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The nonlinear stages of two-dimensional immiscible displacement processes in Hele-Shaw
flows are investigated by means of large scale numerical simulations based on a purely
Lagrangian vortex method. The vortex sheet at the interface between the two fluid phases is
discretized into circular arcs with a continuous distribution of circulation, which renders our
numerical technique highly accurate. A complicated unsteady growth mechanism is observed
for the emerging viscous fingers, involving a combination of spreading, shielding, and tip
splitting. As the surface tension is further reduced, smaller length scales arise and the fingertip
exhibits a new splitting pattern in which three new lobes emerge instead of two. Monitoring the
velocity as well as the radius of curvature at the fingertip demonstrates that the instability of
the finger evolves in an oscillatory fashion. The two-lobe and the three-lobe splitting can thus

be explained as different manifestations of the same instability mode. Comparison with
experiment shows good qualitative but only fair quantitative agreement. By imposing a
constraint on the curvature at the fingertip, experimental results, which show fingers of width
considerably smaller than half the cell width and exhibit “dendritic” instability modes, are

reproduced.

I. INTRODUCTION

The unstable character of flows in which a less viscous
fluid displaces a more viscous one was recognized long ago
(Hill'). Chuoke, van Meurs, and van der Poel® as well as
Saffman and Taylor® carried out the linear stability analysis
for immiscible flow and showed how the surface tension at
the interface determines the length scale of the problem.
More recently, the subject of viscous fingering has been the
focus of numerous experimental and theoretical investiga-
tions, the motivation originally stemming from its relevance
to certain enhanced oil recovery schemes (for a review, see
Wooding and Morel-Seytoux*). However, both the nonlin-
ear growth patterns observed for small values of surface ten-
sion and the stability calculations regarding a single steady
finger and its width as a function of surface tension have
emerged as challenging problems in their own right. Re-
views on these rapidly evolving topics can be found in Saff-
man® and Homsy.® Park and Homsy’ showed experimental-
ly that viscous fingers are subject to a tip-splitting instability
for high flow rates. Subsequently, Maxworthy?® studied an
even more unstable configuration, suggesting that the result-
ing interface develops in a self-similar fashion and thus
might be of fractal dimension. v

Kopf-Sill and Homsy® observed a new kind of instability
at the fingertip, a splitting process that results in three new
lobes instead of two as seen in previous experiments. This
finding is surprising insofar as the tip evolves fundamentally
differently in the two splitting scenarios: while in the two-
lobe splitting mode it slows down and eventually stops ad-
vancing altogether, during the three-lobe splitting it acceler-
ates and remains the most advanced part of the finger.
Couder, Gerard, and Rabaud'® as well as Couder et al .!!
placed a small bubble at the fingertip and investigated the
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effect of the resulting small perturbation on the evolution of
the finger. They find that the fingertip no longer splits and
observe a different kind of instability instead, which leads to
a dendritic growth of a single finger. Recently, Kopf-Sill and
Homsy'? experimentally found narrow fingers of only about
one-sixth of the cell width even without any kind of artificial
perturbation. They furthermore observed dendritic instabil-
ity of these narrow fingers. These fingers were observed for
very clean conditions and might indicate a second family of
solutions to the Hele-Shaw equations, although a complete
understanding of them has not yet been achieved.

Motivated by these observations, we address the ques-

tion as to how the finger instability develops, and what deter-
mines which modes occur. Accurate numerical simulations
promise to be of some help in investigating these questions,
since they allow a more detailed monitoring of such local
quantities as the tip radius of curvature and tip velocity than
can be achieved by flow visualization. Since for moderate to
low values of the dimensionless surface tension, two-phase
flows in a Hele-Shaw cell are already affected by three-di-
mensional effects (Park and Homsy,"® Tabeling, Zocchi,
and Libchaber,'* and Reinelt'®), it is not clear a priori that
all the effects mentioned above actually arise as solutions to
the Hele-Shaw equations, which are obtained by averaging
over the gap width. Numerical simulations based on the
Hele-Shaw equations can provide some additional informa-
tion on this subject.

The above-mentioned experiments by Couder ez al.,'%!!
as well as recent theoretical investigations,'® ~'° indicate the
importance of the narrow region around the fingertip for the
global features of the flow. Small perturbations located there
can significantly alter the global behavior of fingers as well as
their stability characteristics. The question of how a small
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perturbation at the tip can change the global flow again
draws attention to the role the tip itself plays during the
evolution of the instability of the finger. In this context, the
relevance of cusps, i.e., points on the interface where the
radius of curvature is undefined, is currently being dis-
cussed.'® ~1°

The above goals imply that we need a numerical method
of high accuracy. For the problem under investigation, front
tracking techniques are advantageous. DeGregoria and
Schwartz?® employ a boundary integral method that maps
the interface onto a closed curve and discretizes it into
straight-line segments of sources of piecewise constant
strength. Basing the discretization on the local values of the
dimensionless surface tension, they are able to qualitatively
reproduce the experimentally observed tip-splitting instabil-
ity. Recently, they have reported the simulation of quasi-
steady-state fingers with a width of approximately 6% less
than half the cell width for low values of the surface ten-
sion.”! In this regime, they also observe multiple solution
tracks for the width of the fingers as a function of surface
tension. In between these tracks they do not observe steady-
state fingers, and instead their simulations lead to tip split-
ting. However, the discretization of the interface into
straight-line segments has the effect of generating local dis-
continuities in curvature where these segments join. As
pointed out by Hong and Langer, 'S the presence of cusps,
which would be smoothed out in the real flow by surface
tension, might allow stable fingers to form with a width of
less than one-half the cell width. Consequently, we have de-
veloped a purely Lagrangian method based on the vorticity
variable and discretize the interface into circular arcs (Mei-
burg and Homsy??). Although still present, the jumps in
interface slope and curvature at those locations where two of
the arcs join are thus minimized.

