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A linear stability analysis is conducted for the density-driven flow of variable viscosity
miscible fluids in a vertically oriented capillary tube. The main goal is to assess the
competition between the axisymmetric and the first azimuthal mode as a function of
Rayleigh number, viscosity ratio and interfacial thickness parameter. In the absence
of a net flow, the symmetry properties of the linearized set of equations indicate
that the growth rates do not depend on which of the two fluids is the more viscous,
although the shape of the eigenmodes does. For most parameter combinations, the
first azimuthal mode is found to have larger growth rates than the axisymmetric
mode. For thin interfaces and large Rayleigh numbers, however, the axisymmetric
mode dominates above a certain viscosity ratio. An unexpected result is found
regarding the influence of the interface thickness on the instability. For large viscosity
ratios, intermediate interface thicknesses are found to be more unstable than either
very thin or very thick interfaces. The reason for this behaviour is traced to a shift
of the eigenfunctions towards the less viscous fluid, which allows the instability to
grow in an overall less viscous environment. In the presence of a net axial flow, the
upward and downward displacements of a more viscous fluid by a less viscous one
are seen to result in the same growth rate. For large viscosity ratios, the axisymmetric
mode becomes destabilized by the net flow, whereas the leading azimuthal mode is
stabilized. This trend is in line with experimental observations.

1. Introduction
Vanaparthy, Meiburg & Wilhelm (2003) present a linear stability analysis of the

Rayleigh–Taylor instability in a vertically oriented capillary tube. Assuming constant
viscosity fluids that are miscible with each other in all proportions, the authors
determine dispersion relations and eigenmodes as functions of the Rayleigh number
and the initial thickness of the interfacial region, based on the three-dimensional
Stokes equations. For the case of a quiescent base state, the highest growth rates are
invariably achieved by the three-dimensional mode with an azimuthal wavenumber
of one. This is confirmed by related experiments by Kuang, Maxworthy & Petitjeans
(2004) for variable viscosity fluids. These experiments show that, in the absence
of a net displacement, the interface between the two fluids initially develops an
azimuthal instability. However, for long times and fully nonlinear fingers, the finger
tip approaches the centre of the tube again. The authors subsequently demonstrate
that in the presence of a small axial net flux the instability evolves in an axisymmetric
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Figure 1. Sketch of the capillary tube and the initially flat interface at z = 0.
c denotes the concentration of the heavier fluid.

fashion from the very beginning. They do not provide data regarding the minimum
flow rate required to stabilize the azimuthal mode, and hence it is not clear whether
or not this effect can be captured by linear stability theory. In order to assess this
possibility, Vanaparthy et al. (2003) extend their constant viscosity linear stability
analysis to cases involving a net axial flow, based on concentration profiles provided
by Taylor (1953) for the dispersion of a passive scalar in a Poiseuille flow. However,
for constant viscosity fluids, the results give no indication that the growth rate of the
axisymmetric instability mode will overtake that of the leading azimuthal mode for
the small net flow rates applied in the experiments. Hence, it appears possible that the
experimental observations depend on the presence of viscosity variations, which may
strongly affect the competition between axisymmetric and azimuthal modes. This is
the question to be addressed in the following.

A literature review of density-driven instabilities in capillary tubes is provided by
Vanaparthy et al. (2003) and will not be repeated here. Section 2 formulates the linear
stability problem for variable viscosity miscible fluids and derives the corresponding
generalized eigenvalue problem. The velocity and pressure approach for the three-
dimensional case is described along with its counterpart for axisymmetric perturba-
tions, which is based on the vorticity and streamfunction variables. The corresponding
numerical solution procedures are discussed in some detail. Results for quiescent base
states are presented in § 3, and compared with those for net axial flow in § 4. Finally,
§ 5 summarizes the findings and draws the main conclusions.

2. Physical problem and governing equations
We consider a vertically oriented capillary tube of diameter d , in which a heavier

fluid 1 is placed above a lighter fluid 2 (figure 1). The fluids are miscible with each
other in all proportions, with a constant diffusion coefficient D, and they have different
viscosities. The linear stability analysis will be based on the standard incompressible
conservation equations for mass, momentum, and species in cylindrical coordinates.
Since typical flow velocities are small and a suitably defined Reynolds number is
much smaller than O(1), the convective terms in the momentum equations can safely
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be neglected, so that we employ the incompressible Stokes equations. We introduce
characteristic scales for length L∗, viscosity µ∗, velocity U ∗, time T ∗, pressure P ∗ and
density difference R∗ in the form

