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Time-dependent numerical simulations of immiscible bubbles propagating in a Hele—-Shaw cell
are presented. Purely two-dimensional calculations only show elongated bubbles propagating
faster than the viscous fluid, in agreement with Tanveer’s results. For small capillary numbers,
these bubbles assume circular shapes while their velocity approaches a plateau. By including
the leading-order three-dimensional effects on the pressure jump across the interface, wider
and shorter bubbles migrating at smaller velocities can be observed. In particular, flattened
bubbles and bubbles slower than the viscous phase are found. Even though these bubbles also
approach circular shapes for high surface tension values, a velocity plateau is not observed.
While noticing that the three-dimensional effects promote a tip instability, the multiple shapes
and transitioins observed experimentally can only be partially explained.

I. INTRODUCTION

Immiscible two-phase flows in Hele-Shaw cells (Fig. 1)
give rise to a variety of phenomena that are fascinating from
a theoretical as well as from an experimental point of view.
Viscous fingering, generated by displacing a more viscous
fluid in a gap between two flat plates by a less viscous one,
has been the traditional focus of numerous papers. Reviews
of the literature can be found by Homsy' and Saffman.’
More recently, the flow of bubbles in Hele-Shaw cells has
emerged as a similarly interesting problem, in terms of both
its stability characteristics® and the multitude of shapes
found theoretically*” and experimentally.® If & denotes the
gap width between two flat plates of lateral extent 2L, it is
well known that for small ratios of € = b /L, the equations
for the conservation of mass and momentum, formulated in
terms of the depth-averaged velocity « and pressure p within
each of the two phases, reduce to

Veu=0, (1
Vp= — 12uu/b?. (2)

Appropriate boundary conditions for the interface between
the two phases were first formulated by Bretherton’ and
have only recently been discussed in detail by Park and
Homsy,® as well as by Reinelt,” for the case in which the
viscous phase wets the wall. They show the difference in the
pressure and the normal velocity across the interface to be of
the form

[Pl = (2o/b)(1+BCal*+ -+ )
+ (o/R) [m/4 + O(Cai) ], 3
[n+u] =0(Ca}?), )

where o denotes the surface tension and R the local radius of
curvature of the depth-averaged interface position. Here
Ca, = U,u/o refers to the local capillary number formed
with the normal velocity component U, the viscosity of the
viscous phase u, and the surface tension o, as opposed to Ca,
which is formed with the velocity far upstream and down-
stream of the bubble instead of U,,. In addition, # denotes a
numerical constant that takes the values of 3.8 and — 1.13
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for advancing and receding menisci, respectively,'? if the
bubble has equal curvature at the front and rear stagnation
points. The factor of 7/4, resulting from the detailed analy-
sis, is different from the factor of 1 used in most two-dimen-
sional calculations.*> However, it can easily be incorporat-
ed in the dimensionless parameter governing these
two-dimensional calculations without changing the results.
For Ca, = 0 these equations reduce to the Hele-Shaw equa-
tions. The above results were obtained by means of a double
expansion in € and Ca,,, hence these dimensionless numbers
are required to be small. While the first term on the right-
hand side of Eq. (3) represents a constant and can conse-
quently be neglected without loss of generality (only pres-
sure gradients are dynamically significant), the second term
results in the additional requirement e ™' Ca?*«1.