The organization of the paper is as follows: The numeri-
cal technique and test calculations will be presented in some
detail in Sec. II. In Sec. ITI the results of our numerical simu-
lations are reported. We will describe simulations of “natu-
rally” growing fingers exhibiting the two experimentally ob-
served instability modes. A detailed investigation of how the
instability evolves will follow, revealing the two- and three-
lobe splitting as variants of the same basic instability. In this
way, the apparent contradiction of opposite behavior of the
tip in the two cases is resolved. Subsequently, we will present
results for fingers whose tip radius is artificially held con-
stant, thus simulating the experiments in which a bubble was
placed at the fingertip. As in the experiment, we will see that
this small perturbation leads to increased stability of the fin-
ger, which becomes understandable in the light of the pre-
vious discussion of the role of the fingertip in the evolution of
the instability. We will present fingers that grow in a dendri-
tic fashion for low values of the dimensionless surface ten-
sion. In Sec. IV we will discuss our work in the context of
other researcher’s findings.

Il. FORMULATION
A. Basic equations

Our goal is to numerically simulate two-phase flows in a
Hele-Shaw cell. Initially, the gap between the two plates is

430 Phys. Fluids, Vol. 31, No. 3, March 1988

filled with a fluid of dynamic viscosity x,. This fluid is to be
displaced by injecting a fluid of viscosity u,. Here u, is the
average velocity with which fluid 1 is injected. The width of
the cell in the large, spanwise dimension is assumed tobe 2L,
whereas the width of the gap in the small, transverse dimen-
sion is 5. Both fluids are considered incompressible,

Vau=0.

Within each phase, the dynamics of the two-dimensional
flow field, averaged over the gap, is governed by a balance of
pressure and viscous forces as expressed by the Hele-Shaw
equations. For an immiscible two-phase flow we have to con-
sider surface tension forces. By a local analysis of the three-
dimensional effects at the interface,'> we obtain as a first
approximation for the conservation of momentum,

Vp= — (12u/b*)u —nd(x — x,(s)) [0/R(s)]. (1)

Here x denotes a position vector, with x, representing the
interface characterized by the arclength parameter s, u is the
velocity vector, p is the pressure, and o is a constant related
to the surface tension and the contact angle in the transverse
direction. It will be simply referred to here as “the surface
tension.” Here R denotes the local radius of curvature of the
interface in the plane of the apparatus and n the outer normal
to the interface (Fig. 1). The fact that surface tension forces
act only at the interface itself is accounted for by the § func-
tion. Equation (1) holds asymptotically in the limit g,u,/
o—0. These equations can be scaled in the usual way to ob-
tain dimensionless equations for velocity and pressure,

Vu=0, 2)

L1 ob?
R(s) 12uul?
As dimensionless parameters we have the modified capillary
number,
Ca = (12u,uy/0)(L*/b?),

characterizing the ratio of viscous forces to surface tension
forces and

R, =p/1,
denoting the ratio of fluid viscosities. In Eq. (3), u is a di-

mensionless viscosity that takes the value 1 in the displaced
phase and R, in the displacing phase.

Vp= —pu—nd(x —x,) 3)

B. Vorticity-streamfunction formulation

As a next step, we will rewrite the governing equations
in terms of the vorticity and the streamfunction variables. In

interface

FIG. 1. The interface in the immis-
cible displacement process is char-
acterized by its arclength param-
eter s, the local radius of curvature
R(s), the unit outer normal vector
n, and the unit tangent vector t.

phase 1 phase 2

E. Meiburg and G. M. Homsy 430

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



this way, we motivate the use of vortex methods similar to
certain ones known from the field of inviscid flows (for a
review, see Leonard?®). We introduce the vorticity w,

% _ou
Cox dy

and the streamfunction ¥,
V= (—vu).

Upon taking the curl of the momentum equation (3), and
applying the chain rule, we obtain

1 J 1 )
=v . ..___6 — & e . 4
J775} 1V Ca (x — x,(5)) 6s(R(s) 4)

Knowing the vorticity distribution, we can reconstruct the
velocity field using the Biot-Savart law,

X —X')Xe, 0
“( x’[) —_ ._..1_'.._ (___........._22__
2r |x — x|

ax' +u,, (%0, (5)

where u,,, (x,t) is the potential part of the velocity field.

The momentum equation in its vorticity form (4) pre-
sents the key to the numerical simulation, since it states that
the fiow field contains vorticity only at locations where the
mobility varies and where surface tension acts. For an im-
miscible flow in which the two phases are separated by a
sharp interface, the flow field therefore becomes irrotational
except for the interface itself, which now corresponds to a
vortex sheet of strength y(s). If we neglect the viscosity of
the displacing fluid, i.e., if R, = 0, we obtain from (4)

2 af 1
y(s) = 2ut Ca 8(x — x,(s)) 3s(R(s) ) . (6)
Equation (4) furthermore has the advantage of being an
algebraic equation, indicating that local information about
the flow suffices for the determination of the value of the
vorticity.

1li. NUMERICAL TECHNIQUE
A. Computational procedure

In the following, we describe our numerical technique
for the simulation of two-dimensional immiscible Hele—
Shaw flows. It is based on Eqs. (5) and (6) and it tracks the
vortex sheet at the interface in a purely Lagrangian reference
frame. We assume the flow to be periodic in the spanwise y
direction and to extend to infinity in the streamwise x direc-
tion.

