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The steady motion of a viscous fluid in a cylindrical container with a partially rotating bottom wall
and a free surface is investigated by means of axisymmetric Navier–Stokes simulations. The flow
above the spinning disk at the center of the bottom wall is dominated by an Ekman boundary layer
that drives the fluid radiallyoutward. In contrast, aninward flow ensues along the outer, stationary
part of the bottom wall, where the radially increasing pressure distribution set up by the rotating
fluid motion near the free surface is not balanced by a corresponding centrifugal force. As a result,
flow separation occurs at an intermediate radial location close to the outer edge of the rotating disk.
Thus a flow configuration results that is dominated by a meridional vortex above the spinning disk,
and a counterrotating vortex above the stationary part of the bottom wall. Simulations are conducted
for various aspect ratios and Reynolds numbers, in order to evaluate the resulting changes in the
vortex breakdown configurations. As the ratio of container radius to disk radius increases above a
value of about 2.3, the influence of the lateral container wall on the features of the central flow in
the neighborhood of the spinning disk becomes insignificant. By means of a simplified model
problem, it is demonstrated that this rapid loss of influence is due to the exponential decay of the
azimuthal surface velocity beyond the edge of the disk. This exponential decay is confirmed by the
numerical data, and it reflects the fact that as the lateral wall moves outward, the stationary part of
the end wall becomes the main sink for the azimuthal momentum of the fluid. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1932664g

I. INTRODUCTION

Swirling fluid motion generated in a cylindrical con-
tainer with one or two rotating end walls is known to give
rise to a variety of vortex breakdown configurations, even
under steady, laminar, and axisymmetric conditions. These
features offer the opportunity for very “clean” observations
of the conditions leading to vortex breakdown. Furthermore,
the experimental setup is quite simple, and numerical simu-
lations can be conducted with relative ease. Thus, it is no
surprise that nominally axisymmetric swirling flows in cylin-
drical containers have become a popular model for develop-
ing and testing hypotheses regarding the origins of vortex
breakdown, as well as its control.

The basic configuration consists of a closed cylindrical
container with one rotating end wall. It gives rise to only two
dimensionless parameters, viz., a Reynolds number Re
=VRd

2/n based on the angular velocityV and the radiusRd

of the spinning disk that forms the end wall of the container,
and a geometric aspect ratioG=H /Rd, whereH denotes the
container height. In accordance with von Karman’s analysis
of the flow generated by a spinning disk in an unbounded

fluid,1 the rotating end wall attracts fluid from the central
region of the container, and accelerates it radially outwards
in an Ekman boundary layer of thickness Re−0.5. As it ap-
proaches the corner, the fluid turns and subsequently spirals
along the cylindrical wall towards the opposite end of the
container. The angular velocity of the fluid outside the wall
boundary layer generates a centrifugal force, which has to be
balanced by a radial pressure gradient. Next to the stationary
end wall there exists a narrow boundary layer where the
angular velocity is substantially reduced, so that it no longer
balances the radial pressure gradient, which hence forces the
fluid back towards the centerline. There it separates from the
stationary end wall and flows back towards the rotating end
wall, thus completing its meridional circulation.

A first series of flow visualization experiments for this
setup was conducted by Vogel,2,3 who reported a vortex
breakdown region along the rotation axis, and away from the
end walls. A systematic variation of the governing param-
eters by Escudier4 revealed flow states with two or even
three successive breakdowns, as well as a transition towards
unsteady flows. These experimental observations led the au-
thor to hypothesize that the vortex breakdown phenomenon
is inherently axisymmetric. Any departures from this axi-
symmetry are then due to an instability of the axisymmetric
base state. For swirling jets, this point of view was recently
confirmed by the three-dimensional simulations and compu-
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tational linear stability analysis of Ruithet al.,5 as well as by
the investigation of swirling flows in pipes by Herradaet al.6

Following initial numerical simulations of the swirling
flow in a closed container by Lugt and Haussling7 as well as
Lugt and Abboud,8 Lopez,9 and Brown and Lopez10 provided
a detailed analysis of the underlying physical mechanisms,
based on numerical simulations. They demonstrate the exis-
tence of a standing centrifugal wave, whose amplitude in-
creases with the Reynolds number. Eventually it becomes
sufficiently large to create a stagnation point on the cylinder
axis, which signals the inception of vortex breakdown. Em-
phasizing the importance of creating negative azimuthal vor-
ticity, Brown and Lopez proceed to formulate a criterion for
the prediction of vortex breakdown in terms of the helix
angles of the velocity and vorticity vectors. More recently,
Herrada and Shtern11 have employed the same geometry to
investigate vortex breakdown control by means of adding
near-axis swirl, as well as externally imposed temperature
gradients. Frequently this geometry, or slight variations
thereof, have been employed as laboratory models for atmo-
spheric vortices.12–14

By replacing the stationary end wall with a free surface,
Spohnet al.15,16 consider a geometrically similar configura-
tion, which nevertheless gives rise to quite different physical
mechanisms. Due to the absence of tangential stresses, a
boundary layer does not form at the free surface, so that the
inward spiraling fluid elements maintain their angular mo-
mentum. When the related centrifugal force is sufficiently
large to balance the radial pressure gradient, the flow sepa-
rates from the free surface, thereby forming a vortex break-
down bubble that is attached to the free surface. While a
small amount of free surface deformation cannot be avoided
in these experiments, corresponding numerical simulations
for a flat, stress-free surface by Daube17 confirm these find-
ings for the axisymmetric case.

