond the edge of the disk. This exponential decay is confirmed by the
numerical data, and it reflects the fact that as the lateral wall moves outward, the stationary part of
the end wall becomes the main sink for the azimuthal momentum of the fluRDG® American
Institute of Physicg DOI: 10.1063/1.1932664

I. INTRODUCTION fluid,* the rotating end wall attracts fluid from the central
region of the container, and accelerates it radially outwards

Swirling fluid motion generated in a cylindrical con- in an Ekman boundary layer of thickness R As it ap-
tainer with one or two rotating end walls is known to give proaches the corner, the fluid turns and subsequently spirals
rise to a variety of vortex breakdown configurations, evenalong the cylindrical wall towards the opposite end of the
under steady, laminar, and axisymmetric conditions. Theseontainer. The angular velocity of the fluid outside the wall
features offer the opportunity for very “clean” observationsboundary layer generates a centrifugal force, which has to be
of the conditions leading to vortex breakdown. Furthermorepalanced by a radial pressure gradient. Next to the stationary
the experimental setup is quite simple, and numerical simuend wall there exists a narrow boundary layer where the
lations can be conducted with relative ease. Thus, it is n@ngular velocity is substantially reduced, so that it no longer
surprise that nominally axisymmetric swirling flows in cylin- balances the radial pressure gradient, which hence forces the
drical containers have become a popular model for developluid back towards the centerline. There it separates from the
ing and tes[ing hypotheses regarding the Origins of Vorte)stationary end wall and flows back towards the rotating end
breakdown, as well as its control. wall, thus completing its meridional circulation.

The basic configuration consists of a closed cylindrical A first series of flow visualization experiments for this
container with one rotating end wall. It gives rise to only two SEtUp was conducted by Vodel,who reported a vortex
dimensionless parameters, viz., a Reynolds number Rrereakdown region along the rotation axis, and away from the
:QRglV based on the angular velocify and the radius, end walls. A syg.tematic variation of the governing param-
of the spinning disk that forms the end wall of the container€t€rs by Escudiérrevealed flow states with two or even

and a geometric aspect rafit=H/R,, whereH denotes the three successive breakdowns, as well as a transition towards
container height. In accordance with von Karman’s analysié‘”Steady flows. These experimental observations led the au-

of the flow generated by a spinning disk in an unboundedhor to hypothesize that the vortex breakdown phenomenon
is inherently axisymmetric. Any departures from this axi-
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YAuthor to whom correspondence should be addressed. Electronic maipase. state. For swirling j?ts! '[h.iS poin't of Vi?W was recently
meiburg@engineering.ucsb.edu confirmed by the three-dimensional simulations and compu-

1070-6631/2005/17(6)/063603/12/$22.50 17, 063603-1 © 2005 American Institute of Physics

Downloaded 19 Aug 2005 to 128.111.70.242. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp


http://dx.doi.org/10.1063/1.1932664

063603-2 M. Piva and E. Meiburg Phys. Fluids 17, 063603 (2005)

tational linear stability analysis of Ruitt al,” as well as by

the investigation of swirling flows in pipes by Herraelgal ®
Following initial numerical simulations of the swirling R,

flow in a closed container by Lugt and Haussfimgs well as

Lugt and Abboud Lopez? and Brown and Lopé? provided

a detailed analysis of the underlying physical mechanisms,

based on numerical simulations. They demonstrate the exis- H

tence of a standing centrifugal wave, whose amplitude in-

creases with the Reynolds number. Eventually it becomes Ry
sufficiently large to create a stagnation point on the cylinder > r
axis, which signals the inception of vortex breakdown. Em- ‘ T—%
phasizing the importance of creating negative azimuthal vor-

ticity, Brown and Lopez proceed to formulate a criterion for (JQ

the prediction of vortex breakdown in terms of the helix
angles of the velocity and vorticity vectors. More recently,
Herrada and Shtethhave employed the same geometry toig 1. schematic of the physical problem. Within a cylindrical container of
investigate vortex breakdown control by means of addingadiusR,, fluid motion is generated by a rotating disk of radRg which
near-axis swirl, as well as externally imposed temperaturéorms part of the bottom wall. The fluid has a free surface=l.
gradients. Frequently this geometry, or slight variations
thereof, have been employed as laboratory models for atmo-
spheric vorticed?™* the work of Spohret al*>*® confirm the sensitivity of both