L∗ = d, (2.1)

µ∗ = µ2, (2.2)

U ∗ =
�ρgd2

µ2

, (2.3)

T ∗ =
µ2

�ρgd
, (2.4)

P ∗ = �ρgd, (2.5)

R∗ = �ρ = ρ1 − ρ2. (2.6)

Here, ρ denotes the density and g indicates the acceleration due to gravity, which is
taken to point in the –z-direction. Note that from the linear stability equations to
be derived below, it will become obvious that the growth rate does not depend on
which of the two fluids is the more viscous. For this reason, we can limit ourselves,
without loss of generality, to situations in which µ2 <µ1, i.e. the heavier fluid is the
more viscous. We thus obtain the following set of dimensionless equations

(∇ · v) =
1

r

∂

∂r
(rvr ) +

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0, (2.7)

∂p

∂r
=

1

r

∂

∂r

(
2rµ

∂vr

∂r

)
+

1

r

∂

∂θ

(
µ

[
r

∂

∂r

(
vθ

r

)
+

1

r

∂vr

∂θ

])
+

∂

∂z

(
µ

[
∂vz

∂r
+

∂vr

∂z

])
, (2.8)
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r

∂p

∂θ
=

1

r2

∂

∂r

(
r2µ

[
r

∂

∂r

(
vθ

r

)
+

1

r

∂vr

∂θ

])

+
1

r

∂

∂θ

(
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[
1

r

∂vθ

∂θ
+
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r

])
+

∂

∂z

(
µ

[
∂vθ

∂z
+

1

r

∂vz

∂θ

])
, (2.9)

∂p

∂z
=

1

r

∂

∂r

(
rµ

[
∂vz

∂r
+

∂vr

∂z

])
+

1

r

∂

∂θ

(
µ

[
∂vθ

∂z
+

1

r

∂vz

∂θ

])
+

∂

∂z

(
2µ

∂vz

∂z

)
− c, (2.10)

∂c

∂t
+ v · ∇ c =

1

Ra
∇2c. (2.11)

The dimensionless Rayleigh number, which indicates the ratio of convective to
diffusive species transport, is defined as

Ra =
�ρgd3

Dµ2

. (2.12)

In order to close the above set of equations, we must specify density and viscosity
as functions of the local concentration. In line with other authors, the density ρ is
assumed to be a linear function of c

ρ = ρ2 + c(ρ1 − ρ2), (2.13)

while the viscosity depends exponentially on the concentration

µ = µ2e
Rc, R = ln

µ1

µ2

. (2.14)
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Figure 2. Sketch of the computational cells. (a) Cell at the axis. (b) Cell in the
interior of the domain.

In order to avoid the appearance of singularities at r = 0, Verzicco & Orlandi (1996) re-
commend the use of a staggered grid. Here, the velocities are evaluated on the surface
of the computational cell, whereas pressure and concentration are stored at its centre
(figure 2). Furthermore, these authors propose to replace the velocity components vr ,
vθ and vz by the radial fluxes qr = vrr , qθ = vθ and qz = vz, respectively. Thus, qr = 0
per definition on the axis, which avoids the problem of singularities. In terms of the
new variables qr , qθ and qz, the dimensionless continuity equation (2.7) becomes

1

r

∂qr

∂r
+

1

r

∂qθ

∂θ
+

∂qz

∂z
= 0. (2.15)

The non-dimensional momentum equations (2.8)–(2.10) follow as
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= eRc
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∂r
+

1

r

∂2qr
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and the concentration equation (2.11) takes the form

∂c

∂t
+

1

r
qr

∂c

∂r
+

1

r
qθ

∂c

∂θ
+ qz

∂c

∂z
=

1

Ra

[
∂2c

∂r2
+

1

r

∂c

∂r
+

1

r2

∂2c

∂θ2
+

∂2c

∂z2

]
. (2.19)

2.1. Linearization

Initially, we will consider base states in which the fluids are at rest, and the initial
concentration profile is defined by an error function of the form

c̄ = 1
2

+ 1
2
erf

(
z

δ

)
. (2.20)
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Figure 3. Base concentration profile c̄(z) for selected values of the interfacial
thickness parameter δ.