In a series of subsequent papers, several authors investi-
gate the linear stability of the axisymmetric base state and
the role of surface deflections within these instability modes.
Valentine and Jahnke,18 Lopez,19 and Bronset al.20 identify
axisymmetric instability modes both with and without sur-
face deflections, which set in via Hopf bifurcations. How-
ever, these modes develop at relatively high Reynolds num-
bers. Lopezet al.21 and Lopez and Marques22 observe
azimuthal modes that become unstable at lower Reynolds
numbers varying between about 1500 for shallow systems
sG,1d and 1900 for deep systemssG.1d, cf. also Younget
al.,23 Hirsa et al.24 and Miraghaieet al.25 For deep systems,
the instability mode is concentrated in the near wall jet that
forms as the bottom wall boundary layer is turned upwards
by the lateral wall. This instability mode does not lead to a
surface deflection, so that it can be captured in numerical
simulations assuming a flat, stress-free surface. For shallow
systems, on the other hand, the instability is focused in the
region where the core fluid in a state of near-solid-body ro-
tation encounters the outer fluid subject to strong meridional
circulation. This mode results in a deflection of the free sur-
face, so that it cannot be captured under the assumption of a
flat surface.

The investigations of free surface flows beginning with

the work of Spohnet al.15,16 confirm the sensitivity of both
the global flow field and the more localized vortex break-
down phenomenon to the nature of the boundary conditions.
In this context, the role of the lateral wall location is not yet
well understood. Both in the closed and the open container
flows, this lateral boundary is responsible for turning the
fluid away from the rotating end wall. It furthermore imposes
tangential stresses on the fluid that result in the formation of
a boundary layer, which acts as a sink of angular momentum.
Hence it will be interesting to investigate how the fluid flow
is modified if the cylindrical wall is moved radially outward,
while keeping the radius of the rotating disk unchanged. In
other words, we consider an open cylindrical container with
a rotating disk embedded in an otherwise stationary bottom
wall of radiusRc, cf. Fig. 1. This adds a further dimension-
less parameter to the problem in the form of the aspect ratio
D=Rc/Rd. Obviously, in this geometry the Ekman boundary
layer does not have to turn upward at the outer edge of the
rotating disk, and the fluid is free to move along the station-
ary bottom wall towards larger radii. However, it will lose
some of its angular momentum in this way, which in turn
will strongly affect the subsequent evolution of the flow. In
the limit when the rotating disk extends only over a small
part of the bottom wall, some guidance is provided by the
classical investigation of Bödewadt.26 This author studied the
situation of a fluid in solid-body rotation above a stationary
wall. Far away from the wall, the solid-body rotation gener-
ates a radially increasing pressure field. In the viscous
boundary layer next to the stationary wall, the fluid is decel-
erated, so that this pressure gradient wins over the centrifugal
forces and drives the fluid inward towards the center. Thus in
a container with partially rotating bottom wall, the interest-
ing situation arises that the fluid is drivenoutwardabove the
rotating section of the wall, whereas it should be drivenin-
ward above the nonrotating section, provided the container is
sufficiently large. Consequently, the boundary layer can be
expected to separate from the bottom wall at some interme-
diate radius. However, whether this separation will occur on
the rotating or the stationary segment of the bottom wall, and

FIG. 1. Schematic of the physical problem. Within a cylindrical container of
radiusRc, fluid motion is generated by a rotating disk of radiusRd, which
forms part of the bottom wall. The fluid has a free surface atz=H.
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where the flow might reattach again, is difficult to predict.
These are some of the issues to be addressed in the follow-
ing, by means of numerical simulations of the axisymmetric
Navier–Stokes equations. In light of the above observations
by other authors of three-dimensional instability modes set-
ting in above Reynolds numbers of 1500–2000, we will limit
the value of Re to 2000 in our investigation of axisymmetric
base flows. The stability properties of these base flows are to
be studied in a subsequent investigation. To summarize, we
expect the axisymmetric swirling flows in cylinders with par-
tially rotating bottom walls to exhibit qualitatively different
features from their counterparts in containers whose entire
end wall is in rotation. This can significantly affect such
global features of the overall flow as, for example, their mix-
ing efficiency.