By replacing the stationary end wall with a free surface,the global flow field and the more localized vortex break-
Spohnet al’>*® consider a geometrically similar configura- down phenomenon to the nature of the boundary conditions.
tion, which nevertheless gives rise to quite different physicaln this context, the role of the lateral wall location is not yet
mechanisms. Due to the absence of tangential stresses,well understood. Both in the closed and the open container
boundary layer does not form at the free surface, so that thitows, this lateral boundary is responsible for turning the
inward spiraling fluid elements maintain their angular mo-fluid away from the rotating end wall. It furthermore imposes
mentum. When the related centrifugal force is sufficientlytangential stresses on the fluid that result in the formation of
large to balance the radial pressure gradient, the flow sepa@ boundary layer, which acts as a sink of angular momentum.
rates from the free surface, thereby forming a vortex breakHence it will be interesting to investigate how the fluid flow
down bubble that is attached to the free surface. While @ modified if the cylindrical wall is moved radially outward,
small amount of free surface deformation cannot be avoidewhile keeping the radius of the rotating disk unchanged. In
in these experiments, corresponding numerical simulationsther words, we consider an open cylindrical container with
for a flat, stress-free surface by Datbeonfirm these find- a rotating disk embedded in an otherwise stationary bottom
ings for the axisymmetric case. wall of radiusR,, cf. Fig. 1. This adds a further dimension-

In a series of subsequent papers, several authors investess parameter to the problem in the form of the aspect ratio
gate the linear stability of the axisymmetric base state an® =R./Ry. Obviously, in this geometry the Ekman boundary
the role of surface deflections within these instability modeslayer does not have to turn upward at the outer edge of the
Valentine and Jahnké, Lopez?® and Bronset al®° identify  rotating disk, and the fluid is free to move along the station-
axisymmetric instability modes both with and without sur- ary bottom wall towards larger radii. However, it will lose
face deflections, which set in via Hopf bifurcations. How- some of its angular momentum in this way, which in turn
ever, these modes develop at relatively high Reynolds numwill strongly affect the subsequent evolution of the flow. In
bers. Lopezet al?! and Lopez and Marqu%?s observe the limit when the rotating disk extends only over a small
azimuthal modes that become unstable at lower Reynoldgart of the bottom wall, some guidance is provided by the
numbers varying between about 1500 for shallow systemslassical investigation of BodewatThis author studied the
(I'<<1) and 1900 for deep systeniE> 1), cf. also Younget  situation of a fluid in solid-body rotation above a stationary
al.> Hirsa et al** and Miraghaieet al®® For deep systems, wall. Far away from the wall, the solid-body rotation gener-
the instability mode is concentrated in the near wall jet thatates a radially increasing pressure field. In the viscous
forms as the bottom wall boundary layer is turned upward$oundary layer next to the stationary wall, the fluid is decel-
by the lateral wall. This instability mode does not lead to aerated, so that this pressure gradient wins over the centrifugal
surface deflection, so that it can be captured in numericdlorces and drives the fluid inward towards the center. Thus in
simulations assuming a flat, stress-free surface. For shalloa container with partially rotating bottom wall, the interest-
systems, on the other hand, the instability is focused in théng situation arises that the fluid is drivenitwardabove the
region where the core fluid in a state of near-solid-body ro+otating section of the wall, whereas it should be driven
tation encounters the outer fluid subject to strong meridionalvard above the nonrotating section, provided the container is
circulation. This mode results in a deflection of the free sursufficiently large. Consequently, the boundary layer can be
face, so that it cannot be captured under the assumption ofexpected to separate from the bottom wall at some interme-
flat surface. diate radius. However, whether this separation will occur on

The investigations of free surface flows beginning withthe rotating or the stationary segment of the bottom wall, and
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where the flow might reattach again, is difficult to predict. v 1 ( ) lvdy 1|dv Fv lov v 1
i ; . —="Jv)+——+—| S+ —S+——-—,
These are some of the issues to b(_a addressed in the foII(_)w gt T rroz Rel o2 or? rar r2)
ing, by means of numerical simulations of the axisymmetric
Navier—Stokes equations. In light of the above observations 3)

by other authors of three-dimensional instability modes set- ) 1
ting in above Reynolds numbers of 1500-2000, we will limit 97 _ (’_7> " 22‘7_0 n i{ﬁ A/ 1y _ 7 (4)
the value of Re to 2000 in our investigation of axisymmetric at rgz Rel 922 oar? ror r?]
base flows. The stability properties of these base flows are to

be studied in a subsequent investigation. To summarize, we &Z_er <92_¢_ 1oy _ —r 5)
expect the axisymmetric swirling flows in cylinders with par- a2 o2 ror -

tially rotating bottom walls to exhibit qualitatively different

features from their counterparts in containers whose entirE|ere

end wall is in rotation. This can significantly affect such Iy I Iy d

global features of the overall flow as, for example, their mix- J= 9zor  or oz (6)
ing efficiency.