Here, δ represents the interface thickness (figure 3). Later on, we will also address base
states characterized by steady purely axial flows whose exact form will be discussed
at that time. For this reason, the linear stability equations will be derived for the case
of a purely axial base flow. Each variable is decomposed into its base state (̄ ) and
perturbation ( ′ ) components


qr

qθ

qz

p

c


 (r, θ, z, t) =




0
0

q̄z (r)

p̄ (r, z)

c̄ (r, z)


 +




q ′
r

q ′
θ

q ′
z

p′

c′


 (r, θ, z, t). (2.21)

The perturbations are assumed to be wavelike in the circumferential direction


q ′
r

q ′
θ

q ′
z

p′

c′


 (r, θ, z, t) =




q̂r (r, z) cos(βθ)

q̂θ (r, z) sin(βθ)

q̂z (r, z) cos(βθ)

p̂ (r, z) cos(βθ)

ĉ (r, z) cos(βθ)


 eσ t . (2.22)

The quantities with circumflexes denote the two-dimensional eigenfunctions. Note
that only integral wavenumbers β have physical meaning. By substituting the
decomposition defined in (2.21) into the dimensionless equations (2.15)–(2.19),
subtracting out the base-state equations, and neglecting all terms of higher order
in the perturbations, the system of equations takes the form

∂q̂r

∂r
+ βq̂θ + r

∂q̂z

∂z
= 0, (2.23)
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∂r
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σ ĉ +
1

r

∂c̄

∂r
q̂r + q̄z

∂ĉ

∂z
+
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∂z
q̂z =
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1

r

∂ĉ
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− 1
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∂2ĉ

∂z2

]
. (2.27)

2.2. Three-dimensional perturbations

The above system of linear equations can be written in matrix form as

Aφ = σBφ, (2.28)

which represents a generalized eigenvalue problem with the eigenvector

φ = (p̂, q̂r , q̂θ , q̂z, ĉ)
T (2.29)

and σ as its eigenvalue. The form of the matrices A and B is provided by the governing
equations (2.23)–(2.27) as

A =




0
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B = diag(0, 0, 0, 0, I), (2.31)
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The numerical implementation follows the approach outlined by Vanaparthy et al.

(2003) for the constant viscosity case. The equations are discretized on a domain
that extends from the axis (r = 0) to the outer wall (r = 0.5) in the r-direction, and
from −l/2 to l/2 in the z-direction. Second-order finite differencing is applied in both
directions. In the radial direction, the nodes are spaced equidistantly. To resolve the
strong axial gradients in the interfacial region, we use a stretched grid on the two
subdomains z � 0 and z � 0 that concentrates the grid points near z = 0. For this
purpose, a mapping function provided by Fletcher (1991) is employed

zi = si

l

2
, (2.32)

where

si = Pηi + (1 − P )

(
1 − tanh [Q (1 − ηi)]

tanh Q

)
, (2.33)

with

ηi =
i − 1

n − 1
. (2.34)

Here, n represents the number of axial points within each subdomain, while P and Q

are parameters to be chosen appropriately, in order to obtain a suitable distribution
of grid points.

At the wall of the tube, all velocity components are assumed to vanish, along with
the normal derivative of the concentration perturbation. The vertical domain bounda-
ries are sufficiently far away from the interface, so that homogeneous Dirichlet
conditions for all velocity components, as well as the concentration perturbation,
can be prescribed. For the pressure variable, no boundary conditions are necessary,
owing to the staggered grid. To keep the computational effort in an acceptable range,
the numerical eigenvalue problem is solved iteratively for the leading eigenvalues
by an Arnoldi method (Sorensen 1992). For the computational implementation, we
use the public domain software package ARPACK (Maschhoff & Sorensen 1996).
Test calculations and comparisons with direct solvers for a system of linear equations
(LAPACK) indicate that in this way the eigenvalues can be computed to a high degree
of accuracy. However, at high Ra numbers, the corresponding eigenfunctions are not
always fully converged, and the overall rate of convergence is slow. Consequently,
we follow the suggestion by Graf, Meiburg & Härtel (2002), which is also used by
Vanaparthy et al. (2003), and slightly modify the original system of equations by add-
ing a temporal derivative to the momentum equations. This results in the addition
of a Reynolds-number-like parameter Re to the corresponding positions on the main
diagonal of matrix B. According to Vanaparthy et al. (2003), a value of Re =0.001
accelerates the convergence considerably, while having a negligible influence on the
magnitude of the eigenvalue.