The computational problem is formulated in Sec. II,
while details with regard to the numerical procedure are pro-
vided in Sec. III. Subsequently, Sec. IV presents the results
of the simulations. In a first step, we restrict our attention to
the caseG=1 andDù1, i.e., the fluid column has a height
equal to the disk radius, while the cylinder radius is equal to
or larger than that of the disk. Thus, we focus on the effects
of moving the lateral wall outward. Subsequently, the inves-
tigation will be extended to aspect ratiosGÞ1. Finally, Sec.
V addresses surface deflections of the axisymmetric base
state, and Sec. VI summarizes the main findings and presents
the conclusions from this investigation.

II. PROBLEM FORMULATION

We consider a cylindrical container of radiusRc and
heightH, with a circular disk of radiusRd imbedded in the
bottom boundary, cf. Fig. 1. At timet=0 the disk begins to
rotate at a constant angular velocityV, thereby setting the
fluid into motion. The lateral boundary and the bottom wall
at radii larger thanRd are stationary, solid no-slip walls,
while the top is formed by a horizontal, stress-free surface.
The fluid is incompressible, with constant density and kine-
matic viscosityn. The flow is described by the axisymmetric
Navier–Stokes equations, formulated in cylindrical coordi-
nates sr ,f ,zd, with the respective velocity components
su,v ,wd. Following Ref. 9, we avoid the explicit appearance
of the pressure variable and identically satisfy the conserva-
tion of mass, by employing a streamfunction-vorticity for-
mulation. Here, the streamfunctionc is related to the radial
and axial velocity components as

u = −
1

r

]c

]z
, w =

1

r

]c

]r
, s1d

and to the azimuthal vorticity component as
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The boundary conditions take the form

0 , z, G, r = 0: c = 0, v = 0, h = 0, s8d

0 , z, G, r = D: c = 0, v = 0, h = −
1

r

]2c

]r2 , s9d

z= 0, r ø 1: c = 0, v = r, h = −
1

r

]2c

]z2 , s10d

z= 0, r ù 1: c = 0, v = 0, h = −
1

r

]2c

]z2 , s11d

z= G: c = 0,
]v
]z

= 0, h = 0, s12d

where the dimensionless parameters

G =
H

Rd
, D =

Rc

Rd
s13d

are prescribed by the geometry of the problem. Note that we
assume a flat, stress-free upper surface, which has worked
well in the past in the context of characterizing axisymmetric
base flows, e.g., see Ref. 17. When identifying potential in-
stability modes to such base flows, on the other hand, this
assumption may not be valid. The boundary conditions for
the azimuthal vorticityh along the solid boundaries are ob-
tained from the no-slip condition, which takes the form
]c /]r =0 alongr =D and]c /]z=0 at z=0.

III. COMPUTATIONAL APPROACH

We employ a finite difference approach to simulate the
system of equationss3d–s5d subject to the boundary condi-
tions s8d–s12d. The computational grid is equidistant, and the
time-dependent solution is calculated until an essentially
steady state is reached. Att=0, the fluid is at rest every-
where. For every time step, Eqs.s3d ands4d are advanced in
time in order to update the azimuthal velocity and vorticity,
respectively, by means of a standard second-order alternating
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direction implicit sADI d method, e.g., see Ref. 27. During
this process, first-order accurate finite difference expressions
of the second derivative of the streamfunction are employed
as vorticity boundary conditions. Subsequently, the stream-
function at the new time level is evaluated froms5d by means
of a standard full multigrid algorithm, in which line relax-
ation is used as the smoothing operator, e.g., see Ref. 28.

In order to smooth the discontinuity in the boundary
conditions at the outer edge of the embedded disk, we em-
ploy a transition layer of thicknessRtr for the azimuthal wall
velocity

vsz= 0d =
r

2
S1 − tanhF sr − 1d

Rtr
GD . s14d

This provides an effective boundary condition of the form
v, r for r &1−Rtr andv,0 for r *1+Rtr. In order to evalu-
ate the sensitivity of the computed flow field to the value of
Rtr, we conducted test simulations forRtr=nDr, with n=2,4,6
andDr the grid spacing in the radial direction. For values of
Re,G, andD within the range of interest, no dependence on
n was observed, so thatn=2 was employed for the simula-
tions to be discussed below.

The appropriate spatial resolution was determined by
simulating the caseD=1, G=1, and Re=900 for the three
different grids of 65365, 1293129 and 2573257 points.
No significant differences in the computed flow patterns
were observed between the medium and fine grids. There-
fore, most simulations were conducted on a 1293129 grid.
The code was further validated by comparing computed
streamlines with experimental visualizations of steady dye
lines obtained by one of the authors.29 An example of such a
comparison is shown in Fig. 2, where it can be seen that the
computed streamlines for Re=1120,D=1, andG=1 repro-
duce the features of the experimentally observed flow field
with good accuracy. Finally, the code was also verified by
comparing computed results forD=1 and different values of
the Reynolds number with the experimental data obtained in
Ref. 15. As will be discussed below, good agreement is
observed.