The computational problem is formulated in Sec. II, and

while details with regard to the numerical procedure are pro- QRﬁ
vided in Sec. Ill. Subsequently, Sec. IV presents the results Re=—. (7)
of the simulations. In a first step, we restrict our attention to v
the casd'=1 andD=1, i.e., the fluid column has a height The boundary conditions take the form
equal to the disk radius, while the cylinder radius is equal to P _ _
or larger than that of the disk. Thus, we focus on the effects O<z<T, r=0:9=0, v=0, #=0, 8)
of moving the lateral wall outward. Subsequently, the inves- 1Py
tigation will be extended to aspect ratibs# 1. Finally, Sec. 0<z<TI, r=D:y=0, v=0, p=--—>, (9
V addresses surface deflections of the axisymmetric base ror
state, and Sec. VI summarizes the main findings and presents
the conclusions from this investigation. z=0, r<1:4=0, v=r, 7=- %f_z‘z/’ (10)
1Py

Il. PROBLEM FORMULATION z=0, r=1:4=0, v=0, Uiy (11

We consider a cylindrical container of radii& and
heightH, with a circular disk of radiug&y imbedded in the o v _ _
bottom boundary, cf. Fig. 1. At time=0 the disk begins to z=I"¢=0, 9z 0. #=0, (12)
rotate at a constant angular velociy, thereby setting the ) )
fluid into motion. The lateral boundary and the bottom wallWhere the dimensionless parameters
at radii larger thanR, are stationary, solid no-slip walls, H R

i i i I'=—, D== 13
while the top is formed by a horizontal, stress-free surface. "Ry "Ry (13

The fluid is incompressible, with constant density and kine-

matic viscosityr. The flow is described by the axisymmetric are prescribed by the geometry of the problem. Note that we
Navier-Stokes equations, formulated in cylindrical coordi-assume a flat, stress-free upper surface, which has worked
nates (r,¢,z), with the respective velocity components Well in the past in the context of characterizing axisymmetric
(u,v,w). Following Ref. 9, we avoid the explicit appearance base flows, e.g., see Ref. 17. When identifying potential in-
of the pressure variable and identically satisfy the conservastability modes to such base flows, on the other hand, this
tion of mass, by employing a streamfunction-vorticity for- assumption may not be valid. The boundary conditions for

mulation. Here, the streamfunctighis related to the radial the azimuthal vorticity» along the solid boundaries are ob-
and axial velocity components as tained from the no-slip condition, which takes the form
dyl or=0 alongr=D and diys/ 9z=0 atz=0.

19 109

=- 13y , w= 1 , (1)
roz ror IIl. COMPUTATIONAL APPROACH

and to the azimuthal vorticity component as We employ a finite difference approach to simulate the
system of equation§3)—(5) subject to the boundary condi-
_ 1Py a(1ay tions (8)—(12). The computational grid is equidistant, and the
e S el B (2) o T . .

r gz ar\r or time-dependent solution is calculated until an essentially

steady state is reached. At0, the fluid is at rest every-
By scaling time with(Q™%, length withRy, and velocity with  where. For every time step, Eq8) and(4) are advanced in
QRy, the dimensionless Navier—Stokes equations take theme in order to update the azimuthal velocity and vorticity,
form respectively, by means of a standard second-order alternating
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direction implicit (ADI) method, e.g., see Ref. 27. During
this process, first-order accurate finite difference expression
of the second derivative of the streamfunction are employed
as vorticity boundary conditions. Subsequently, the stream-
function at the new time level is evaluated fr¢& by means
of a standard full multigrid algorithm, in which line relax-
ation is used as the smoothing operator, e.g., see Ref. 28.
In order to smooth the discontinuity in the boundary
conditions at the outer edge of the embedded disk, we em-
ploy a transition layer of thickned®, for the azimuthal wall
velocity

v(z:O):;(l—tanr{(rl;(l)D. (14

This provides an effective boundary condition of the form
v~r forr=1-R, andv~0 forr=1+R,. In order to evalu-

ate the sensitivity of the computed flow field to the value of
Ry, we conducted test simulations f8f=nAr, with n=2,4,6

andAr the grid spacing in the radial direction. For values of
Re,T", andD within the range of interest, no dependence on
n was observed, so that=2 was employed for the simula- ° '

tions to be discussed below. FIG. 2. (Col g Flow field i indrical contai i a rotat
. . . . . 2. (Color onling. Flow field in a cylindrical container with a rotating
The appropriate spatlal resolution was determined bBfJottom and a free surface: Comparison between experimental results and

simulating the cas®=1, I'=1, and Re=900 for the three simuiation for Re=1120['=1, andD=1. Top: snapshot of the meridional

different grids of 65<65, 129x 129 and 25k 257 points. flow field obtained by dye injectiofiRef. 29. Bottom: simulated stream-

No significant differences in the computed flow patterngiines in ther, z plane.

were observed between the medium and fine grids. There-

fore, most simulations were conducted on a ¥229 grid.