The domain length has to be chosen carefully, especially for small values of β ,
since it strongly influences some of the elements of A. Several test calculations were
performed in order to determine the optimal choice of domain length l as a function
of circumferential wavenumber β and interface thickness δ. Table 1 demonstrates the
computational requirements for δ � 1. For δ = 2, the minimal domain length is l = 10.
The value of each parameter was determined by means of a sensitivity analysis, in
order to keep the error in the eigenvalue below 0.5%. For the largest calculation, the
resulting matrix A has a size of 5NrNz × 5NrNz =11 495 × 11 495 elements.
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β 0.1 0.25 0.5 1 2 3

l 20 10 5 5 5 5
Nz 121 81 61 61 61 61
Nr 19 19 17 15 15 15

Table 1. Computational parameters for δ � 1 and the case of three-dimensional
perturbations.

2.3. Axisymmetric perturbations

For axisymmetric perturbations, it is convenient to write the governing equations in
terms of the streamfunction (ψ) and vorticity (ω) variables

vr = −1

r

∂ψ

∂z
, vz =

1

r

∂ψ

∂r
, ω =

∂vr

∂z
− ∂vz
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. (2.35)

By proceeding analogously to the case of three-dimensional perturbations, we obtain
a generalized eigenvalue problem of the form
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M6 0 M3





ψ̂

ω̂

ĉ
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Here, ψ̂ can be set to zero on all domain boundaries, while ω̂ and ĉ vanish only at the
far-field boundaries. The term ω̂ is set to (1/r)(∂2ψ̂/∂r2) at the wall, and it vanishes
on the axis. Both at the wall and on the axis, the normal derivative ∂ĉ/∂r is zero.
A staggered grid is not required here, owing to the absence of the pressure variable
and related singularities at the axis. Consequently, we can follow Vanaparthy et al.

(2003) and use a highly accurate Chebyshev collocation method in the z-direction, for
each of two subdomains that cover the regions z � 0 and z � 0, respectively. In this
way, the grid points are concentrated around the interface. In the radial direction, a
compact finite-difference scheme of third order at the wall and up to tenth-order in
the interior is used (Lele 1992). Again, a Reynolds-number-like term with Re =0.01 is
added to the momentum equation, in order to accelerate convergence. For the stabi-
lity analysis on a domain with a length l = 10, Nr = 30 and Nz = 101, the system
matrix has a size of 3 × Nr × Nz = 9090 × 9090.

3. Results for quiescent base state
We begin by analysing the stability of the quiescent base state as a function of the

viscosity ratio R. Before presenting the relevant dispersion relations, we discuss the
influence of R on the shape of the eigenfunctions.

3.1. Shape of the eigenfunctions

Figures 4 and 5 show the eigenfunction contours for pressure, all three velocity com-
ponents, and concentration, for R = 1 and R = −1, respectively. In contrast to the con-
stant viscosity case, the eigenfunctions for R �=0 are not symmetric or skew symmetric
with respect to z = 0. Instead, for positive viscosity ratios (R > 0, more viscous fluid
on top) the maxima are shifted in the negative z-direction, while for negative viscosity
ratios (R < 0, more viscous fluid at the bottom) they are displaced in the positive
z-direction. From the figures, it is apparent that the eigenfunctions for R > 0 and
R < 0 are related as

p̂R+(r, z) = −p̂R−, (r, −z),

q̂r,R+(r, z) = −q̂r,R−, (r, −z),

q̂θ,R+(r, z) = −q̂θ,R−, (r, −z), (3.1)

q̂z,R+(r, z) = q̂z,R−, (r, −z),

ĉR+(r, z) = ĉR−, (r, −z).

By substituting these relations into the governing equations (2.23)–(2.27) and keeping
in mind that eRc̄(z)

R+ = eR(c̄(−z)−1)
R− , c̄(z) = 1 − c̄(−z), (∂f̂ /∂z)(+z) = − (∂f̂ /∂z)(−z), where

f̂ = p̂, q̂r , q̂θ , q̂z, ĉ, and (∂c̄/∂z)(+z) = (∂c̄/∂z)(−z), it is clear that for a quiescent base
state, the systems of equations for R+ and R− are equivalent, so that they yield the
same eigenvalues. This is confirmed by the calculations, which yield the same growth
rates for both cases. For this reason, we will focus mostly on positive viscosity ratios
in the following.

