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The dynamics and mixing of passive marker particles for the model problem of a decaying cat’s 
eye tlow is studied. The flow field corresponds to Stuart’s one-parameter family of solutions [J. 
Fluid Mech. 29,417 ( 1967) 1. It is time dependent as a result of viscosity, which is modeled by 
allowing the free parameter to depend on time according to the self-similar solution of the 
Navier-Stokes equations for an isolated point vortex. Particle diffusion is numerically 
simulated by a random walk model. While earlier work had shown that, for small values of 
time over Reynolds number t /Re Q 1, the interval length characterizing the formation of lobes 
of fluid escaping from the cat’s eye scales as Re - li2, the present study shows that, for the case 
of diffusive effects and t /Pe< 1, the scaling follows Pe- “4 A simple argument, taking into . * 
account streamline convergence and divergence in different parts of the flow field, explains the 
Pe - “4 scaling. 

I. INTRODUCTION 
The analysis of mixing and stirring processes in two- 

and three-dimensional flows recently has received increased 
attention. In particular, a variety of temporally and spatially 
periodic flow fields have been analyzed with the help of tools 
provided by the theory of dynamical systems. A key finding 
has been that many smooth velocity fields give rise to ex- 
tremely complicated particle trajectories, thus resulting in 
what has become known as chaotic advection or Lagrangian 
turbulence. For a review of many interesting examples, see 
Ottino.’ While the theory of dynamical systems is most 
powerful for analyzing flows with some periodicity, our fo- 
cus in the present paper will be on particle dynamics and 
mixing processes in two-dimensional unsteady but tempor- 
ally nonperiodic flows, for which traditional tools such as 
Poincare sections are of limited help. Hence we have to re- 
sort to other analytical and numerical calculations to quanti- 
fy the mixing process. 

In particular, we will, in the present study, continue our 
earlier investigation of a viscously decaying row of point vor- 
tices (Meiburg and Newton’ ) . This flow displays enhanced 
mixing without giving rise to chaotic streamlines. While our 
earlier work focused on the case of small values of time over 
Reynolds number t /Re and infinite Schmidt numbers, i.e., 
nondiffusing particles, we now aim at evaluating the effect of 
particle diffusion, thus introducing a further dimensionless 
quantity in the form of the Peclet number Pe. The model 
tlow on which we base our investigation employs the one- 
parameter family of solutions to the Euler equations known 
as Stuart vortices (Stuart3 and Pierrehumbert and Wid- 
nal14 ). A detailed description of how we account for viscos- 
ity is given in Meiburg and Newton,2 and we will review the 
key features in Sec. II. In Sec. III A, we will present some 
scaling results for the case of diffusing particles in inviscid 
Aow, while III B will consider the situation in which both 

Reynolds number and Peclet number are finite. Finally, Sec. 
IV will summarize the results and draw some conclusions. 

II. MODEL FLOW 
The model flow that we are investigating is based on the 

one-parameter family of solutions to the steady Euler equa- 
tions known as the Stuart vortices: 

$(xy) = ln[cosh(2rry) --p cos (~zY)], 

where q is the dimensionless streamfunction. The parameter 
p determines the concentration of vorticity. In particular, for 
p = 1 we obtain a periodic row of point vortices, whereas 
p = 0 corresponds to a parallel shear flow with a hyperbolic 
tangent velocity profile. The key feature of our approach to 
modeling a viscously decaying row of point vortices is the 
assumption that, for small values oft /Re, each point vortex 
will diffuse in a fashion similar to a single isolated point 
vortex, for which the exact solution to the Navier-Stokes 
equations is known. Specifically, we assume that the core 
size of the diffusing vortices grows proportionally to 
(t /Re) “2. As explained in detail in our earlier work, this 
approach leads to a time-dependent value of the parameterp 
of the form 

p(t) = l/[cosh(4rdz)]. 

Here, the Reynolds number Re = F/Y, with F being the cir- 
culation of an individual vortex and Y representing the kine- 
matic viscosity of the fluid. While we note that this model 
Row does not represent an exact solution to the Navier- 
Stokes equations, it captures the basic effect of a vorticity 
distribution that is smoothed out by viscous diffusion. 

An important question that we briefly address here con- 
cerns the error introduced by our model. As discussed by 
Meiburg and Newton,’ the Stuart streamfunction leads to a 
vorticity distribution of the form 
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OI = - (2#[1 -p2(t)]/[cosh(2~jQ -p(t) cos(27i-x)]. 
If we substitute this expression into the full time-dependent 
vorticity form of the Navier-Stokes equations, the nonlinear 
terms are satisfied identically, and we are left with the linear 
terms 

(a) 
x 0.4~ 

FIG. 1. The error of the model flow with respect to the full Navier-Stokes 
equations at times t = 0.1, 1, and IO; Re = 10’. Notice that, especially at 
small times, the error is essentially limited to the region near the vortex core. 