The code was further validated by comparing computedieflected upward. Along the free surface, the flow is driven

streamlines with experimental visualizations of steady dydowards the center and then turned downward, thus complet-

lines obtained by one of the authdfsAn example of such a ing its closed trajectory.

comparison is shown in Fig. 2, where it can be seen that the Across the entire container height, a pronounced vortex

computed streamlines for Re=112D=1, andI'=1 repro-  core develops for <0.3 in which the contour lines of angu-

duce the features of the experimentally observed flow fieldar momentum are nearly vertical, cf. Fig(dB. Here the

with good accuracy. Finally, the code was also verified byazimuthal velocity increases approximately linearly with the

comparing computed results fBr=1 and different values of radius, so that a nearly solid-body-like rotation exists. In this

the Reynolds number with the experimental data obtained imegion the axial and radial velocity components are much

Ref. 15. As will be discussed below, good agreement ismaller, as compared to the azimuthal one. Near the vertical

observed. container walls, the angular momentum of the upward flow-
The temporal evolution of the streamfunction at threeing fluid is reduced due to the no-slip boundary condition, so

sampling pointg(1/3,1'/2), (1/2,T'/2), and(1/4,1'/2) is  that thel contours are deflected toward the center as the flow

monitored in order to check the overall convergence of theapproaches the top boundary. No loss of angular momentum

simulation to a steady state. The calculation was terminatedccurs at the free surface, due to the absence of tangential

when ab&,.,— ) <107 at all three points. stresses, so that the azimuthal velocity of a fluid element
increases as it moves inward towards the container axis. The

IV. RESULTS resulting radial pressure gradient forces the inward flow to

A D=1 “separate” from the surface. This, in turn, gives rise to a

closed vortex breakdown bubble attached to the free surface

As a first step, we present in Fig. 3 the flow 61, that had also been observed in the earlier experimental work
Re=900, and the horizontal aspect rafle=1. In this case, of Ref. 15, as well as in the numerical simulations of Ref. 17.
the entire bottom wall of the container rotates. The steadyrhis bubble extends over more than half of the container
streamlines, along with the contours of the radial and axiaheight, cf. Fig. 83). As explained in the figure caption, for
velocity components and of the angular momentura -r, illustrative purposes an equal number of unevenly spaced
confirm the familiar picturé>!’ Specifically, they demon- contour lines are plotted above and belgwO0, in order to
strate that the no-slip boundary condition at the rotating diskeveal the bubble structure. However, we emphasize that the
increases the angular fluid velocity in a narrow Ekmanrecirculating fluid inside the bubble has vertical and radial
boundary layer, which results in the outward radial acceleravelocity components much smaller than the rest of the flow,
tion of the fluid just above the bottom wall. As this fluid as Yiin/ Yimax=2 X 1072
reaches the neighborhood of the vertical container wall, it is  Figure 4 shows corresponding streamline configurations
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FIG. 3. Contours of(@) streamlines(ii,=—0.010, ¥ma=2.1X107%); (b) radial velocity (Uy,=—0.08, Upna=0.19; (c) axial velocity (W,=—0.08, Wiax
=0.12; (d) angular momentunl ,,,=0.0, |,,.x=1.0) in the meridional plane for Re=900,=1, andD=1. For visualization purposes, the contour levels are
nonuniformly spaced, with 20 positive and 20 negative values shown. The plotted contour levels are determinedijs Madvariable X (i/20)° and
level (i)=Min(variable x (i/20)3, respectively. A vortex breakdown region is observed that is attached to the free surface.

for different values of Re. Below a value of Re405, a  B. Influence of the horizontal aspect ratio

breakdown region does not develop. For;R&Re<Re, For the reasons discussed in the introductory section, it
=440, a narrow bubble develops along a finite interval of theyjj| pe interesting to observe the effects on the overall flow,
symmetry axis. This bubble is not attached to the top surfaceind on the vortex breakdown configuration, of pushing the
With increasing Reynolds number this region grows in sizecontainer walls radially outwards. F@®=3.33, Fig. 5 de-
and its upper stagnation point approaches the surface. Feicts information corresponding to that provided in Fig. 3 for
Re> Re, the bubble grows in the radial direction along the D=1. As before, the narrow boundary layer above the rotat-
free surface. Simultaneously, its lower stagnation poining disk embedded in the bottom wall is accelerated out-
moves upward and eventually reaches the free surface fayards in the radial direction. However, now it does not have
Re;=940. Thus, beyond Rea closed recirculation torus ex- 0 @scend abruptly at=1. Instead, it continues to move in
ists that is attached to the free surface. The observed flof'€ radial direction beyond the edge of the spinning disk, all
regimes and their dependence on the Reynolds number agr way to a location, at Wh'Ch_'t separaf[es from the bot-
with the experimental data obtained in Ref. 15. This vaIi-tom. waII,.cf. the cl_ose-up provided n Fig. 6. T_he_ reason
behind this separation can be found in the description of the

daFes our computatlongl approach,_althou_gh it needs to br%tating fluid motion above a stationary wall by Bodew&tt:
pointed out that the simulations vyield slightly lowéby