By adding a positive or negative multiple of the concentration perturbation to the
base concentration field, we are able to obtain a qualitative idea of the two possible
perturbed interface shapes. For this purpose, c = 0.5 contours are plotted in figure 6
for β = 1 and β =0, where the solid (dashed) lines apply to positive (negative) values
of R. For axisymmetric perturbations (β =0), the heavier fluid moves down in the
centre of the tube, while the lighter fluid rises in an annular region near the wall, or
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Figure 4. Pressure p̂, radial velocity v̂r , circumferential velocity v̂θ , axial velocity v̂z and the
concentration eigenfunction ĉ associated with the largest eigenvalue for R =1, Ra =106 and
δ = 0.1, for the azimuthal wavenumber β =1.
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Figure 5. Pressure p̂, radial velocity v̂r , circumferential velocity v̂θ , axial velocity v̂z and the
concentration eigenfunction ĉ associated with the largest eigenvalue for R = −1, Ra = 106 and
δ = 0.1, for the azimuthal wavenumber β =1.

vice versa. In the three-dimensional case (β = 1), the lighter fluid rises over one-half
of the cross-section, while the heavier fluid sinks in the other half. This behaviour
agrees with the interfacial shapes observed by Wilhelm & Meiburg (2002) in nonlinear
simulations for R =2.3 and Ra = 1.147 × 106, and by Kuang et al. (2003, 2004) in
experiments for R = 2.3 and Ra = 1.240 × 107, in the absence of net flow. The latter
authors also show that the interface propagates more rapidly into the less viscous
fluid than into the more viscous one, which is confirmed by figure 6.

For large viscosity ratios (R > 3), the shape of the dominant perturbations changes
qualitatively. For R = 1, the eigenfunctions v̂r and v̂z had shown one vortex in the
(r, z)-plane (figure 4). In contrast, for R =5, they exhibit two counter-rotating vortices
(figure 7). Related to this is a change in the concentration eigenfunction at the wall.
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Figure 6. Qualitative shape of the interface for δ = 0.1 and Ra = 106, solid: R = 1, dashed
R = − 1. For each value of R, there are two possible solutions.
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Figure 7. Pressure p̂, radial velocity v̂r , circumferential velocity v̂θ , axial velocity v̂z and the
concentration eigenfunction ĉ associated with the largest eigenvalue for R = 5, Ra = 106 and
δ = 0.1, for the azimuthal wavenumber β = 1.

A similar change is observed for the axisymmetric mode, where for large R values,
a region of counter-rotating vorticity appears near the axis (figure 8). This results in
a dent at the tip of the downward moving finger as shown in figure 9.

3.2. Dispersion relations

Figure 10 shows growth rates σ as functions of the azimuthal wavenumber β , for
the interface thickness δ = 0.1, Ra = 107, and various viscosity ratios. Note that, even
though only integral values of β are physically meaningful, the dispersion relations
are drawn as continuous curves, in order to guide the eye. As expected, the growth
rate decreases with increasing R owing to the higher average viscosity of the fluid
system, which has a damping effect. For small values of R, the dispersion relation
has a global maximum for the three-dimensional mode β = 1. The growth rates of
the axisymmetric and three-dimensional modes are affected somewhat differently
by larger viscosity ratios (figure 10). While both modes are exponentially damped
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Figure 8. Axisymmetric perturbations of the streamfunction ψ̂ , vorticity ω̂ and the concen-
tration ĉ associated with the largest eigenvalue for R = 4, Ra = 106 at a characteristic interface
thickness of δ = 0.1.
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Figure 9. Qualitative shape of the interface for δ = 0.1, Ra = 106 and R =5. Each of the
solid and the dashed lines visualize one of the two possible solutions provided by ĉ.

by increasing R, the damping constant is larger for the three-dimensional mode.
Consequently, for R > 3.48, the axisymmetric mode (β = 0) exhibits the higher growth
rate. Note that for lower Rayleigh numbers, a comparable crossover of the curves for
β = 0 and β = 1 is not observed, cf. figure 11 for Ra =105.

Figure 12 indicates the dependence of the growth rates for β = 0 and 1 on Ra,
for various viscosity ratios. For all R, an increase of Ra is seen to result in higher
growth rates, until a plateau is reached for Ra > 106. From these curves, we can
identify a critical value Racrit for each viscosity ratio, below which the base state is
stable to perturbations. Figure 13 depicts Racrit as a function of the viscosity ratio for
the interface thicknesses δ = 0.1 and 0.5. For small viscosity ratios R � 2, the thinner
interface exhibits a lower Racrit, so that it is more unstable. However, for viscosity
ratios R � 3 the thicker interface is more unstable. This behaviour is confirmed by
figure 14, which shows that at R =5 the growth rates for β = 0 and 1 have a maximum
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Figure 10. Dispersion relationships for δ = 0.1, Ra = 107 and various R values. In (b), the
growth rate of the axisymmetric mode (β = 0) is compared with that of the most amplified
three-dimensional mode β = 1. For values of R below 3.48, the three-dimensional mode is seen
to dominate, whereas the axisymmetric mode has a higher amplification rate above this value.
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Figure 11. Dispersion relationships for δ = 0.1, Ra = 105 and various R. In (b), the corres-
ponding damping behaviour of the β =0 and β = 1 modes is shown. At this lower Ra value,
the crossover observed for Ra = 107 does not occur.

near δ =0.5. For R =0, on the other hand, the growth rates decrease monotonically
with increasing δ.