The use of periodic spanwise boundary conditions al-
lows certain efficiencies in the numerical procedure, but one
may naturally question the relevance to experiments in
which a no-flux condition is appropriate. In the case of sym-
metric steady fingers that propagate without change of form,
the two conditions are equivalent; for unstable fingers that
undergo asymmetrical tip splitting (to be discussed below)
they are not. Thus comparison between our results and those
from experiments must be made with caution. However, asit
will develop below, most of the observed phenomena are
associated with the local behavior at the tip, and are not
likely to be substantially different for the two sets of bound-
ary conditions. In any event, we believe that most of our
conclusions regarding the mechanisms of tip splitting are
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robust and independent of side-wall boundary conditions.

For choosing the optimum way of discretizing the vor-
tex sheet, it is important to notice that the only physical
length scale in the problem is set by the surface tension. It
has the effect of damping small scales that otherwise would
exhibit linear growth rates inversely proportional to their
wavelength. Consequently, for a study of the physically in-
teresting limit of low surface tension, i.e., high capillary
number, extreme care has to be taken in the process of discre-
tizing the vorticity field. The goal is to minimize the effect of
introducing a numerical length scale through the discretiza-
tion procedure. In the current work, we gain a smooth and
accurate representation of the vorticity sheet by discretizing
it into n circular arcs as shown in Fig. 2. Mangler and
Smith** were the first ones to represent a vortex sheet by a
single circular arc. The continuous distribution of the vortex
sheet strength along arc i is assumed to be of the form

vi(¢) =a; +B;sing.

Mangler and Smith showed that this distribution has the
advantage that the velocity field associated with it can be
obtained by integrating the Biot-Savart law analytically.
Here a; is the average vortex sheet strength of the two end
points of the circular arc and B, provides a continuous transi-
tion along the arc between these endvalues. Recently, this
form of discretization has been successfully employed by
Higdon and Pozrikidis® in their investigation of the evolu-
tion of a vortex sheet in inviscid flow.

After setting an initial interface shape, the calculation
proceeds in discrete time steps as follows. At every time step,
the velocities of # marker points x; (one per circular arc) on
the interface are determined by integrating over the vorticity
distribution of all other circular arcs using the Biot-Savart
law. An analytical expression taking into account the peri-
odic images of the interface in the spanwise y direction can be
derived by analytical summation (Higdon and Pozriki-
dis?). We evaluate this integral by using a trapezoidal finite

FIG. 2. The interface is discretized into circular arcs. Each arc is represent-
ed by amarker point x, which is advanced over a time step Ar. Subsequently,
the end points xc of the new circular arcs at the updated time level are found
as the centers between the x on a spline representation of the interface based
on all marker points.
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difference scheme, which is sufficient since the overall error
in evaluating the velocity of x; is determined by the accuracy
of the integration over the interfacial section next to x;. For
the same reason, the velocity induced on a marker particle by
a vortex sheet arc is evaluated by means of the point vortex
approximation if the distance between arc and marker parti-
cle exceeds the width of the Hele-Shaw cell.

Once the velocities of the marker particles are known,
these are advanced over the time step by a fourth order
Runge—Kutta method. As a result, we have the position of
the interface at the new time at # discrete points x;. We now
fit a new set of n circular arcs through these points in the
following way. First a cubic spline is fitted through the up-
dated x;, with the straight-line distance between the points
serving as the splining parameter. This spline representation
then allows us to find the midpoints xc; between the x;. Sub-
sequently, a new circular arc is fitted through each set xc;,
X/, XC/ 4 .

As a next step, the vorticity distribution has to be updat-
ed. For this purpose, we first determine the values of the
vortex sheet strength at the x; using Eq. (6). As an initial
estimate, Vi is approximated by the velocity values of the
previous time step. By applying a cubic spline we find the
vortex sheet strength at x¢; and x¢;, |, upon which the coef-
ficients @; and B ; can be determined in the way described
above. An iterative procedure is subsequently applied until
the new values of the velocities have converged.

At fixed time intervals, the marker points x; along the
interface are redistributed and new ones are added in order
to avoid deteriorating resolution as a result of local interface
generation. This remeshing procedure takes into account the
local capillary number at x = x, (s) formed with the local
velocity component u(x, (s))n(x, (s)) normal to the inter-
face,
12pu(x, () - nfx, (s)) L2

b2’

Ca(x,(s)) =

and requires that even the shortest wavelength with a posi-
tive linear growth rate for this capillary number,

I, =27/Ca'’?,

is resolved by a certain number of points, typically four or
eight. In order to provide adequate resolution, the spacing
As between the marker points in addition is reduced in re-
gions of high interface curvature by requiring

As + c/R(s)

instead of As to be less than this fraction of /., where ¢ is a
constant. Similar remeshing criteria were employed by De-
Gregoria and Schwartz?® in their boundary integral tech-
nique.

As the initial interface becomes more and more convo-
luted, the rate of change of the flow variables increases rapid-
ly, so that the time step has to be reduced. It is adjusted in
such a manner that the difference between the final corrector
velocity and the initial predictor velocity, multiplied by the
actual time step, nowhere in the flow exceeds a certain nu-
merical value established in test calculations. Acceleration
effects are most pronounced in the “active’ sections of the
interface, i.e., the fingertips. Those sections left behind in the
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displacement process, on the other hand, move at small and
almost constant velocities. Qur numerical algorithm takes
advantage of this fact by employing a local time-stepping
procedure that updates the velocities of the most active inter-
face sections more often than those of the rest of the inter-
face. This results in significant savings, especially in the ad-
vanced stages of finger growth, since a large fraction of the
interface becomes passive.