Far above the wall, the rotating fluid generates a radially
about 10% values for Re and Re, as compared to those jncreasing pressure field. In the viscous boundary layer next
reported for the experiments. This may be related to the fagh the wall, the fluid is decelerated, so that this pressure
that in the experiments the free surface was not perfectly flagradient wins over the centrifugal forces and drives the fluid
Spohnet al. report surface deflections up to about 10% of theinward towards the center. Thus in a container with a par-
container height. tially rotating bottom wall, we observe the interesting situa-
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FIG. 5. Contours of(a) streamlines(¢,=-0.8X 1073, #.,=2.6X 107%);
(b) radial velocity (Upi,=—0.08, U,,=0.16; (c) axial velocity (Wpin
=-0.07,Wn=0.06; (d) angular momentunl ,;,=0, | ,,,=0.4) in the me-
ridional plane for Re=900; =1, andD=3.33. The meridional flow is seen
to separate from the stationary section of the bottom wall at ragdiusand
to reattach at the free surfacergt The streamline connecting, andr
d separates the outer, clockwise vortex, from the inner, counterclockwise one.

surface. The separation streamline, which connects with the
free surface aty, demarcates the two main regions of the
flow field, viz., an inner one with counterclockwise meridi-
onal circulation and an outer one characterized by circulation

FIG. 4. Streamline patterns in the meridional planelferl, D=1, and(a) of the opposite sign. By comparing the streamline configu-
Re=400;(b) Re=425;(c) Re=500;(d) Re=1250. The internal bubble is rations in F|gs &) and aa), it is obvious that the inner
first observed at Re=405, and it becomes attached to the free surface al . . .

Re,=440. At Rg=940 the lower stagnation point of the recirculation region [reglon is now substantially larger than O=1. At the same
reaches the free surface, leading to the formation of a toroidal bubble struc-
ture. The above Re values are slightly below those reported in the experi-

mental investigation in Ref. 15. 025 == 27 7 7 F 7 1
NN = = Z2 A
NNXSSESEE2777 7
NIRRT == Z 7 i
L1 S=S =27
tion that the fluid is driven radially outward above the rotat- EE = = —— == 77
ing disk, whereas it is driven inward above the section atew { === = =, N
075 1 r.1.50

rest. As a result, separation occurs at some intermediate
location. FIG. 6. Close-up of the flow near the separation locationator the flow

Upon separation, the fluid turns upward towards the freeonditions shown in Fig. 5Re=900,I'=1, andD=3.33.
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0

0 1 3.33

FIG. 7. Contour plots of the azimuthal vorticity componeyfor the flow conditions shown in Figs. 3 and(® Re=9001"=1, andD=1; (b) Re=900,'=1,
andD=3.33. The separated layer of positive azimuthal vorticity results in the formation of the large-scale clockwise vortex at large radii.

time, the near-axis region of approximately solid-body-liketached to the vertical wall. Hence one of the questions to be
rotation has grown, cf. Figs.(@) and 5d). This reflects the addressed below concerns the valuedbeyond which this
diminished role of the vertical wall as a sink of angular mo-asymptotic state is reached, so that the flow field becomes
mentum, due to its increased distance from the axis. Figurkargely independent of this parameter.
5(a) indicates that the vortex breakdown bubble near the axis In this context, a simple model problem can provide
no longer forms, although there is a continued tendency oéome insight into how the flow field above the stationary
the return flow to separate from the free surface as it apbottom wall will decay in the radial direction beyond the
proaches the axis. This behavior will be discussed in moredge of the spinning disk, for large values of the aspect ratio
detail below. D: Consider a unidirectional, fully developed, steady flow

To complete the comparison between the c&eg& and  (u,0,0 in the Cartesian coordinate systémy,z), for the
D=3.33, we present in Fig. 7 contour plots of the azimuthalsemi-infinite domainy=0. At z=0 we have a solid wall
vorticity componentyn. For D=1, » is seen to be positive whereu=0, and atz=1 there is a free surface witbu/Jz
within the boundary layers adjacent to the rotating disk and=0. By scaling the velocity with its value =0, z=1, we
the vertical wall, while it is negative along most of the free obtainu(x,0,1)=1. This situation represents a simple model
surface and in the interior, except for an annular region obf the actual flow field for radir > 1, where the curvature
positive » that is attached to the free surface and associatettrms have been neglected. In the absence of any externally
with the vortex breakdown phenomenon. HB-3.33 we imposed pressure gradients, thievelocity component is
observe a tongue of positivgseparating from the stationary governed by the Laplace equation
bottom wall. This separated layer extends all the way to the
free surface, thereby setting up a large-scale clockwise vor- 52, 4u
tex at large radii. The toroidal region of positive azimuthal (9_y2 + 92 =0. (15)
vorticity attached to the free surface near the axis is not
strong enough to result in a.reC|rcuIat|on zone, although Ror the above set of boundary conditions, we obtain the
tendency towards the formation of a vortex breakdown re- .