While this finding may be somewhat counterintuitive, Goyal & Meiburg (2004)
had made a similar observation for the corresponding situation in a Hele-Shaw
cell, cf. also the experimental investigation of Fernandez et al. (2002). Those authors
attributed this behaviour to the fact that for thick interfaces and large viscosity ratios,
the eigenfunction maximum shifts a considerable distance into the less viscous fluid,
so that the perturbation can grow in a lower-viscosity environment. For moderate
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Ra, for various viscosity ratios. Above Ra ≈ 106, a plateau is reached.
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Figure 13. The critical Rayleigh number Racrit as a function of R. For large-viscosity ratios,
the thicker interface becomes unstable at smaller Rayleigh numbers than the thinner one.

values of δ, this effect can offset the stabilizing influence of an increasing interface
thickness. For thin interfaces, on the other hand, the eigenfunction is forced to
extend significantly into the more viscous fluid, which dampens its growth. Figure 15
demonstrates that a similar shift into the less viscous environment occurs for the
present case of a capillary tube. Table 2 provides the z-location of the eigenfunction
maximum, the corresponding base concentration value c̄, the local viscosity µ, and the
concentration gradient ∂c̄/∂z. It shows that for δ =0.5, the eigenfunction maximum
is located in the least viscous environment. Since the destabilizing base concentration
gradient is still reasonably strong, this δ value leads to the highest overall growth rate.

Figure 16 provides more complete information for the intermediate interface
thickness δ = 0.5. Note that even for R = 5, the global maximum of the dispersion
relation is located at β = 1. Hence, for the present interface thickness, a crossover
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Figure 14. Growth rates for β = 0 and 1 as functions of the interfacial thickness δ, for
Ra = 107. For R = 5, the growth rates display a maximum near δ =0.5, whereas for R = 0 they
decrease monotonically.
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Figure 15. R = 5, Ra = 106, β = 1: For larger interface thicknesses, the maximum of the
concentration eigenfunction ĉ is increasingly shifted into the less viscous fluid.

with the β =0 mode does not occur, so that the dominant mode is three-dimensional
in nature for all viscosity ratios.

4. Influence of a net axial base flow
In their experimental investigation, Kuang et al. (2004) observed that a small

amount of net axial flow can stabilize the azimuthal instability mode, so that the
axisymmetric mode becomes dominant. A minimum flow rate to accomplish this is
not established, however. This finding could not be explained on the basis of the
constant viscosity linear stability results by Vanaparthy et al. (2003). In the following,
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δ 0.1 0.5 1.0 2.0

z −0.07 −0.38 −0.71 −1.49
c̄ 0.1898 0.1421 0.1578 0.1461
µ 2.583 2.035 2.201 2.076

∂c̄

∂z
3.456 0.633 0.341 0.162

σ 0.76 × 10−3 0.19 × 10−2 0.17 × 10−2 0.10 × 10−2

Table 2. R = 5, Ra =106, β = 1. Position z, base concentration c̄, viscosity µ and base concen-
tration gradient ∂c̄/∂z at the location of the concentration eigenfunction maximum. The most
unstable combination of low-viscosity environment and strong base concentration gradient
leads to a maximum growth rate σ for the intermediate interface thickness δ = 0.5.
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Figure 16. Dispersion relationships for δ = 0.5, Ra = 107 and various R. In (b), the corre-
sponding damping behaviour of the β = 0 and β = 1 modes is shown. For this interface
thickness, a crossover is not observed, so that the dominant mode remains three-dimensional
in nature for all viscosity ratios.

we will try to evaluate the influence of viscosity variations on this competition between
axisymmetric and azimuthal modes. The influence of a net flux is also of interest
in the context of the finger shape in miscible displacements in capillary tubes, cf.
the joint experimental and computational investigations by Petitjeans & Maxworthy
(1996) and Chen & Meiburg (1996).