In order to simulate slight imperfections present in ev-
ery experimental Hele-Shaw apparatus, we superimpose
small random perturbations of the following form on the
motion of the marker particles: at every step, « and v pertur-
bations are added to the velocity components evaluated from
the Biot—Savart law. They are assumed to be proportional to
the velocity components themselves, to a random number
with a uniform distribution between — 1 and 1, and, to a
constant representing the amplitude of the random noise.

In summary, we apply a numerical procedure that
achieves high spatial accuracy while minimizing the effect of
setting a numerical length scale by discretizing the vorticity
sheet along the interface into circular arcs with a continuous
vorticity distribution. The method is of fourth order in time
and partly compensates the O(N?) operation count associ-
ated with the direct interaction algorithm by using a locally
refined discretization as well as local time stepping. All cal-
culations were carried out on the CRAY X-MP of the San
Diego Supercomputer Center.

B. Validation of the numerical algorithm

In the following, we compare numerical results for im-
miscible flows obtained with our algorithm with analytical
and numerical results of other authors in order to validate
our numerical procedure and investigate its limitations. The
calculations presented in this section typically required less
than one minute of CPU time.

1. Flows with vanishing surface tension

Aitchison and Howison?® report analytical results for
the evolution of the interface in a linear Hele-Shaw cell of
width 27 in the case of vanishing surface tension. They find
that if at r = 0 the boundary between the two fluid phases
consists of a slightly perturbed planar interface of the shape

O<p<2r,
the perturbation will grow until, at a time

1[é& 1 1
Fer up L 2 2+ln(e)]’
a cusp will form. Here %, is the velocity at which fluid is
injected into the cell. For this flow there exists no natural
length scale, which makes its simulation a difficult test case
for the validation of our numerical method. Since the prob-
lem does not involve a damping mechanism, any computa-
tional technique that does not introduce some numerical
damping will break down after a finite time < 7_;, as a result
of the fact that discretization and roundoff errors trigger the
growth of short wavelength oscillations (for an example of
this with finite difference methods, see Aitchison and Howi-
son®®). Consequently, the time up to which a numerical

xX=€cosp, y=¢@—€sing,
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FIG. 3. The numerical simulation of the flow without surface tension ana-
lyzed by Aitchison and Howison.?® Shown is the temporal decrease of the
minimum radius of curvature r,;, along the interface for various discretiza-

tions. a: Initial discretization of the interface into nine segments; b: initial
discretization of the interface into 15 segments; c: initial discretization of
the interface into 19 segments. The analytical solution predicts the appear-
ance of a cusp singularity at time 7, ~1.129.

scheme without artificial damping is able to yield a smooth
solution for different levels of discretization presents an indi-
cation of the numerical stability characteristics of the com-
putational algorithm. We have attempted to study the evolu-
tion of the interface for the case € = 0.2 and u, = 1 in which
the cusp should appear at £ =~ 1.129. Figure 3 shows the mini-
mum radius of curvature of the interface as a function of
time for successively finer discretizations of the interface.
The number of marker points given in Fig. 3 indicates the
initial number; remeshing took place after time intervals of
0.0s.

As the resolution of the vortex sheet is refined and the
time step is reduced, the correct time for the formation of the
cusp is approached, thus demonstrating convergence of our
numerical scheme. Figure 4 shows the evolution of the inter-
face with time, and the emerging singularity at the tip is
clearly visible. The numerical algorithm is able to follow the
decrease of the radius of curvature at the tip over more than
an order of magnitude, well into a regime where the interface
exhibits a small region of very high curvature. This test cal-

25 30
X

FIG. 4. The evolution of the interface in time. The cusp is forming at the tip
of the interface.
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culation demonstrates the ability of the numerical scheme to
correctly track a variety of length scales. Numerical instabil-
ity effects do not noticeably influence the solution until very
late in time, when the minimum radius of curvature has be-
come very small.

2. Steady fingers with surface tension

Finite values of surface tension introduce a physical
length scale into the problem. They damp short waves and
prevent the evolution of a singularity in the interface shape
and steady finger shapes are possible. McLean and Saff-
man?’ calculated the width of steady Hele-Shaw fingers as a
function of the capillary number. These numerical solutions
to the steady equations are generally accepted as being cor-
rect and highly accurate. They have been used by other au-
thors (Tryggvason and Aref,”® DeGregoria and
Schwartz?°) to validate their time-dependent numerical pro-
cedures. Figure 5 compares our numerically obtained results
for the finger width with those of McLean and Saffman.
(For clarity, we present our results in the same form as
Tryggvason and Aref 2 and DeGregoria and Schwartz?.)
We have carried out two sets of calculations in which the
shortest wavelength unstable under local conditions is dis-
cretized into four or eight segments, respectively. Since this
wavelength decreases as the capillary number is increased,
the number of computational elements grows continually in
each of the two sets of simulations as the surface tension is
reduced. Our numerical results approach the ones by
McLean and Saffman®’ as the discretization is improved.
For the finer discretization they reproduce their results with
high accuracy for the whole range of capillary numbers in-
vestigated (from about 10 to 330).

IV. RESULTS

In order to investigate the range of capillary numbers
where the transition from steadily advancing fingers to un-
stable ones occurs, we have carried out a first simulation for
Ca = 530. This corresponds to a value of dimensionless sur-

08|

X

[N o

+ t/t/t/
-
oer t,t/*’*/
T
4t
oS5
04 1 | { | )
o] 04 08 1.2 1.6 20

zmox
2L

FIG. 5. Comparison of the numerically obtained ratio of finger width to cell
width as a function of the dimensionless surface tension with the exact solu-
tion by McLean and Saffman.?’ + : Discretization into four segments per
shortest wavelength linearly unstable under local conditions; *: discretiza-
tion into eight segments per shortest wavelength linearly unstable under
local conditions; -: McLean-Saffman solution.