E(x,y,t) = - [ w, - (l/Re) V’W]. 

Plots of E(x$,t) are shown in Fig. 1 for increasing times and 
Re = 103. It is evident from Fig. 1 (a) that, at t = 0.1, the 
error is localized around the center and dies off rapidly away 
from it. Note the very singular behavior directly at the center 
where we observe a sharp spike. The main point of relevance 
to our results is that the error is smallest in the region of the 
separatrices, so that our results should be valid at least for 
short times. As time increases, the error spreads away from 
the center and pollutes the entire flow field. 

In summary, as a result of viscous diffusion, the flow 
field becomes time dependent and the width of the cat’s eyes 
decreases. Thus viscosity causes the trapped fluid to leak out 
of the cat’s eye. A particle that is initially trapped within the 
cat’s eye will cross the separatrix at some finite time after 
performing a number of orbits around the vortex core that 
depends on the initial particle location. Hence we can identi- 
fy an infinite number of alternating layers of length I,, 12, 
etc., along the x axis within the cat’s eye that become infini- 
tesimally thin near the vortex center (Fig. 2). These layers 
characterize initial data according to whether a particle will 
escape above the mixing layer and continue moving right, or 
below the mixing layer and continue moving left. The pro- 
cess of crossing the separatrix is the essential mechanism 
that leads to sensitive behavior and enhanced mixing. In our 
earlier work (Meiburg and Newton’ ), we showed that the 
lengths of these intervals scale with Re- 1’2. 

If we also allow for the diffusion of particles, an addi- 
tional dimensionless parameter arises in the form of the Pec- 
let number Pe = F/D, where D is the diffusion coefficient. 
The Schmidt number SC denotes the ratio of kinematic vis- 
cosity and diffusion coefficient SC = Pe/Re = v/D. The dif- 
fusive length scale introduced into the problem by D lets 
particles escape from the cat’s eye, even in the case of inviscid 
steady flow, simply by diffusion across the separatrix. In 
analogy to the above intervals that characterize where non- 
diffusing particles escape from the cat’s eye in the viscous 
case, we can now define intervals of the size d, , d,, etc., for 
the case of diffusing particles in inviscid flow in the following 
way: If we release diffusing particles at a fixed location along 
the x-axis, and more than a certain fraction, e.g., lo%, es- 

FIG. 2. The shrinking of the cat’s eye results in lobes offluid leaking out of 
the trapped region. Fluid particles initially distributed along intervals on 
the x axis are associated with the lobes. The interval lengths scale with 
Re "5 
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dy= - 2rp(t) sin(277-x) 
dt cosh(2ny) -p(t) cos(277x) ’ 

The modeling of particle diffusion by a random walk compo- 
nent is a standard technique and has been employed by sev- 
eral authors, e.g., Aref and Jones.’ Briefly, at the end of 
every time step At, the random walk components in the x 
and y directions are found by means of random numbers 
from a Gaussiaq distribution with variance 2At /Pe. The par- 
ticle motion due to the underlying velocity field is computed 
by means of a fourth-order Runge-Kutta scheme. Figure 5 
shows the evolution of a typical patch of particles at different 
times. From Fig. 4, we recognize that, for small values of 
t /Pe, d, scales with Pe - “4. It might be considered surpris- 
ing that the interval size in the viscous flow without particle 
diffusion scales as Re - “‘, whereas for the inviscid flow with 
particle diffusion we fmd Pe - L’4, As both dimensionless pa- 
rameters describe the effect of a diffusion process-viscous 
diffusion and particle diffusion, respectively-one might ex- 
pect the dependence on Re and Pe to be the same. In the 
following, we will show how the Pe - 1’4 scaling arises as a 
result of the interaction between particle diffusion and con- 
verging and diverging streamlines of the underlying inviscid 
velocity field. 

The particles released near the left stagnation point are 
initially located in a region of small velocity. As they leave 
the stagnation point area, they speed up and eventually reach 
their maximum velocity around x = 0, where the cat’s eye is 
widest. Consequently, from their release time to when they 
reach their maximum y location, the particles spend most of 
the time near the left stagnation point. Furthermore, this is 
also the region in which the diffusion across streamlines is 
most pronounced, as the concentration gradients are very 
high initially. Hence most of the diffusive component of the 
particle motion takes place in this area. For the purpose of 
finding the proper scaling, we can idealize the time interval 
t, from the release time to when the particles reach their 
maximum y location by assuming that the particles spend 
the whole time t, diffusing from their point of release, upon 
which they are instantaneously transported along stream- 
lines to x = 0. If we denote by f, the square root of the vari- 
ance of the particle distribution function near the release 