S S . : solution

gion is clearly visible in the streamline pattern of Figa5

In the following, we will attempt to quantify the flow
changes as functions of the aspect r@ioBeyond a certain u(y,z) = e ™2y sin( 7_72)_ (16)
value of the aspect ratio, we expect the flow in the vicinity of 2
the rotating disk no longer to depend on the exact location of
the vertical container walls, since the loss of azimuthal mo\We observe that the characteristic length over which the
mentum primarily occurs in the boundary layer along theu-velocity component decays in thedirection is 247, and
stationary bottom wall, rather than in the boundary layer atthat this decay is exponential in nature.
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3 tion point of the breakdown region on the axis moves up-
] ward. At the same time, a small clockwise corner vortex
emerges in the lower right-hand corner of the cross section,
as a result of the flow separation from the stationary part of
the bottom wall. For 1.43D <2 the vortex breakdown re-
gion continues to shrink in size, while the corner vortex
grows slightly, cf. Figs. &) and 9d).

In the range 2D < 2.38, a large-scale reorganization of
the flow takes place, cf. Fig.(8. First, the vortex break-
down region next to the axis disappears. In addition, after

0.1+

FIG. 8. Azimuthal velocity profiles at the free surface for1, Re=900,
and various values d; X, D=1.43; +,D=1.66; ¢,D=2; ¥, D=2.38;A,
D=2.70;@®, D=2.86;M, D=3.33. The dotted line indicates proportionality
toe™.

nh
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Figure 8 provides the corresponding information for the
swirling flow problem under consideration, i.e., the decay of
the azimuthal surface velocity component withWe find
that, in analogy to the above unidirectional model problem,
this decay is exponential, albeit with a decay length of one,
rather than 2#. This difference is due to the cylindrical
nature of the problem, as opposed to the Cartesian model
problem. Consequently, if the vertical wall is removed from
the outer edge of the spinning disk by a distance substan-
tially larger than unity, its influence on the azimuthal velocity
profile near the edge of the disk should become negligible.
Figure 8 confirms that fob > 2.3 the location of the outer
wall indeed becomes insignificant.

The exact location of the separation point depends on the
relative strength of the outward boundary layer flow coming
from the spinning disk, and the inward moving boundary
layer above the stationary part of the bottom wall. The latter
will be limited roughly to the region where a significant ro-
tational velocity of the fluid at the free surface exists, i.e., to
the region within one decay length of the outer edge of the
spinning disk. We thus expect the separation location to be
found within this region, which is confirmed by Fig. 5. The
exact location will depend on the height of the container.

In order to investigate changes to the vortex breakdown
region as a result of moving the vertical wall outward from
the edge of the spinning disk, we discuss a series of simula-
tions for which the Reynolds number and the vertical aspect
ratio are fixed at Re=900 ard=1, respectively, whild® is
varied in the range of &£ D < 3.33. A sequence of streamline
plots for various values oD is depicted in Fig. 9. In all
cases, the streamline correspondingyte0 is plotted, in
order to demonstrate the shapes of the separatrices. Figure
9(a) reproduces the flow structure discussed abovéfod, FIG. 9. Sequenge of strear_nline plots in the meridional plane showing_ the

. . . . . effects of removing the cylinder wall from the outer edge of the rotating
viz., a large-scale counterclockwise recirculation and a singlQisy parameters aré=1, Re=900, anda) D=1: (b) D=1.43; (c) D
bubble attached to the free surface. According to the nomen=1.66;(d) D=2; (¢) D=2.38;(f) D=2.70; (g) D=2.86; (h) D=3.33. AsD
clature suggested by Bromes$ a|_,20 we will refer to this type increases, a secondary vortex emerges in the lower right-hand corner of the
of vortex breakdown region as corner bubble. The fluid in-cross section. This vortex grows wiﬂD,' ugtil for a critical va]ue ofD

. . : . . . . _somewhat above 2 the reattachment point jumps from the vertical wall to the
side this breakdown region rotates in the clockwise directionsee surface. Fop> 2.3, the features of the inner vortex become indepen-

As D is slightly decreased tB=1.43, the lower stagna- dent ofD.

\\I
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FIG. 11. The locations of separatidn., squaresand reattachment g,
circles, as functions ofD. Above D~ 2.3 these locations no longer vary
with the aspect ratio.