E. Meiburg and G. M. Homsy 433

Downloaded 22 May 2004 to 128.111.70.70. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



face tension in between the solution tracks observed by De-
Gregoria and Schwartz?' (7 = 0.000 47 in their notation).
The simulations reported by these authors do not result in a
steady-state finger at this capillary number, and instead a
tip-splitting instability occurs. Our computation employs a
version of our code that assumes symmetry about the chan-
nel centerline. Like all the simulations reported in this sec-
tion, it discretizes the shortest wavelength unstable under
local conditions into four segments. It starts from a flat inter-
face with a sinusoidal displacement of amplitude 0.064 and
wavelength equal to the width of the cell. The time step is
2.8 X 10~ throughout the simulation, with remeshing oc-
curring every six time steps. We do not superimpose random
perturbations in the course of the simulation. Figure 6 shows
the evolution of the interface at different time levels, along
with a plot of the marker particle positions at the final time.
The impression of a steadily advancing finger gained from
this graph is confirmed by Fig. 7, which shows the evolution
of the tip velocity and tip radius of curvature as a function of
the tip location. We recognize that both quantities, after an
initial transient evolution, display only very small fluctu-
ations, so that we can regard the finger as steadily advancing.
It should be kept in mind that the flow is unsteady in a fixed
frame since the interfacial length grows continuously al-
though the fingertip advances in a steady fashion. This re-
quires frequent remeshing and the addition of new marker
points. As a result, small fluctuations always have to be ex-
pected. We note that the average value of the tip velocity u,;,
isabout 1.967 and clearly remains below 2, which means that
the effective ratio of finger width to cell width,

A = Vg, ,
is about 0.507. This point is also plotted in Fig. 5, thus indi-
cating the high accuracy of our results.

For Ca = 833 we obtain a different result. This capillary
number represents the value of dimensionless surface ten-
sion at which DeGregoria and Schwartz?! observe a quasi-
steady-state finger of about 0.471 times the cell width
(7=10.000 30 in their notation). As before, we apply the
symmetric version of our code without superimposing noise.
While our interface configurations at different time levels
(Fig. 8) initially also seem to indicate a steadily advancing
finger, graphs of the tip velocity and the tip radius of curva-
ture (Fig. 9) show that these quantities never settle down to
a nearly constant value. Instead, their fluctuations grow un-
til finally a tip-splitting event occurs. By the time this event

|75 55 5555550

(a)

(b)

FIG. 6. Ca = 530. (a) Evolution of the interface in time. (b) Discretization
of the interface at the final time of the simulation. The discretization is finest
at the fingertip, since both the local capillary number and the curvature are
large there.
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(a)
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FIG. 7. Ca = 530. (a) The velocity of the fingertip as a function of the
fingertip location. After an initial transient period the tip velocity displays
only small fluctuations around an average value of approximately 1.967.
This indicates an average finger width of about 0.507 times the cell width.
(b) The radius of curvature at the fingertip as a function of the fingertip
location. It also exhibits only small fluctuations, indicating the existence of
an almost steady finger at this capillary number.

becomes detectable in the plot displaying the interface, the
finger has advanced over a distance nearly fifteen times its
width, suggesting that one has to be careful interpreting re-
sults of initial value calculations as representing steady solu-
tions. Furthermore, Fig. 9(a) shows that the average value
of the tip velocity u,;, remains clearly below 2 even for this
unsteady evolution, so that again the effective finger width is
above half the cell width. A Fourier transformation of the
function depicted in Fig. 9(a) does not show a clear domina-
tion of one or more frequencies, indicating that the evolution
of the instability cannot simply be described as the growth of
oscillations of a constant period.

As we increase the capillary number further, the insta-
bility sets in more rapidly. As a next step, we investigate the
flow at Ca = 1111, which corresponds to the lowest value of
the dimensionless surface tension studied by DeGregoria
and Schwartz?® (7 = 0.000 225 in their notation). We now
allow general, asymmetric solutions. As before, we start the
simulation by giving the initially flat interface a sinusoidal

S 555555553

FIG. 8. Ca = 833. While the evolution of the interface initially seems to
proceed towards a steady state, it eventually develops a tip-splitting instabil-
ity.
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FIG. 9. Ca = 833. (a) The tip velocity as a function of the tip location.
After the initial transient phase the tip velocity develops oscillations that
grow in amplitude and eventually lead to a tip-splitting event. (b) The tip
radius of curvature as a function of the tip location. It develops oscillations
almost in antiphase to the oscillations of the tip velocity.

displacement of amplitude 0.064 and wavelength equal to
the width of the Hele-Shaw cell. In order to study the effect
of the random fluctuations, two simulations were carried out
for Ca = 1111 with different amplitudes. In case I it had the
value of 3.2 X 10~*, whereas for case II it was 1.6 X 1073,

The resulting finger shapes for the two cases are depict-
ed in Fig. 10 for various times. We see that in both cases the
fingers grow through a series of spreading, splitting, and
shielding events: after the finger has reached a certain criti-
cal width, which for Ca = 1111 is approximately half the cell
width, it splits into two lobes. If this splitting occurs in a
nearly symmetrical fashion, the two emerging lobes grow
side by side for a relatively long time, see, for example, the
second splitting in case II. Eventually, however, through a
shielding process, the slightly more advanced finger out-
grows its competitor. While it continues to spread and to
proceed towards the next splitting, the outgrown finger stops
advancing altogether. The more asymmetrical the splitting,
the more quickly one of the two lobes wins the competition.
We can also recognize how, after the smaller lobe has practi-
cally stopped advancing, its development is dominated by
surface tension forces, which try to smooth out regions of
high interface curvature. Figure 10(c) depicts an experi-
mentally observed finger for Ca =2200 (Kopf-Sill and
Homsy®). Despite the difference in capillary numbers, we
observe the same qualitative features as in the numerical
simulation.