The temporal evolution of the streamfunction at three
sampling pointss1/3, G /2d, s1/2, G /2d, and s1/4, G /2d is
monitored in order to check the overall convergence of the
simulation to a steady state. The calculation was terminated
when absscn+1−cnd,10−6 at all three points.

IV. RESULTS

A. D=1

As a first step, we present in Fig. 3 the flow forG=1,
Re=900, and the horizontal aspect ratioD=1. In this case,
the entire bottom wall of the container rotates. The steady
streamlines, along with the contours of the radial and axial
velocity components and of the angular momentuml =v ·r,
confirm the familiar picture.15,17 Specifically, they demon-
strate that the no-slip boundary condition at the rotating disk
increases the angular fluid velocity in a narrow Ekman
boundary layer, which results in the outward radial accelera-
tion of the fluid just above the bottom wall. As this fluid
reaches the neighborhood of the vertical container wall, it is

deflected upward. Along the free surface, the flow is driven
towards the center and then turned downward, thus complet-
ing its closed trajectory.

Across the entire container height, a pronounced vortex
core develops forr &0.3 in which the contour lines of angu-
lar momentum are nearly vertical, cf. Fig. 3sdd. Here the
azimuthal velocity increases approximately linearly with the
radius, so that a nearly solid-body-like rotation exists. In this
region the axial and radial velocity components are much
smaller, as compared to the azimuthal one. Near the vertical
container walls, the angular momentum of the upward flow-
ing fluid is reduced due to the no-slip boundary condition, so
that thel contours are deflected toward the center as the flow
approaches the top boundary. No loss of angular momentum
occurs at the free surface, due to the absence of tangential
stresses, so that the azimuthal velocity of a fluid element
increases as it moves inward towards the container axis. The
resulting radial pressure gradient forces the inward flow to
“separate” from the surface. This, in turn, gives rise to a
closed vortex breakdown bubble attached to the free surface
that had also been observed in the earlier experimental work
of Ref. 15, as well as in the numerical simulations of Ref. 17.
This bubble extends over more than half of the container
height, cf. Fig. 3sad. As explained in the figure caption, for
illustrative purposes an equal number of unevenly spaced
contour lines are plotted above and belowc=0, in order to
reveal the bubble structure. However, we emphasize that the
recirculating fluid inside the bubble has vertical and radial
velocity components much smaller than the rest of the flow,
ascmin/cmax=2310−2.

Figure 4 shows corresponding streamline configurations

FIG. 2. sColor onlined. Flow field in a cylindrical container with a rotating
bottom and a free surface: Comparison between experimental results and
simulation for Re=1120,G=1, andD=1. Top: snapshot of the meridional
flow field obtained by dye injectionsRef. 29d. Bottom: simulated stream-
lines in ther, z plane.
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for different values of Re. Below a value of Re1.405, a
breakdown region does not develop. For Re1,Re,Re2

.440, a narrow bubble develops along a finite interval of the
symmetry axis. This bubble is not attached to the top surface.
With increasing Reynolds number this region grows in size,
and its upper stagnation point approaches the surface. For
Re.Re2 the bubble grows in the radial direction along the
free surface. Simultaneously, its lower stagnation point
moves upward and eventually reaches the free surface for
Re3=940. Thus, beyond Re3 a closed recirculation torus ex-
ists that is attached to the free surface. The observed flow
regimes and their dependence on the Reynolds number agree
with the experimental data obtained in Ref. 15. This vali-
dates our computational approach, although it needs to be
pointed out that the simulations yield slightly lowersby
about 10%d values for Re1 and Re2, as compared to those
reported for the experiments. This may be related to the fact
that in the experiments the free surface was not perfectly flat.
Spohnet al. report surface deflections up to about 10% of the
container height.

B. Influence of the horizontal aspect ratio

For the reasons discussed in the introductory section, it
will be interesting to observe the effects on the overall flow,
and on the vortex breakdown configuration, of pushing the
container walls radially outwards. ForD=3.33, Fig. 5 de-
picts information corresponding to that provided in Fig. 3 for
D=1. As before, the narrow boundary layer above the rotat-
ing disk embedded in the bottom wall is accelerated out-
wards in the radial direction. However, now it does not have
to ascend abruptly atr =1. Instead, it continues to move in
the radial direction beyond the edge of the spinning disk, all
the way to a locationrco at which it separates from the bot-
tom wall, cf. the close-up provided in Fig. 6. The reason
behind this separation can be found in the description of the
rotating fluid motion above a stationary wall by Bödewadt:26