Based on the work by Taylor (1953), Vanaparthy et al. (2003) introduced a frame-
work for analysing the effect of a small net axial velocity on the linear stability of the
miscible interface considered above. For a Poiseuille flow profile of the form

q̄z = umax

(
1 − 4

r2

d2

)
, (4.1)

Taylor had shown that radial flow-induced concentration variations are rendered
small by the action of molecular diffusion, provided that

Pe =
umaxd

D
= Ra

umax

U ∗ = Ra un � 7.62 δ

d
. (4.2)
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Figure 17. Influence of the net axial flow on the base concentration profile. Shown are the
contours c̄ = 0.25, 0.5 and 0.75 for a net upward flow with Pe =50 and δ =2.

Under these conditions, he finds that the concentration profile of the passive scalar is
given by

c (r, ξ ) = 1
2

+ 1
2
erf

(
ξ

2
√

kt

)
+

Pe

16
√

πkt

(
r2 − 2r4

)
exp

(
− ξ 2

4kt

)
. (4.3)

Here, ξ = z−umaxt/2 denotes the axial coordinate in a reference frame moving with the
mean velocity of the flow, while k = u2

maxd
2/768D represents the well-known Taylor

dispersion coefficient. Figure 17 depicts the contours c = 0.25, 0.5 and 0.75 of this
base concentration profile. In order to investigate the influence of this Poiseuille flow
on the interfacial instability, we set

δ = 2
√

kt (4.4)

and assume a quasi-steady state δ = const. While proceeding analogously to the no-
flow case, we must keep in mind that the current situation, in which both density and
viscosity depend on the concentration, is clearly distinct from the case of a passive
scalar analysed by Taylor (1953). As a result, the real flow will not be exactly of
Poseuille type. Nevertheless, as long as radial concentration variations remain small,
the Poiseuille flow assumption should represent a good approximation.

The derivation of the generalized eigenvalue problems in §§ 2.2 and 2.3 was per-
formed for the general case of a base concentration profile that varies in z and r , and
a base flow with a component in the z-direction. Test calculations show that even
for small values of un, long domains of l = 25 and fine resolutions of Nz = 121 and
Nr =19 are necessary to obtain converged results. In order to avoid numerical stability
problems near the in- and outflow boundaries, we furthermore had to gradually reduce
the base flow near these.

4.1. Results

Because of condition (4.2), the above approach is restricted to a small area of the δ-
Ra-un parameter space. Therefore, in order to reach sufficiently large Péclet numbers,
only relatively thick interfaces with δ = 2 are considered.
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Figure 18. Axisymmetric perturbations of the streamfunction ψ̂ , vorticity ω̂ and the concen-
tration ĉ associated with R = 1, Ra = 105, δ = 2.0 for a base flow un = 0.0005. Notice the shift
in the direction of the base flow, i.e. towards the more viscous fluid.
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Figure 19. Pressure p̂, radial velocity v̂r , circumferential velocity v̂θ , axial velocity v̂z and the
concentration eigenfunction ĉ associated with the largest eigenvalue for un = 0.0005, R = 1,
Ra= 105 at a circumferential wavenumber β =1. Notice the shift towards the less viscous fluid,
i.e. against the base flow.

Figure 18 depicts the eigenfunctions of the axisymmetric instability mode for R =1,
Ra = 105 and un = 0.0005. Compared to the no-flow case, the eigenfunctions are shifted
in the flow direction, i.e. towards the more viscous fluid. As can be seen clearly from
the concentration eigenfunction, this shift is more pronounced near the axis, where
the flow velocity is larger, than near the wall. Figure 19 shows the corresponding
results for the three-dimensional mode β =1. In contrast to the axisymmetric mode,
the three-dimensional eigenfunctions display a shift towards the less viscous fluid, i.e.
against the flow direction. The reason for this qualitatively different behaviour of the
β = 0 and β = 1 modes is not entirely clear.
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Figure 20. Growth rate σ as a function of the wave length β for R = 2.5 and 5, and different
centreline velocities un. Ra = 105. A crossover takes place for R = 5 and small wavenumbers,
which suggests that for large-viscosity contrasts the axisymmetric mode is destabilized by the
net flow, while the azimuthal mode is stabilized, in line with the experimental observations by
Kuang et al. (2004).

In the presence of a base flow, the system of linear governing equations displays
a symmetry for (R+, un+) and (R−, un−). This confirms our expectation that the
situation of a more viscous fluid above a less viscous one with an upward net flow
gives the same growth rates as a less viscous fluid above a more viscous one with a
downward net flow.