In Fig. 11 we have plotted the fingertip location and the
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FIG. 10. Ca = 1111. All fingers grow in an unstable fashion through a series
of tip-splitting events. The degree of asymmetry determines how fast the
larger lobe emerging from the splitting process outgrows the smaller one.
(a) Case I: Superimposed on the velocity components obtained from the
Biot-Savart law are random fluctuations of amplitude 3.2 10~*. Times
are 0.10, 0.48, 1.08, 1.72, 2.36, 3.00, 3.62, 4.26, 4.90, 5.54, and 6.18. (b)
Case II: Here the fluctuations have an amplitude of 1.6 X 10~>. Times are
0.10, 0.76, 1.40, 2.04, 2.68, 3.32, 3.94, and 4.58. (c) Experimentally ob-
served finger at Ca = 2200 (Kopf-Sill and Homsy®).
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FIG. 11. Solution properties. (a) The tip locations as functions of time for
the two simulations at Ca = 1111. The calculation shown in Fig. 10(a) is
denoted by -+, while * represents the finger of Fig. 10(b). Both fingers
advance at approximately the same average velocity, indicating that for the
range investigated the amplitude of the random fluctuations has a negligible
effect on the finger width. (b) The interfacial lengths as functions of time
for the two simulations shown in Figs. 10(a) and 10(b). Because of the
almost symmetric second splitting event, case II exhibits a faster growth in
interfacial arclength.
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FIG. 12. Ca = 2500. (a) The evolution of the interface with time. Times are
0.0,0.16, 0.32, 0.48, 0.64, 0.80, 0.96, 1.12, 1.28, 1.44, 1.60, 1.74, 1.90, 2.06,
and 2.22. (b) At the final time of the simulation, the interface is discretized
into 407 circular arcs. A qualitative difference as compared to the fingers
shown in Fig. 10 is the appearance of the three-lobe splitting process. Split-
ting events are more frequent at this capillary number than at Ca = 1111,
indicating a decrease in the characteristic length.

total interfacial length as a function of time for both cases.
We see that the average tip velocity is almost identical for the
two simulations, indicating that the amplitude of the ran-
dom fluctuations has little influence on the effective average
finger width. The average tip velocity evaluated from Fig.
11(a) is about 2.08, so that the effective finger width is 0.480.
As expected, different random perturbations can very well
affect the degree of symmetry of each individual splitting
process. This is reflected by the graph depicting the interfa-
cial length as a function of time, which shows a more rapid
increase for case II during the time of the side-by-side
growth of the two lobes.

In order to study how the features of the emerging
fingers change as surface tension forces diminish, we have
carried out a simulation for Ca = 2500, with the correspond-
ing finger shape depicted in Fig. 12. Several factors render
this calculation considerably more costly (CPU time on a
CRAY X-MP was approximately 15 hours) than the pre-
viously described one. First of all, the lower value of the
surface tension requires a finer discretization, which enters
the operation count quadratically because of the direct inter-
action nature of the algorithm. It furthermore results in
more frequent splitting events, thus causing the interfacial
length to grow more rapidly. In addition, the finer discreti-
zation leads to a more stringent condition for the allowed
time step, which for the Ca=2500 simulation was
3.2 1077 after an initial transient phase. As a consequence,
it is about an order of magnitude more expensive for the
Ca = 2500 calculation to reach a certain time level than for
the Ca = 1111 case. As for the lower Ca cases, we started the
simulation from an interface with a sinusoidal displacement,
this time of amplitude 0.32. Random perturbations of ampli-
tude 3.2X 10™* were then superimposed at each time step.
Weseein Fig. 12(a) that the initial phases of the evolution of
the finger are dominated by the symmetry of the initial per-
turbation. Only after the third splitting does the asymmetry
of the random perturbations become clearly visible. The
right finger outgrows the left one and advances through a
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FIG. 13. Ca = 2500. Tip location as function of time. The nearly constant
average tip velocity is approximately 2.3, indicating an effective finger
width of about 0.435 times the cell width.

series of splitting events. Figure 12(b) shows the discretiza-
tion into 407 circular arcs at the final time of the simulation.
The splitting events now occur more frequently than for
Ca = 1111, indicating a decrease in the characteristic length
scale of the flow. This is also obvious from the fact that the
finger splits before it has widened to half the cell width. Fur-
thermore, the decrease of the effective finger width is reflect-
ed in the plot of the tip location as a function of time (Fig.
13). This graph indicates that the fingertip moves at an al-
most constant average velocity of about 2.3, corresponding
to an effective finger width of 0.435. However, we recognize
from Fig. 14, which depicts the tip velocity, i.e., the velocity
of the point with the largest x coordinate, a function of the
tip location, that the tip velocity actually varies throughout
the evolution of the finger. It decreases during the phase in
which the finger spreads, while it increases during the split-
ting process. After the initial transient phase, the interfacial
length grows approximately linearly in time (Fig. 15). How-
ever, as a consequence of the increased splitting frequency,
the growth rate is clearly higher for Ca = 2500 than for
Ca=1111.