FIG. 3. In the case of inviscid flow, fluid particles can escape the trapped 
region as a result of mass diffusion. In analogy to the viscous case without 
mass diffusion, we can define intervals d, , dZ, etc., according to how often 
the particles initially distributed along the interval circle the vortex before a 
certain fraction of them escapes. 

capes during the first half-cycle, then the point of release 
belongs to interval d, (Fig. 3). The border of d, ‘is reached at 
the point for which exactly 10% of the released particles 
escape during the first half-cycle. Then, d, extends from this 
location to the point that leads to 10% of the particles escap- 
ing over the first two half-cycles, etc. Also, d3 and further 
intervals’are defined correspondingly. In the following, we 
aim at finding the scaling laws for these intervals. We will 
present both numerical simulations and analytical scaling 
calculations. The inviscid case will be considered in Sec. 
III A, whereas we will focus on the viscous case with particle 
diffusion (for which intervals can be defined corresponding- 
ly) in Sec. III B. 

Ill. SCALING RESULTS FOR THE INTERVAL SIZES 
A. Diffusing particles in inviscld flow 

Figure 4 shows numerical results for d, as a function of 
Pe. The computations employed 1000 particles released si- 
multaneously on the x axis near the left stagnation point. We 
iterated to find the release location - 0.5 + d, that led to 
the escape of 10% of the particles during the first half-cycle. 
The particle motion was calculated by superimposing a ran- 
dom walk component on the motion calculated from the 
streamfunction ( 1) as follows: 

dx - 27~ sinh( 2n-y) 
-iii- - cosh(2n-y) -p(t) cos(297.x) ’ 

d, 1 

10-z 1  
+ numerical simulation 

103 
, I , , ,,1,, I I I I,,, I, I I I Illlrl 

(04 to5 (06 
PC 

FIG. 4. Inviscid flow: The interval size d, scales with Pe- li4. 

-0.25 

FIG.’ 5. Example of particles escaping due to diffusive erects in inviscid 
flow. The patch of particles released near the left corner of the cat’s eye is 
shown for various successive times. 
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point after t,, we find thati; is proportional to (t,/Pe) I”. 
However, we showed in M&burg and Newton’ that stream- 
lines separated by E near the stagnation point are only sepa- 
rated by e2 at x = 0. As a result, we expect the width fi of the 
particle distribution function to be t,/Pe by the time the 
particles reach x = 0. As the mapping E--~E’ only holds for 
~4: 1, the above argument is restricted to small values of 
t/Pe, i.e., to particle distributions with a narrow half-width. 
Under these circumstances, concentration gradients are 
much stronger normal to the streamlines than along them, 
and as a result we can, to the leading order, neglect concen- 
tration gradients in the direction of the streamlines and as- 
sume a Gaussian distribution in the normal direction. It fol- 
lows that the particle distribution function at x = 0 and at 
time t, is steeper and narrower than that of a patch of parti- 
cles diffusing for a time t, but otherwise at rest, which would 
have a width of (t, /Pe) I”. Consequently, we can assign the 
actual particle distribution function at x = 0 and at time ta a 
“hypothetical age” thyp, which can be calculated from 
t,/Pe - (&JPe) ‘12. We then get t,,,/t, = t,/Pe< 1. 

We now have to determine the evolution of the width of 
the particle distribution function as the particle patch moves 
fromx = 0 to&the region near the right stagnation point. This 
evolution is dominated by the initial diffusion of the particles 
in the area near x = 0, as the streamlines are close to each 
other here and the concentration gradients are still large. 
The width is subsequently increased by the divergence of the 
streamlines near the right stagnation point. Again, we can 
idealize the situation by assuming the particles to diffuse 
near x = 0 during the interval t, < t < 2t,, upon which they 
are instantaneously convected along streamlines toward the 
right stagnation point. We find for the square root of the 
variance f; at t = 2t, near x = 0 

f; - [(to + thyp We] I”. 
With thYp ( t,, this simplifies to 

f; - (t,/Pe)“‘. 

This simplification reflects the fact that, in the early stages of 
the particle distribution function’s evolution, i.e., until the 
particles reach x = 0, the diffusion of the particles is partial- 
ly compensated by the convergence of the streamlines, 
which keeps the particle distribution function steep. As a 
result, the particle distribution function at later stages to the 
leading order scales in the same way as if the particles were 
released at x = 0. Bearing in mind that streamlines &2 apart 
near x = 0 are separated by E near the right stagnation point, 
we obtain for the square root of the variance f2 of the particle 
patch near the right stagnation point 

f2 = (f;)“2-(t,/Pe)‘i4 

so that 

f, - Pe - l14. 