Far above the wall, the rotating fluid generates a radially
increasing pressure field. In the viscous boundary layer next
to the wall, the fluid is decelerated, so that this pressure
gradient wins over the centrifugal forces and drives the fluid
inward towards the center. Thus in a container with a par-
tially rotating bottom wall, we observe the interesting situa-

FIG. 3. Contours ofsad streamlinesscmin=−0.010,cmax=2.1310−4d; sbd radial velocity sumin=−0.08, umax=0.15d; scd axial velocity swmin=−0.08, wmax

=0.12d; sdd angular momentumslmin=0.0, lmax=1.0d in the meridional plane for Re=900,G=1, andD=1. For visualization purposes, the contour levels are
nonuniformly spaced, with 20 positive and 20 negative values shown. The plotted contour levels are determined as levelsid=Maxsvariabled3 si /20d3 and
level sid=Minsvariabled3 si /20d3, respectively. A vortex breakdown region is observed that is attached to the free surface.
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tion that the fluid is driven radially outward above the rotat-
ing disk, whereas it is driven inward above the section at
rest. As a result, separation occurs at some intermediate
location.

Upon separation, the fluid turns upward towards the free

surface. The separation streamline, which connects with the
free surface atrdi, demarcates the two main regions of the
flow field, viz., an inner one with counterclockwise meridi-
onal circulation and an outer one characterized by circulation
of the opposite sign. By comparing the streamline configu-
rations in Figs. 3sad and 5sad, it is obvious that the inner
region is now substantially larger than forD=1. At the same

FIG. 4. Streamline patterns in the meridional plane forG=1, D=1, andsad
Re=400;sbd Re=425;scd Re=500;sdd Re=1250. The internal bubble is
first observed at Re1=405, and it becomes attached to the free surface at
Re2=440. At Re3=940 the lower stagnation point of the recirculation region
reaches the free surface, leading to the formation of a toroidal bubble struc-
ture. The above Re values are slightly below those reported in the experi-
mental investigation in Ref. 15.

FIG. 5. Contours ofsad streamlinesscmin=−0.8310−3, cmax=2.6310−4d;
sbd radial velocity sumin=−0.08, umax=0.16d; scd axial velocity swmin

=−0.07,wmax=0.06d; sdd angular momentumslmin=0, lmax=0.4d in the me-
ridional plane for Re=900,G=1, andD=3.33. The meridional flow is seen
to separate from the stationary section of the bottom wall at radiusrco, and
to reattach at the free surface atrdi. The streamline connectingrco and rdi

separates the outer, clockwise vortex, from the inner, counterclockwise one.

FIG. 6. Close-up of the flow near the separation location atrco, for the flow
conditions shown in Fig. 5sRe=900,G=1, andD=3.33d.
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time, the near-axis region of approximately solid-body-like
rotation has grown, cf. Figs. 3sdd and 5sdd. This reflects the
diminished role of the vertical wall as a sink of angular mo-
mentum, due to its increased distance from the axis. Figure
5sad indicates that the vortex breakdown bubble near the axis
no longer forms, although there is a continued tendency of
the return flow to separate from the free surface as it ap-
proaches the axis. This behavior will be discussed in more
detail below.

To complete the comparison between the casesD=1 and
D=3.33, we present in Fig. 7 contour plots of the azimuthal
vorticity componenth. For D=1, h is seen to be positive
within the boundary layers adjacent to the rotating disk and
the vertical wall, while it is negative along most of the free
surface and in the interior, except for an annular region of
positiveh that is attached to the free surface and associated
with the vortex breakdown phenomenon. ForD=3.33 we
observe a tongue of positiveh separating from the stationary
bottom wall. This separated layer extends all the way to the
free surface, thereby setting up a large-scale clockwise vor-
tex at large radii. The toroidal region of positive azimuthal
vorticity attached to the free surface near the axis is not
strong enough to result in a recirculation zone, although a
tendency towards the formation of a vortex breakdown re-
gion is clearly visible in the streamline pattern of Fig. 5sad.

In the following, we will attempt to quantify the flow
changes as functions of the aspect ratioD. Beyond a certain
value of the aspect ratio, we expect the flow in the vicinity of
the rotating disk no longer to depend on the exact location of
the vertical container walls, since the loss of azimuthal mo-
mentum primarily occurs in the boundary layer along the
stationary bottom wall, rather than in the boundary layer at-

tached to the vertical wall. Hence one of the questions to be
addressed below concerns the value ofD beyond which this
asymptotic state is reached, so that the flow field becomes
largely independent of this parameter.