An interesting aspect distinguishing the Ca = 2500 case
from the Ca = 1111 simulations is related to the nature of
the observed splitting events. While in the former the fingers
grow through a series of two-lobe splittings, the latter exhib-
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FIG. 14. Ca = 2500. Tip velocity as a function of tip location. Although the
average tip velocity is nearly constant, we see strong fluctuations in the in-
stantaneous values. While the tip velocity increases during a splitting event,
it decreases while the finger is spreading.
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FIG. 15. Ca = 2500. Growth of the interfacial length as a function of time.
As a consequence of the more frequent splitting events, the interface grows
at a much faster rate than for Ca = 1111.

its a new type of splitting event resulting in the generation of
three new lobes instead of two. Both the first two splittings
and the next to last one display this feature. This observation
is intriguing insofar as the tip of the finger evolves oppositely
in the two types of splittings. While in the two-lobe splitting
it slows down and eventually stops growing altogether, it
accelerates in the three-lobe splitting, outgrows the two side
lobes, and remains the most advanced part of the finger.

In order to answer the question as to what decides in
which way the finger instability proceeds, we return to the
symmetric simulation for Ca = 833 described earlier in this
section. From the graphs depicting the tip velocity and the
tip radius of curvature as a function of the tip location [ Figs.
9(a) and 9(b)], we recognize that the finger instability
evolves in an oscillatory fashion. The oscillations of the tip
velocity and the tip radius are almost in antiphase, i.e., the
tip radius reaches a maximum when the tip velocity is at its
minimum value. We can see that these oscillations grow in
their amplitudes until they eventually escape from their os-
cillatory trajectories, thus indicating that a splitting event is
happening. This oscillatory evolution of the tip-splitting in-
stability explains why we sometimes observe a two-lobe
splitting and sometimes a three-lobe splitting. If the trajec-
tory of the tip velocity escapes from its oscillatory behavior
on a downswing and the tip radius on an upswing, then the
tip will slow down during the splitting event, thus leading to
the emergence of two new lobes. If, on the other hand, the tip
velocity leaves the oscillatory trajectory on an upswing with
the tip radius being on a downswing, then the tip accelerates
and outgrows the two side lobes, with the result of three new
lobes emerging.

The preceding analysis shows that the finger instability
evolves via an oscillation of the fingertip. This indicates the
crucial role of the fingertip in the course of the evolving in-
stability. Experimental investigations referred to in the In-
troduction (Couder et al.'*!!) demonstrate that the nature
of the finger instability changes dramatically if the region
close to the fingertip is perturbed, for example, by introduc-
ing a bubble into the experiment. This becomes understanda-
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ble in the light of the above analysis. Since in the experiment
the bubble placed at the fingertip forces the tip radius to stay
more or less constant, it is obvious that this quantity cannot
develop a growing oscillation with the eventual escaping
event. In order to study the behavior of a finger when the tip
is artificially influenced, we carried out a set of numerical
simulations in which we held the tip radius constant over a
small region close to the fingertip.

For Ca = 1111, we started the simulation with a fully
developed finger, the tip of which is initially located at x = 6.
As the initial ratio of finger width to cell width we take the
value of 0.5, which is close to the effective finger width ob-
tained in the previous unforced Ca = 1111 calculations. The
initial shape of the fingertip corresponds to the Saffman—
Taylor solution for this finger width. From the very start we
hold the tip curvature constant between y = — 0.2 and
y = 0.2, while we superimpose random perturbations of am-
plitude 1.6 X 10~ as in the unforced case II. As we can see in
Fig. 16, the finger now proceeds in a steady fashion (as op-
posed to the unforced flow at the same Ca number, which
was unstable), without showing any signs of a splitting insta-
bility. This indicates the stabilization resulting from a per-
turbation that prevents the tip radius from oscillating.

In all our simulations, we have never observed any
steady fingers with A <0.5 in the unforced flow. In order to
investigate whether or not forcing would allow for such
fingers, we have carried out a symmetric simulation without
random perturbations for Ca = 500 in which we started
from a fully developed finger of width ratio 0.35. We hold the
tip radius constant between y = — 0.032 and y = 0.032. The
fingertip initially is at x = 6.4, and the initial tip shape is
identical to the Saffman-Taylor solution for this width. We
do not superimpose random perturbations. As we see in Fig,
17(a), the narrow finger now proceeds in a steady fashion,
without showing any signs of widening or splitting. If we do
not hold the tip curvature constant, the finger starts to widen
immediately [see Fig. 17(b)].

If we raise the Ca number to 2500, we observe that the
finger now goes unstable with respect to a different instabil-
ity mode, if we hold the tip radius constant between
y= —0.064 and y = 0.064 (Fig. 18). The fixed radius of
curvature at the tip prevents it from becoming unstable with
respect to the tip-splitting instability, and instead a dendritic
instability develops with the resulting lobes branching out
sidewards. These dendrites evolve from oscillations of the
interface close to but outside the region in which the curva-
ture is held constant.

V. DISCUSSION

We have presented numerical simulations of the evdlu-
tion of viscous fingers in immiscible Hele-Shaw flows. The

IDIDED

FIG. 16. Ca = 1111. By holding the tip radius constant betweeny = — 0.2
and y = 0.2, we are able to stabilize the finger, which without this forcing
developed as shown in Fig. 10(b).
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FIG. 17. Ca=500. (a) Holding the tip curvature constant between
y= —0.032 and y = 0.032 allows for the evolution of a steady finger of
width 0.35 times the cell width. (b) Without forcing, the finger immediately
starts to widen.