The above result is in contrast to the square root of the vari- 
ance of a diffusing particle patch otherwise at rest or con- 
vected along parallel streamlines, which would have ac- 
quired a width of 0 (Pe - “‘) after the same time. It remains 
to be shown that d, exhibits the same scaling as fi . This can 
easily be understood from the following argument: Near the 

right stagnation point, the distribution function of particles 
released at - 0.5 + d, has the widthf, . For small values of 
t /Pe, this width is much smaller than the radius of curvature 
of the streamlines, and consequently the particle distribution 
function near the right stagnation point can be considered as 
a Gaussian distribution centered approximately around 
0.5 - d,. Above, we had defined d, in such a way that 
- 0.5 f d, marks the location for which a fixed fraction of 

the released particles escape, i.e., are located to the right of 
the right stagnation point. This means that, for different Pe, 

.co J e x = 0.5 
-- (x - 0.5 + d, ,‘/r: dx 

= const. 
S”_,e 

-. (x - 0.5 + d, ,‘/f: dx 

Transforming 

x’ = (x - 0.5 + d, ,/f2, 
we obtain 

J7 = d,,/2e x’z dx’ 
___ = const. 

J “” m e -- X,2 dx’ 
This is possible only if the integral boundary does not depend 
on Pe, i.e., if d, and fi depend on Pe in the same fashion. It 
follows that d, has to scale in the same way as f,, so that 

d, -Pe- *‘4, 

as observed in the numerical simulation. 
In summary, the scaling of the particle distribution 

function near the right stagnation point is determined by two 
effects: first, by simple diffusion of the particles, and second, 
by the divergence of the streamlines between x = 0 and the 
area close to the right stagnation point. Diffusion alone 
would imply a scaling with Pe- “2, however, the Ed-+ E map- 
ping leads to Pe - “4 The evolution of the particle distribu- . 
tion function as a result of diffusion as well as streamline 
convergence and divergence in the different parts of the flow 
field is sketched in Fig. 6. It shows how particle diffusion in a 
periodic flow field of converging and diverging streamlines 

FIG. 6. Schematic diagram of the evolution of the particle distribution func- 
tion under the combined effects of particle diffusion and convection in a 
field of converging and diverging streamlines. 
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FIG. 7. Diffusing particles in viscous flow: d, (Re) for various constant FIG. 8. Diffusing particles in viscous flow: d, (Pe) for various constant val- 

values of Pe. If Peg Re’, d, only depends on Re as Re - ‘O. For Pe (Re*, d, ues of Re. If Re$ Pe, d, only depends on Pe as Pe _ ‘14. For Re* (Pe, d, 

only depends on Pe as Pe - “4. only depends on Re as Re - ‘/2. 

can lead to dramatically different final concentration pro- 
files. 

B. Diffusing particles in viscous flow 
We now consider the case of diffusing particles in a vis- 

cously decaying row of vortices. As before, the escape of 
10% of the particles defines the borders between intervals. 
Figure 7 shows the dependence of d, on the Reynolds num- 
ber for various values of Pe. We observe that, as long as 
Peg Re’, Pe is of little influence, and d, -Re - 1’2. However, 
as Re increases, Pe provides a lower bound for the interval 
size and d, asymptotically approaches this value, which 
scales with Pe - li4. Figure 8, which shows d, as a function of 
Pe for various values of Re, can be interpreted in a similar 
fashion. As long as Re’)Pe, Re is of little influence and 
d, - Pe - “4. However, as Pe increases, the Reynolds num- 
ber provides a lower limit for d,, which now scales with 
Re *‘2. We notice that, in general, the size of d, decreases 
with increasing Re and Pe. 

IV. SUMMARY AND CONCLUSION 
We have studied the dynamics and mixing of particles 

for the model problem of a decaying cat’s eye flow. Viscosity 
introduces time dependency into the problem and is ac- 
counted for by letting the free parameter in Stuart’s family of 
solutions depend on time according to the self-similar solu- 

tion of the Navier-Stokes equations for an isolated point 
vortex. Particle diffusion is numerically simulated by a ran- 
dom walk model. While earlier work had shown that, for 
t /Re $1, the interval length characterizing the formation of 
lobes of fluid escaping from the cat’s eye scales as Re 1’2, the 
present study shows that, for the case of diffusive effects and 
t /Pe ( 1, the scaling follows Pe ‘.‘. 1’4. While it might appear 
surprising that the two mechanisms of momentum and mass 
diffusion lead to different dependencies on Re and Pe, a sim- 
ple argument that takes into account the convergent and 
divergent nature of the streamline pattern in different parts 
of the flow field elucidates the Pe - 1’4 scaling. 
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