In this context, a simple model problem can provide
some insight into how the flow field above the stationary
bottom wall will decay in the radial direction beyond the
edge of the spinning disk, for large values of the aspect ratio
D: Consider a unidirectional, fully developed, steady flow
su,0 ,0d in the Cartesian coordinate systemsx,y,zd, for the
semi-infinite domainyù0. At z=0 we have a solid wall
whereu=0, and atz=1 there is a free surface with]u/]z
=0. By scaling the velocity with its value aty=0, z=1, we
obtainusx,0 ,1d=1. This situation represents a simple model
of the actual flow field for radiir .1, where the curvature
terms have been neglected. In the absence of any externally
imposed pressure gradients, theu-velocity component is
governed by the Laplace equation

]2u

]y2 +
]2u

]z2 = 0. s15d

For the above set of boundary conditions, we obtain the
solution

usy,zd = e−sp/2dy sinSp

2
zD . s16d

We observe that the characteristic length over which the
u-velocity component decays in they direction is 2/p, and
that this decay is exponential in nature.

FIG. 7. Contour plots of the azimuthal vorticity componenth for the flow conditions shown in Figs. 3 and 5.sad Re=900,G=1, andD=1; sbd Re=900,G=1,
andD=3.33. The separated layer of positive azimuthal vorticity results in the formation of the large-scale clockwise vortex at large radii.
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Figure 8 provides the corresponding information for the
swirling flow problem under consideration, i.e., the decay of
the azimuthal surface velocity component withr. We find
that, in analogy to the above unidirectional model problem,
this decay is exponential, albeit with a decay length of one,
rather than 2/p. This difference is due to the cylindrical
nature of the problem, as opposed to the Cartesian model
problem. Consequently, if the vertical wall is removed from
the outer edge of the spinning disk by a distance substan-
tially larger than unity, its influence on the azimuthal velocity
profile near the edge of the disk should become negligible.
Figure 8 confirms that forD.2.3 the location of the outer
wall indeed becomes insignificant.

The exact location of the separation point depends on the
relative strength of the outward boundary layer flow coming
from the spinning disk, and the inward moving boundary
layer above the stationary part of the bottom wall. The latter
will be limited roughly to the region where a significant ro-
tational velocity of the fluid at the free surface exists, i.e., to
the region within one decay length of the outer edge of the
spinning disk. We thus expect the separation location to be
found within this region, which is confirmed by Fig. 5. The
exact location will depend on the height of the container.

In order to investigate changes to the vortex breakdown
region as a result of moving the vertical wall outward from
the edge of the spinning disk, we discuss a series of simula-
tions for which the Reynolds number and the vertical aspect
ratio are fixed at Re=900 andG=1, respectively, whileD is
varied in the range of 1øDø3.33. A sequence of streamline
plots for various values ofD is depicted in Fig. 9. In all
cases, the streamline corresponding toc=0 is plotted, in
order to demonstrate the shapes of the separatrices. Figure
9sad reproduces the flow structure discussed above forD=1,
viz., a large-scale counterclockwise recirculation and a single
bubble attached to the free surface. According to the nomen-
clature suggested by Bronset al.,20 we will refer to this type
of vortex breakdown region as corner bubble. The fluid in-
side this breakdown region rotates in the clockwise direction.

As D is slightly decreased toD=1.43, the lower stagna-

tion point of the breakdown region on the axis moves up-
ward. At the same time, a small clockwise corner vortex
emerges in the lower right-hand corner of the cross section,
as a result of the flow separation from the stationary part of
the bottom wall. For 1.43,D,2 the vortex breakdown re-
gion continues to shrink in size, while the corner vortex
grows slightly, cf. Figs. 9scd and 9sdd.

In the range 2,D,2.38, a large-scale reorganization of
the flow takes place, cf. Fig. 9sed. First, the vortex break-
down region next to the axis disappears. In addition, after

FIG. 9. Sequence of streamline plots in the meridional plane showing the
effects of removing the cylinder wall from the outer edge of the rotating
disk. Parameters areG=1, Re=900, andsad D=1; sbd D=1.43; scd D
=1.66; sdd D=2; sed D=2.38; sfd D=2.70; sgd D=2.86; shd D=3.33. AsD
increases, a secondary vortex emerges in the lower right-hand corner of the
cross section. This vortex grows withD, until for a critical value ofD
somewhat above 2 the reattachment point jumps from the vertical wall to the
free surface. ForD.2.3, the features of the inner vortex become indepen-
dent ofD.

FIG. 8. Azimuthal velocity profiles at the free surface forG=1, Re=900,
and various values ofD; 3, D=1.43; +,D=1.66;l, D=2; ., D=2.38;m,
D=2.70;P, D=2.86;j, D=3.33. The dotted line indicates proportionality
to e−r.
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separating from the stationary part of the container bottom,
the flow no longer reattaches somewhere on the vertical wall.
Instead, the tendency of the rotating free surface flow to form
a clockwise vortex above the stationary bottom wall, as ana-
lyzed in Ref. 26, has grown sufficiently strong for the sepa-
ratrix to reattach directly to the free surface. In this way, the
corner vortex has transitioned to a large-scale recirculation
region that occupies the outer region of the container over its
entire height.