While it is well known that, on the basis of the purely
two-dimensional equations and in the absence of side walls, a
Hele-Shaw bubble has a circular shape and moves with
twice the velocity of the viscous fluid, the motion of a bubble
in a cell of finite size has quite different features. The ratio of
undisturbed bubble diameter 2a to cell width 2L now enters
into the problem as a further dimensionless number. Taylor
and Saffman'' showed that for the case of zero surface ten-
sion there exists a two-parameter family of solutions which,
over some range, allows for bubbles of all sizes to move with
all velocities, the shape being a function of bubble size and
speed. Tanveer* recently showed that this degeneracy is re-
moved by introducing surface tension into the two-dimen-
sional problem, with the result that only certain discrete
bubble velocities are allowed once the bubble size and sur-
face tension are specified. In this way only certain branches
of solutions are possible, termed, by Tanveer, the main
branch and the extraordinary branch. The main branch only
allows for elongated bubbles propagating faster than the flu-
id but at less than twice the fluid velocity, and in the limit of
large bubbles, it corresponds to the solution found by
McLean and Saffman'? for steady fingers. The most striking
feature of the extraordinary branch is the fact that it allows
for bubbles with negative curvature at the advancing menis-
cus. Two further branches were subsequently found by Tan-
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veer’ and called the Romero—Vanden-Broeck branches,
since in the limit of large bubble sizes they correspond to
solution branches for steady fingers found by those au-
thors.'** These solutions also allow for negative curvature
of the advancing meniscus. All of the above steady-state so-
lations showed bubble velocities larger than the velocity of
the surrounding fluid. Tanveer and Saffman® examined the
linear stability of the various steady-state solution branches.
They found that both circular bubbles (no effect of the side
walls) and the main branch are linearly stable for nonzero
values of the surface tension. The Romero~Vanden-Broeck
branches, however, are linearly unstable, with respect to
both symmetric and unsymmetric disturbances of the bubble
tip. The extraordinary branch found originally by Tanveer*
is not related to any of the Romero-Vanden-Broeck
branches but it is also unstable.'>

In the light of these findings it comes as a surprise that
Kopf-Sill and Homsy'¢ experimentally observe six different
classes of steady bubble shapes, among them some with short
and long tails and others with negative curvature at the lead-
ing edge and a shape resembling those of the extraordinary
branch found by Tanveer.* However, these experimentally
observed steady bubble shapes (called “Tanveer” bubbles by
Kopf-Sill and Homsy) move at velocities as low as about
two-tenths of the velocity of the surrounding fluid, whereas
Tanveer's solution had yielded velocities larger than that of
the surrounding fluid. Furthermore, the experiments indi-
cate the existence of multiple steady states for the same value
of surface tension and bubble size as well as hysteresis ef-
fects, as the dimensionless surface tension is varied. In addi-
tion, Kopf-Sill and Homsy observe that the bubble shapes
cannot be classified on the basis of Ca, Ca(a/b)? or

Ca(a/L)? as would have to be expected from the Hele-
Shaw equations. These observations suggest that three-di-
mensional effects, which are not contained in the two-di-
mensional equations considered by Tanveer and Saffman,’
might be of importance in the experiments.

The objective of the current work then is to investigate
to what extent three-dimensional effects can explain aspects
of the experimentally observed bubble shapes and velocities.
From the perturbation analysis mentioned above, we know
that the presence of a wetting film of viscous fluid on the flat
plates has two main effects: first of all, it causes some “leak-
age” of the viscous fluid through the thin film, as expressed
by the O(Ca??) term in Eq. (4). However, this leakage
should always have the effect of speeding the bubble up,'” as
it now has to displace the same amount of fluid over a smaller
area. Since Kopf-Sill and Homsy find bubbles proceeding at
velocities much smaller than the values obtained from two-
dimensional analysis, the leakage effect of the thin film does
not seem to be able to provide an explanation of the experi-
mental observations. A further, more mathematical reason
for neglecting the leakage will be given below and is based on
the scaled equations.

The second main effect of the thin film concerns the
pressure jump across the interface, as reflected in the term
B Ca?” of Eq. (3). As a result of the presence of the thin
film, the radius of curvature of the interface in the thin direc-
tion is reduced, thereby increasing the pressure jump. Thus
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the variation of the film thickness along the interface modi-
fies the pressure gradient within the viscous phase and con-
sequently the forces it exerts on the bubble, resulting in a
modificiation of the bubble shape as well as its velocity. Our
goal is to assess these effects of the thin film and to study
their relevance with respect to the experimental observations
by Kopf-Sill and Homsy using Lagrangian numerical simu-
lations. While the calculations are carried out in a two-di-
mensional fashion, they take into account the leading-order,
three-dimensional effects of the thin film on the pressure
jump across the interface, according to Eq. (3). We will
show that in this way we achieve a better understanding of
some of the phenomena observed experimentally by Kopf-
Sill and Homsy, i.e., the discrepancy of the measured bubble
propagation velocity from the value predicted by two-di-
mensional theory as well as the variety of steady shapes of
bubbles. The comparison between our numerical results and
the experiments will have to be of qualitative nature, how-
ever, since Eq. (3) is valid only when ¢~' Ca?*«1. In the
experiments of Kopf-Sill and Homsy, € had the value of
130" while Ca varied from 6Xx107°-3X 1072 Thus
€~ ' Ca?” covers the range from 0.2~12, and hence the ma-
jority of experiments were performed outside the range of
validity of (3).