The sequence of streamline plots in Fig. 9 confirms our
above analysis regarding the decreasing influence of the ver-
tical wall for largeD, in that it shows the large-scale coun-
terclockwise vortex above the rotating disk to remain un-

separating from the stationary part of the container bottom¢hanged onceD>2.38. This asymptotic behavior is
the flow no longer reattaches somewhere on the vertical walfurthermore confirmed by Fig. 11, which provides the sepa-
Instead, the tendency of the rotating free surface flow to fornj@tion (reo) and reattachmentry) locations as functions
a clockwise vortex above the stationary bottom wall, as ana®f D'_ _ . .

lyzed in Ref. 26, has grown sufficiently strong for the sepa- Viewed from an energy point of VIew, the flow’s inde-
ratrix to reattach directly to the free surface. In this way, thePendence oD above a critical value indicates that the en-

corner vortex has transitioned to a large-scale recirculatioff'9Y injected into the flow by the rotating disk primarily

region that occupies the outer region of the container over itSMVeS t0 create and maintain the counterclockwise large-

entire height scale vortex above the spinning disk. In contrast, the outer-

In the range 2.3& D < 2.86, the strongly curved stream- clockwise vortex contains relatively little kinetic energy,
lines at the surface near=0.3 indicate the tendency of the Which resides mostly in the region just beyond the separatrix.
flow to form a weak toroidal vortex breakdown bubble away19uré 12 presents data regarding the kinetic energy density

from the axis of rotation. Figure 10 shows that at the highelki associated with the fluid in each of the large-scale vortices.

value of Re=1 300 such a recirculation bubble has indee&'er,e i=1(2) refers to thg inner(outey vo.rte>$, andk; is
formed. defined asK;/V;, wherekK; is the overall kinetic energy of

vortexi, while V; represents its volume.

k, is seen to decrease in the range D <2, indicating
an overall slowdown of the primary vortex as the container
walls are pushed outward. This can be explained by the mo-
mentum losses in the boundary layer along the stationary
bottom wall. For 2D =<2.5, the large-scale reorganization
of the flow occurs, as mentioned above. The separating
streamline no longer reattaches to the vertical container
walls, and instead directly joins the free surface. This results
in an abrupt reduction of the volume occupied by the inner
vortex, so that its kinetic energy density increadesre-
FIG. 10. Streamline contours fdi=1, Re=1300, and>=2.38 show the mains approximately constant f@y=2.3. Taking info ac-

existence of a toroidal recirculation region attached to the free surface, pgount that in this range the VOIur_ne occupied by the inner
away from the axis. vortex does not change anymdi€igs. 9g) and 9h)], we

FIG. 9. (Continued.
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FIG. 13. Onset of vortex breakdown bubbles in the parameter gRed",
0.0009 D=2.5. Four regions can be distinguished, viz., regidall no bubble; Il

i (X, one surface bubble away from the axi8l (A, one internal bubble
0.0008 - 0 and IV (<, corner bubblg No simulations were conducted fbr<0.6.
0.0007
1 C. Onset of vortex breakdown
0.0006 . .
| In order explore a wider parameter range, we now dis-
0.0005 -| cuss results for a fixed value=2.5 of the horizontal aspect
A, T ratio, and forl" and Re varying in the ranges 63" <4 and
v 0.0004 50<Re<2000. For certain combinations of these param-
0.0003 ] eters a third type of bubble, termed “internal bubble,” forms
) 1 whose two stagnation points are both located on the axis of
0.0002 - rotation. This type of vortex breakdown structure was also
] observed in Sec. IV fob=1 and Re=425, cf. Fig.(#). In
0.0001 | © this context it should be pointed out that our detection
. method for vortex breakdown structures is based on a purely
0.0000 + visual inspection of the streamline pattern. A bubble is said
L S to be present when a nonzero area of clockwise circulation is
(b) 1.0 15 20 25 3.0 35 40 _ .
b enclosed by ay=0 contour. We typically observe that near

the onset a slight increase in Re, at fixed valud pfpro-
FIG. 12. Kinetic energy density of the inner, counterclockwise rotating vor-duces a rapid growth of the bubble, in agreement with the
tex (a) and the outerclockwise rotating regidb), as functions oD for I' findings of Ref. 30.
=1, Re=900. The symbols in_dicate pumerical simulat_ion data, while the Overall, the(Re, I', D=2.5) plane shows four distinct
solid line represents a curve fit. The inner vortex remains unaffectdd by . . . . . . .
for D>2.3, while the growth of the outer vortex involves only very low regions, cf. Fig. 13: region | without bubbles, region I with
velocity regions. a surface bubble away from the axis, region Il with an in-
ternal bubble, and region IV with a corner bubble. In com-
parison to the phase diagram obtained by Spehal. for
(Re,I', D=1), we note a few differences. For a fix€dvalue
) . . o the onset of vortex breakdown f@=2.5 occurs at smaller
conclude that the motion of the inner vortex is maintained aheynolds number than in thB=1 experiments by Spohn.
a constant kinetic energy density by the rotating disk. For I'<2.65, the diagram by Spohet al. shows a narrow
A relatively small fraction of the overall energy is trans- pand of Reynolds numbers with internal bubbles, while for
ferred to the outer vortex, whose volume increasedas D=2.5 internal bubbles appear on|y in a narrow band for
grows. At the same time, the velocity field in the outer vortex > 225,
becomes nearly independent bf as D=2.3. All of the This behavior can be explained in light of the arguments
growth of the outer vortex involves regions of very small provided in Sec. IV: forD=2.5 the lateral wall is located
velocities. Consequently, the kinetic energy density of thewell beyond the region where the separated boundary layer
outer vortex decreases with increasiy as shown in attaches to the free surface, so that the angular momentum
Fig. 12b). created by the spinning disk reaches the free surface without
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VI. CONCLUDING REMARKS