In the range 2.38øD,2.86, the strongly curved stream-
lines at the surface nearr <0.3 indicate the tendency of the
flow to form a weak toroidal vortex breakdown bubble away
from the axis of rotation. Figure 10 shows that at the higher
value of Re=1 300 such a recirculation bubble has indeed
formed.

The sequence of streamline plots in Fig. 9 confirms our
above analysis regarding the decreasing influence of the ver-
tical wall for largeD, in that it shows the large-scale coun-
terclockwise vortex above the rotating disk to remain un-
changed onceD.2.38. This asymptotic behavior is
furthermore confirmed by Fig. 11, which provides the sepa-
ration srcod and reattachmentsrdid locations as functions
of D.

Viewed from an energy point of view, the flow’s inde-
pendence ofD above a critical value indicates that the en-
ergy injected into the flow by the rotating disk primarily
serves to create and maintain the counterclockwise large-
scale vortex above the spinning disk. In contrast, the outer-
clockwise vortex contains relatively little kinetic energy,
which resides mostly in the region just beyond the separatrix.
Figure 12 presents data regarding the kinetic energy density
ki associated with the fluid in each of the large-scale vortices.
Here i =1 s2d refers to the innersouterd vortex, andki is
defined asKi /Vi, whereKi is the overall kinetic energy of
vortex i, while Vi represents its volume.

k1 is seen to decrease in the range 1,D,2, indicating
an overall slowdown of the primary vortex as the container
walls are pushed outward. This can be explained by the mo-
mentum losses in the boundary layer along the stationary
bottom wall. For 2&D&2.5, the large-scale reorganization
of the flow occurs, as mentioned above. The separating
streamline no longer reattaches to the vertical container
walls, and instead directly joins the free surface. This results
in an abrupt reduction of the volume occupied by the inner
vortex, so that its kinetic energy density increases.k1 re-
mains approximately constant forD*2.3. Taking into ac-
count that in this range the volume occupied by the inner
vortex does not change anymorefFigs. 9sgd and 9shdg, we

FIG. 9. sContinuedd.

FIG. 10. Streamline contours forG=1, Re=1300, andD=2.38 show the
existence of a toroidal recirculation region attached to the free surface, but
away from the axis.

FIG. 11. The locations of separationsrco, squaresd and reattachmentsrdi,
circlesd, as functions ofD. Above D<2.3 these locations no longer vary
with the aspect ratio.

063603-9 Steady axisymmetric flow Phys. Fluids 17, 063603 ~2005!

Downloaded 19 Aug 2005 to 128.111.70.242. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



conclude that the motion of the inner vortex is maintained at
a constant kinetic energy density by the rotating disk.

A relatively small fraction of the overall energy is trans-
ferred to the outer vortex, whose volume increases asD
grows. At the same time, the velocity field in the outer vortex
becomes nearly independent ofD as D*2.3. All of the
growth of the outer vortex involves regions of very small
velocities. Consequently, the kinetic energy density of the
outer vortex decreases with increasingD, as shown in
Fig. 12sbd.

C. Onset of vortex breakdown

In order explore a wider parameter range, we now dis-
cuss results for a fixed valueD=2.5 of the horizontal aspect
ratio, and forG and Re varying in the ranges 0.3,G,4 and
50,Re,2000. For certain combinations of these param-
eters a third type of bubble, termed “internal bubble,” forms
whose two stagnation points are both located on the axis of
rotation. This type of vortex breakdown structure was also
observed in Sec. IV forD=1 and Re=425, cf. Fig. 4sbd. In
this context it should be pointed out that our detection
method for vortex breakdown structures is based on a purely
visual inspection of the streamline pattern. A bubble is said
to be present when a nonzero area of clockwise circulation is
enclosed by ac=0 contour. We typically observe that near
the onset a slight increase in Re, at fixed value ofG, pro-
duces a rapid growth of the bubble, in agreement with the
findings of Ref. 30.

Overall, thesRe, G, D=2.5d plane shows four distinct
regions, cf. Fig. 13: region I without bubbles, region II with
a surface bubble away from the axis, region III with an in-
ternal bubble, and region IV with a corner bubble. In com-
parison to the phase diagram obtained by Spohnet al. for
sRe,G, D=1d, we note a few differences. For a fixedG value
the onset of vortex breakdown forD=2.5 occurs at smaller
Reynolds number than in theD=1 experiments by Spohn.
For G&2.65, the diagram by Spohnet al. shows a narrow
band of Reynolds numbers with internal bubbles, while for
D=2.5 internal bubbles appear only in a narrow band for
G.2.25.