Our numerical procedure is based on a vortex dynamics
algorithm that has already proved to be highly accurate and
efficient in earlier investigations.'®*° In Sec. II we will give a
brief description of the numerical technique and explain in
detail the modifications undertaken to incorporate three-di-
mensional effects. In Sec. 111, results will be presented for the
motion of bubbles of two different sizes. We will demon-
strate that without three-dimensional effects we reproduce
Tanveer’s main branch results with a high degree of accura-
cy, while we do not obtain any steady-state bubble shapes
corresponding to the extraordinary branch or the Romero-
Vanden-Broeck branches. By taking the leading-order,
three-dimensional effects into account, we observe signifi-
cant changes from the purely two-dimensional results as far
as the velocity and shape of the bubbles are concerned. In
Sec. IV, we will discuss these results in comparison to the
experimental observations.

. NUMERICAL TECHNIQUE

We aim at simulating the motion of an immiscible bub-
ble of negligible viscosity in a Hele~-Shaw cell filled with fluid
of viscosity u. The viscous phase is injected into the cell with
average velocity ¥, and thus drives the bubble. Both phases
are considered incompressible and give rise to an interfacial
tension o. The balance of pressure and viscous forces, as
expressed by the Hele-Shaw equations for a single phase, has
to be supplemented by the pressure jump across the inter-
face. The above-mentioned perturbation analysis results, ob-
tained by investigating the flow near the interface in detail,
allow us to modify the two-dimensional equations in order to
include the leading-order, three-dimensional effects on the
pressure jump.

When scaling the momentum equation in the usual way
and parametrizing the interface in terms of the arclength s
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(e.g., Meiburg and Homsy'®), we obtain, as dimensionless
equations for velocity and pressure,

Veu=0, (3
ob?
Vp= —pu—n&(x——x,)m
x(1[1+BCa (28] + —T ) (6)
€ " 4R(s) /)’

where x, denotes the position of the interface. As pointed out
by one referee, this scaled version of the momentum equa-
tion provides mathematical justification for neglecting the
leakage through the thin film. While this effect is still
O(Ca*?), the pressure jump modification is
O([€/Ca]Ca?’?). Since we had already assumed that e/
Ca??*» 1, ¢/Ca> 1 is automatically satisfied, so that the
leakage effect can be neglected, compared to the pressure
jump modification. By taking the curl of Eq. (6) and intro-
ducing the vorticity @ and streamfunction # in the usual
way, we obtain'®

1 b2
=V Vi) — — 8(x —
po=Vu-Vi Ca 1212 (x —x,(5))
af2 T
9(Z gCa, () + ) 7
xc?s(eﬂ % {5) 4R (s) ™

Knowing the vorticity distribution we can reconstruct the
velocity field using the Biot-Savart law,
1 [ (x—x')Xe,0(x,1)

u(xt) = — —
(o) 27 Ix —x’|?

dx’ + ug, (x,1),

(8)

where u,,, (x,t) is the potential part of the velocity field.

The momentum equation in its vorticity form (7) pre-
sents the key to the numerical simulation, since it states that
the flow field contains vorticity only at locations where the
mobility varies and where surface tension acts. For an im-
miscible flow in which the two phases are separated by a
sharp interface, the flow field therefore becomes irrotational,
except for the interface itself, which now corresponds to a
vortex sheet of strength ¢ (s). Furthermore, Eq. (7) has the
advantage of being an algebraic equation, indicating that lo-
cal information about the flow suffices for the determination
of the value of the vorticity. We obtain from (7),

2 €&
y(s) = 2ut — aFtS(x—x,(S))

T
4R(s) ) ' ®

The first term on the right-hand side describes the circu-
lation produced as a result of the mobility jump across the
interface. In the absence of surface tension and side walls, it
would lead to a circular bubble propagating at twice the ve-
locity of the viscous fluid. In a Hele-Shaw flow of finite
width, the additional circulation resulting from the periodic
images of the bubble modifies its circular shape and leads to
the solutions described by Taylor and Saffman. The remain-
ing terms on the right-hand side account for the influence of
surface tension. The third term has the effect of smoothing
out variations in the radius of curvature and it modifies the
Taylor-Saffman solution toward more circular bubble

xi(iﬁ Ca, (5)*? +
ds\ €
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shapes. The second term represents the additional circula-
tion resulting from the change in the pressure jump as a
result of the thin film; its effect on the bubble will be investi-
gated in this paper.