Figure 20 depicts dispersion relations for velocities un = 0, 0.0005 and 0.0012, with
R = 2.5 and 5, at Ra = 105. The graphs indicate that the β =1 mode dominates for the
whole parameter spectrum considered. Note, however, the crossover of the R = 5 cur-
ves near β = 0, which indicates a destabilizing influence of the axial net flow on the
axisymmetric mode. This is in contrast to the β = 1 mode, which is stabilized by the
net flow. This might indicate that, for sufficiently high flow rates and viscosity ratios,
the axisymmetric mode may become more unstable than the β = 1 mode, in line with
the experimental observations of Kuang et al. (2004). Those authors state that a
minimum net flow was required to obtain an axisymmetric finger; however, they did
not measure the minimum required velocity, so that it is not possible to make a more
quantitative comparison. We were unable to obtain converged results for flow rates
larger than un = 0.0012, for which there may be several potential reasons. Based on
extensive testing, we think it is unlikely that this is due to the computational resolu-
tion. Rather, we believe that convergence may no longer be achieved because the base
state (4.3) represents a less and less valid approximation of the governing equations as
un increases. Apart from the presence of density and viscosity variations, which did not
exist in Taylor’s analysis, un must satisfy condition (4.2). Hence, for Ra = 105, un =
0.0012 and δ/d = 2, we are already at the very limit of validity of this approximation.

5. Conclusion
We have analysed the influence of a concentration-dependent viscosity on the

density-driven instability between miscible fluids in a vertically oriented capillary
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tube. The main focus of the investigation, which extends the constant viscosity study
by Vanaparthy et al. (2003), is to establish the dominant instability mode as a
function of Rayleigh number, viscosity ratio and interfacial thickness parameter. Of
particular interest is the competition between the axisymmetric and first azimuthal
modes, for which the experiments of Kuang et al. (2003) demonstrate a very
sensitive balance. Towards this end, we formulated a generalized eigenvalue problem,
based on the three-dimensional Stokes equations, whose solution provides the
dispersion relations and eigenmodes as functions of the governing dimensionless para-
meters.

In the absence of a net flow, the system of linear equations demonstrates certain
symmetry properties, which indicate that the growth rates do not depend on which
of the two fluids is the more viscous one. For most parameter combinations, the
azimuthal mode β = 1 is found to have larger growth rates than the axisymmetric
mode. However, for thin interfaces and large Rayleigh numbers, the axisymmetric
mode dominates above a certain viscosity ratio. Furthermore, the interface is seen to
propagate more rapidly into the less viscous fluid.

An unexpected result is found regarding the influence of the interface thickness on
the instability. For large viscosity ratios, intermediate interface thicknesses are found
to be more unstable than either very thin or very thick interfaces. The reason for
this behaviour is traced to a shift of the eigenfunctions towards the less viscous fluid.
This shift allows the instability to grow in an overall less viscous environment. In
this context, it is important to appreciate that the vertical extent of the eigenfunction
depends on both the interfacial thickness and the tube radius. For very thin interfaces,
this forces the eigenfunction to extend deep into the more viscous fluid, which lowers
the growth rate. On the other hand, for very thick interfaces the growth rate decreases
because the destabilizing density gradient is weakened. For intermediate interface
thicknesses, an optimal combination of destabilizing density gradient and shift into
a less viscous environment is achieved. This observation has a counterpart for Hele-
Shaw problems, as pointed out by Goyal (2003).

In the presence of a net axial flow, the governing equations exhibit a symmetry
regarding (R+, un+) and (R−, un−) combinations. This indicates that the upward
flow of a more viscous fluid above a less viscous one gives rise to the same growth
rate as the downward flow of a less viscous fluid above a more viscous one. For large
viscosity ratios, the axisymmetric mode becomes destabilized by increasing net flows,
whereas the leading azimuthal mode is stabilized. While we were unable to obtain
converged results at flow rates that are sufficiently large for the axisymmetric mode
to dominate, the trend of the results nevertheless is in line with the experimental
observations of Kuang et al. (2004). A more quantitative comparison is not possible
at this time, since neither the experimental data of Kuang et al. (2004) nor the
present linear stability results provide a value for the minimum net flux required for
the stabilization of the azimuthal mode.

Throughout the investigation, we employed a constant diffusion coefficient. This
assumption is common in linear stability investigations of variable viscosity, miscible
fluids. Nevertheless, its validity is somewhat questionable in light of the Stokes–
Einstein relation, which predicts that the product of viscosity and diffusivity remains
approximately constant (see e.g. Probstein 1994). Efforts towards quantifying the
influence of this assumption are currently underway.
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