This behavior can be explained in light of the arguments
provided in Sec. IV: forD=2.5 the lateral wall is located
well beyond the region where the separated boundary layer
attaches to the free surface, so that the angular momentum
created by the spinning disk reaches the free surface without

FIG. 12. Kinetic energy density of the inner, counterclockwise rotating vor-
tex sad and the outerclockwise rotating regionsbd, as functions ofD for G
=1, Re=900. The symbols indicate numerical simulation data, while the
solid line represents a curve fit. The inner vortex remains unaffected byD
for D.2.3, while the growth of the outer vortex involves only very low
velocity regions.

FIG. 13. Onset of vortex breakdown bubbles in the parameter planesRe,G,
D=2.5d. Four regions can be distinguished, viz., region Ish, no bubbled; II
s3, one surface bubble away from the axisd; III sn, one internal bubbled;
and IV sL, corner bubbled. No simulations were conducted forG,0.6.
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significant losses. However, it does so at a much larger radius
than for D=1. Since angular momentum is approximately
conserved along the free surface, the inward radial fluid mo-
tion thus comes to a halt at a radius on the free surface which
is larger for D=2.5 than forD=1, where the lateral wall
imposes causes dissipative losses. Consequently,D.1 is
seen to promote the appearance of a bubble attached to the
free surface, especially for small values ofG. On the other
hand, for largeG the dissipation of angular momentum by
viscosity can no longer be neglected. Hence the fluid at the
free surface can move to small radii before it is deflected
downward, so that the occurrence of internal bubbles is
favored.

V. SURFACE DEFLECTION

Based on the above steady state, axisymmetric results, it
is possible to determine the leading order free surface deflec-
tion hsrd that the flow would develop if it was allowed to
deform under the influence of gravity, pressure, and viscous
forces. From the balance of the normal stresses we obtain, in
dimensionless form

1

Fr
h − p +

2

Re

]w

]z
= 0, s17d

where the Froude number Fr is defined as

Fr =
V2Rd

g
. s18d

Figure 14 depicts the surface deformation profiles for
some of the flow fields shown in Fig. 9, withG=1, Re
=900, and several values ofD. We find that the surface
shapes forD.2.38, when the strong outer vortex exists, are
clearly distinct from the rest of the curves.

VI. CONCLUDING REMARKS

Qualitative changes of the fluid motion in a cylindrical
container with one rotating end wall are observed when the
lateral wall is moved radially outward, so that the outer sec-
tion of the end wall is at rest. The present study focuses on
this configuration for the case of a free surface, as a natural
extension of the earlier work by Spohnet al.15,16

As the main observation, we find that the flow above the
stationary part of the end wall is dominated by the mecha-
nism first described by Bödewadt:26 The rotating fluid mo-
tion above the stationary end wall generates a pressure field
that increases with the radius. Within the viscous boundary
layer on the stationary end wall, this pressure distribution is
not balanced by a corresponding centrifugal force, so that a
radially inward flow results. As this flow approaches the
edge of the rotating disk, it encounters the radially outward
flow set up by the spinning disk, so that fluid separation
occurs. Hence a flow configuration results that is dominated
by a counterclockwise vortex above the spinning disk, and a
clockwise rotating vortex above the stationary part of the end
wall.

As the ratio of container radius to disk radius increases
above a value of about 2.3, the influence of the lateral con-
tainer wall on the features of the central flow in the neigh-
borhood of the spinning disk becomes insignificant. By
means of a simplified model problem, it is demonstrated that
this rapid loss of influence is due to the exponential decay of
the azimuthal surface velocity beyond the edge of the disk.
This exponential decay is confirmed by the numerical data,
and it reflects the fact that as the lateral wall moves outward,
the stationary part of the end wall becomes the main sink for
the azimuthal momentum of the fluid.

A series of simulations for various aspect ratios and Rey-
nolds numbers demonstrates that the outward shift of the
container wall modifies the vortex breakdown configurations
as well, and the physical reasons for these changes are
discussed.

Several attractive avenues exist for future extensions of
the current investigation. First of all, accompanying experi-
ments by one of the authorssRef. 29d show that for D
=3.33 the main flow features concide with those described
above, and that the flow can become time dependent for
Re.300. It would be interesting to unravel the instability
mechanism behind this transition, and to investigate its influ-
ence on such flow properties as the global mixing efficiency.
In this context, it might also be attractive to evaluate strate-
gies for the control of the flow, for example, by varying the
rotation rate of the spinning disk in a time-dependent fash-
ion, and/or by rotating the cylindrical container wall, which
would affect the relative strengths of the two main vortical
structures. Finally, it will be of interest to study three-
dimensional flow features as well.
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FIG. 14. Surface deflection forG=1, Re=900, and various ratiosD. The
largest surface deflections are observed forD.2.38, when a strong outer
vortex exists.
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