The computational procedure is similar to the one used
by Meiburg and Homsy ' in an earlier investigation of pure-
ly two-dimensional viscous fingering, so that we limit our-
selves to a brief description of the main features here. The
technique is based on Egs. (8) and (9) and tracks the vortex
sheet at the interface in a purely Lagrangian scheme. For the
simulation of small bubbles in infinitely wide cells (no wall
influence), the integration of the Biot—Savart law has to be
carried out only over the interface of this one bubble. For
finite ratios of bubble size to cell width, on the other hand, we
include the periodic images of the bubble in the y direction.
For bubbles symmetric with respect to y = 0, which we will
deal with exclusively, this corresponds exactly to the condi-
tion of no mass flux through the lateral boundaries (Fig. 1).

The vortex sheet is discretized into # small circular arcs,
with a marker point denoting the position of each arc. The
distribution of the vortex sheet strength along arc / is as-
sumed to be of sinusoidal form. In this way, we can evaluate
the associated velocity field by integrating the Biot—Savart
law analytically. This form of discretization provides a very
smooth and accurate representation of the vortex sheet, as
test calculations have demonstrated. '3

As initial bubble shape we use either a circle or an el-
lipse, since these simple shapes allow us to easily fix the bub-
ble size. After the initial interface shape is set, the calculation
proceeds in discrete time steps At of size 0.001, based on a
fourth-order Runge-Kutta scheme for advancing the mark-
er points. At every time step a new set of circular arcs is fitted
through the marker points, and the vortex sheet strength is
subsequently updated in an iterative manner. After a fixed
number of time steps, 20 for the calculations presented here,
the marker points are redistributed and new ones may be
added to avoid deteriorating resolution as a result of local
interface stretching and shrinking. Both the local capillary
number and the local curvature are used to determine the
spacing As of the marker points along the interface, in the
way described in Meiburg and Homsy. '®

In summary, we apply a numerical procedure, which
achieves high spatial accuracy, by discretizing the interface
into circular arcs. At the same time it minimizes the effect of

FIG. 1. The principle sketch.
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setting a numerical length scale by representing the vorticity
sheet along the interface in the form of a continuous distribu-
tion. The method is of fourth order in time and partly com-
pensates the O(N 2) operation count associated with the di-
rect interaction algorithm by using a locally refined
discretization. All calculations were carried out on the
CRAY X-MP of the San Diego Supercomputer Center.

. RESULTS

Tanveer,** in his two-dimensional analysis, showed

that once a value for the surface tension is set, a bubble of
specified area in a Hele-Shaw cell of given size can move
only at isolated values of the velocity. He proceeded to deter-
mine these values as well as the corresponding bubble
shapes. In the following, we will demonstrate the accuracy
and convergence of our numerical procedure by reproducing
Tanveer’s bubble shape. We will subsequently show how
varying the capillary number in the simulation will affect the
bubble shape as well as its propagation velocity. Of course we
will employ the factor of 1, used by Tanveer in the pressure
jump condition, instead of 7/4. As a test case we select the
bubble corresponding to Tanveer’s main branch solution for
the parameter values in his notation of € = 1.0, a = 0.81,
J=0.941718, U= 1.6101,and x, — x, = 1.0999. The val-
ue of Ca is related to Tanveer’s parameters ¢, a, and U by
Ca = 7 Ub?/(48a’ca®). Hence, in a typical experimental
apparatus with € = 130~ ', such as the one used by Kopf-Sill
and Homsy, the present parameters correspond to a value of
Ca =2.99< 1075, While both € and Ca can be considered
small, e 7' Ca?/® = 0.125. As a result, one would have to be
careful about attempting a quantitative comparison between
experiments and numerical simulations for these parameter
values.