discretization of the vortex sheet at the interface into circular
arcs with a continuous distribution of circulation, along with
the analytic integration via the Biot-Savart law, offer the
potential of higher accuracy than the previously used nu-
merical schemes. Test calculations for the evolution of a
cusp in a flow without surface tension as well as for the width
of steady fingers as a function of the dimensionless surface
tension, demonstrate the high accuracy that can be obtained
with the present scheme. Over the full range of capillary
numbers investigated, which extends from approximately 10
to 330 for the test calculations, our results for the width of
steady fingers agree well with the solutions obtained by
McLean and Saffman.?” Without some kind of artificial forc-
ing, we never observe steady fingers of width less than one-
half the cell width, and thus we do not confirm the narrow
finger solutions reported by DeGregoria and Schwartz.”!
They report, for example, a quasi-steady-state finger of
A=0.471 for Ca =833 (7=0.000 30 in their notation).
However, their calculation is terminated at time ¢ = 4. Our
calculations, on the other hand, show that after a long time
(t=~8) the finger develops a tip-splitting instability at this
capillary number. Up to the time at which the tip-splitting
process occurs, the average tip velocity is less than 2, which
means the effective ratio of finger width to cell width is larger
than one-half. We also do not find any indications of multi-
ple solution tracks as reported by DeGregoria and
Schwartz?! (1987). While they do not obtain a steady finger
at Ca = 530(7 = 0.000 47 in their notation ), which accord-
ing to their results is a value in between two tracks of stable
solutions, we observe a finger that exhibits only very small
fluctuations in the tip velocity and that does not seem to
proceed towards a splitting event. It has an average 4 of
about 0.507, and thus it appears to be in good agreement
with the solutions of McLean and Saffman.”’

Our numerical simulations for Ca = 1111, on the other
hand, agree with the results presented by DeGregoria and
Schwartz?’ in that they show the finger to be unstable. We
observe a ratio of effective finger width to cell width of about
0.480 for the two cases of different random perturbations.
Experimental observations by Kopf-Sill and Homsy® for
Ca = 1180 show an effective ratio of finger width to cell
width of about 0.40. One of the reasons for this discrepancy
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FIG. 18. Ca = 2500. Holding the tip radius constant between y = — 0.064
and y = 0.064 results in a dendritic instability of the finger similar to the one
observed by Couder et al.'!

might be found in stronger perturbations affecting the ex-
perimental finger and causing it to split before it reaches the
same critical width as in the simulation. In addition, at this
value of Ca, three-dimensional effects are likely to be of some
importance in the experiments. Furthermore, the calcula-
tions assume periodic boundary conditions in the spanwise
direction, whereas in the experiment, the side walls establish
a no-flux condition. After the initial transient phase, the
growth rate of interfacial length with time is 4.5 for case I
and 6.5 for case I1 (a steady finger advancing with velocity 2
would have a growth rate of 4). The experiment, on the other
hand, shows a growth rate of 10, which is consistent with the
smaller effective finger width.

We have subsequently extended our simulations to
Ca = 2500, which requires about an order of magnitude
more computational work than the simulations for
Ca = 1111. Several features of the numerical results demon-
strate the decrease of the characteristic length scale as com-
pared to Ca = 1111. The effective finger width drops to
0.435, and the splitting frequency increases significantly.
This is reflected in a comparison of the growth of arclength
over time for the two capillary numbers [Figs. 11(b) and
15]. The much higher growth rate of 8.0 for Ca = 2500 indi-
cates the generation of smaller scales on the interface, since
the area of the finger is proportional to the elapsed time. The
experiments by Kopf-Sill and Homsy show a growth rate of
11.2 for Ca = 1900 and 14.0 for Ca = 3211, which again is
higher than in the simulation.

A qualitative difference between the simulations for
Ca = 1111 and Ca = 2500 is the appearance of three-lobe
splitting events at the higher value of the capillary number.
This result is in agreement with experimental observations
by Kopf-Sill and Homsy, who find that three-lobe splittings
gain importance at higher Ca. The possibility of numerically
monitoring the tip velocity as well as the radius of curvature
at the tip enables us to identify the two-lobe and the three-
lobe splitting as different manifestations of the same mecha-
nism, namely, an oscillatory evolution of the tip instability.
Depending on whether the tip curvature and the tip velocity
exceed threshold values on an upswing or on a downswing,
the result will be either a two-lobe or a three-lobe splitting. It
appears that at higher capillary numbers it becomes more
likely for the tip oscillation to develop into a three-lobe split-
ting. The tip-splitting instability of viscous fingers might
thus be similar in its evolution to the instability exhibited by
a large spherical gap bubble in inviscid flow and other relat-
ed problems of the stability of curved fronts (Pelce and Cla-
vin®® and Batchelor*?).

The analysis of the crucial role the tip plays in the evolu-
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tion of the splitting instability makes it immediately under-
standable why fingers with an artificial constraint that pre-
vents the tip from developing the oscillatory behavior do not
exhibit the splitting instability (Couder ef al.'®""). Instead
they remain stable up to considerably higher capillary
numbers at which they develop a dendritic instability. From
this argument it appears that the dendritic instability is a
natural instability mode that is present even in the unforced

flow. However, it is normally not observed since the splitting

instability sets in first. We could numerically demonstrate
the stabilization of the finger against the tip-splitting insta-
bility and the onset of the dendritic instability at higher ca-
pillary numbers by holding the tip radius of curvature con-
stant in a small region close to the tip. Furthermore, we
could show how the forcing can allow for steady fingers to
develop with a width of considerably less than half the cell
width. This observation could lend support to the hypothesis
of Hong and Langer,'® who show that in order for a steady
unforced finger to develop with A <0.5, an apparent cusp at
the fingertip has to be present. The constraint on the curva-
ture at the fingertip in the experiment and in the simulations
could then have the same effect on the finger width as a cusp
at the tip. However, we cannot provide an explanaticn for
the experimental observation by Kopf-Sill and Homsy'? of
narrow fingers without artificial perturbation.
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