0.00 -
] SR ae? Qualitative changes of the fluid motion in a cylindrical
Dﬂ”-i"'«:{’ container with one rotating end wall are observed when the
-0.02 Df‘;' RPN lateral wall is moved radially outward, so that the outer sec-
u‘“;“,".';” s tion of the end wall is at rest. The present study focuses on
| D,(, f ——238 this configuration for the case of a free surface, as a natural
& oo B0 b ;’/ o extension of the earlier work by Spoten al*>*®
= S 204 As the main observation, we find that the flow above the
R ;4/7 :f:f% stationary part of the end wall is dominated by the mecha-
b ‘2’/ o nism first described by Bodewatft:The rotating fluid mo-
006" i tion above the stationary end wall generates a pressure field
P that increases with the radius. Within the viscous boundary
] tﬁ’ layer on the stationary end wall, this pressure distribution is
008 K not balanced by a corresponding centrifugal force, so that a
o0 05 10  1s 20 25 30 radially inward flow results. As this flow approaches the

FIG. 14. Surface deflection fdr=1, Re=900, and various ratid3. The
largest surface deflections are observedDor 2.38, when a strong outer

vortex exists.

edge of the rotating disk, it encounters the radially outward
flow set up by the spinning disk, so that fluid separation
occurs. Hence a flow configuration results that is dominated
by a counterclockwise vortex above the spinning disk, and a
clockwise rotating vortex above the stationary part of the end
wall.

As the ratio of container radius to disk radius increases

significant losses. However, it does so at a much larger radiugbove a value of about 2.3, the influence of the lateral con-
than for D=1. Since angular momentum is approximatelytainer wall on the features of the central flow in the neigh-
conserved along the free surface, the inward radial fluid moborhood of the spinning disk becomes insignificant. By
tion thus comes to a halt at a radius on the free surface whicheans of a simplified model problem, it is demonstrated that
is larger forD=2.5 than forD=1, where the lateral wall this rapid loss of influence is due to the exponential decay of
imposes causes dissipative losses. Consequedtlyl is  the azimuthal surface velocity beyond the edge of the disk.
seen to promote the appearance of a bubble attached to ti@is exponential decay is confirmed by the numerical data,
free surface, especially for small valueslaf On the other and it reflects the fact that as the lateral wall moves outward,
hand, for largel’ the dissipation of angular momentum by the stationary part of the end wall becomes the main sink for
viscosity can no longer be neglected. Hence the fluid at théhe azimuthal momentum of the fluid.

free surface can move to small radii before it is deflected A series of simulations for various aspect ratios and Rey-
downward, so that the occurrence of internal bubbles isiolds numbers demonstrates that the outward shift of the
favored. container wall modifies the vortex breakdown configurations
as well, and the physical reasons for these changes are
discussed.

Several attractive avenues exist for future extensions of
the current investigation. First of all, accompanying experi-
Based on the above steady state, axisymmetric results, ieents by one of the author®ef. 29 show that forD
is possible to determine the leading order free surface deflec=3.33 the main flow features concide with those described
tion h(r) that the flow would develop if it was allowed to above, and that the flow can become time dependent for
deform under the influence of gravity, pressure, and viscouRe>300. It would be interesting to unravel the instability
forces. From the balance of the normal stresses we obtain, imechanism behind this transition, and to investigate its influ-
dimensionless form ence on such flow properties as the global mixing efficiency.
In this context, it might also be attractive to evaluate strate-
gies for the control of the flow, for example, by varying the
rotation rate of the spinning disk in a time-dependent fash-
ion, and/or by rotating the cylindrical container wall, which
would affect the relative strengths of the two main vortical
structures. Finally, it will be of interest to study three-

dimensional flow features as well.

V. SURFACE DEFLECTION

Loy 2

+ =0, 17
Fr P Re gz (7

where the Froude number Fr is defined as

2
Fr=4Fa (18)

g
Figure 14 depicts the surface deformation profiles forACKNOWLEDGMENTS
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