We start our calculation with a circular bubble of area
0.941 718L 2, so the ratio of bubble radius to cell half-width is
a/L = 0.5475. The bubble subsequently evolves toward a
steady state, whose values for bubble length and bubble ve-
locity are given in Fig. 2 as functions of the number of circu-
lar arcs used to discretize the bubble contour. The steady
state was considered to be reached when the bubble velocity
changed by less than 0.1% over a time interval of 5. Figure
2(a) indicates that the bubble velocity is reproduced to with-
in less than 0.5% by discretizing the bubble contour into 15
circular arcs. This demonstrates the high accuracy of our
method, even with relatively few computational elements.
Discretization into 31 arcs results in an error of about 0.1%.
The numerical values for the bubble length are similarly ac-
curate, as shown in Fig. 2(b). We do not observe any signs of
instability of this purely two-dimensional solution, even
though the calculations were carried out over long times
during which the bubble traveled a distance equal to 15 times
its rest diameter. From a previous investigation of viscous
fingering,'® we know that instabilities can evolve slowly in an
oscillatory fashion. However, we did not discover any signs
of such oscillations in the present calculations, which is con-
sistent with Tanveer’s result that the main branch represents
stable solutions. On the other hand, we were unable to obtain
steady solutions corresponding to the extraordinary branch
or the first Romero-Vanden-Broeck branch, even when we
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FIG. 2. Convergence of the numerically obtained steady-state bubble data
toward Tanveer’s main branch results, as a function of number of circular
arcs used to discretize the bubble shape: (a) bubble velocity, (b) bubble
length.

started our simulation with an elliptic bubble close to the
exact solution. These bubbles would invariably evolve to-
ward the shapes given by the main branch, which again is
consistent with Tanveer’s result of the instability of both the
Romero—Vanden-Broeck and the extraordinary solutions.
In Fig. 3 we show the variation of the bubble velocity
and bubble length as Ca is varied while € is held constant at
the value of 130~'. We can see how the bubble shape be-
comes more and more circular as the capillary number de-
creases, i.e., as surface tension forces gain relative impor-
tance. Simultaneously, the propagation velocity decreases
and then reaches a plateau as the bubble shape does not un-
dergo any further changes. The presence of this plateau for
the bubble velocity can be understood from Eq. (9), in terms
of the circulation produced by the last term on the right-
hand side. This term has the effect of generating circulation
as a consequence of variations in R(s), with the result of
smoothing out these variations, and at the same time affect-
ing the bubble velocity. For relatively large values of Ca,
surface tension can only generate enough circulation to
slightly reduce variations in R (s). Consequently, decreasing
Ca will lead to further changes in the bubble shape and veloc-
ity. However, once an almost perfectly circular bubble shape
is reached, there are only small R (s) variations left that add-
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FIG. 3. The steady-state properties of a bubble with a/L = 0.5475; only
two-dimensional effects are taken into account: (a) bubble velocity, (b)
bubble length. As Ca decreases, the elongated bubble monotonically ap-
proaches a circular shape, while its velocity reaches a plateau. The value of
Ca given is for an aspect ratio L /b = 130.

ed surface tension could use to generate additional circula-
tion. As a result, lowering Ca further will not affect the bub-
ble velocity significantly. In other words, as Ca decreases,
the circulation distribution asymptotically approaches that
of the circular bubble.

As a next step, we consider a bubble of the same size and
surface tension, but now we include three-dimensional ef-
fects corresponding to an aspect ratio L /b = 130, i.e, the
value used by Kopf-Sill and Homsy in their experimental
investigation. Again we obtain a steady-state bubble, which
is depicted in Fig. 4, together with the two-dimensional solu-
tion. By comparison with the two-dimensional results, we
see that the inclusion of the three-dimensional effects
renders the bubble about 2% shorter and wider, and it re-
duces the propagation velocity by about 12.5% to 1.410. The
bubble moved about 8 X its rest diameter during our calcula-
tion without exhibiting any signs of instability, thus indicat-
ing that the inclusion of three-dimensional effects corre-
sponding to an aspect ratio of 130 does not change the
bubble’s stability characteristics significantly.

The deformation of the two-dimensional bubble and the
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FIG. 4. Steady-state shapes for a bubble of a/L = 0.5475. The more elon-
gated shape represents the two-dimensional solution and corresponds to the
main branch solution described by Tanveer. The flattened shape takes the
leading-order, three-dimensional effects for an aspect ratio L /b = 130 into
account; i.e., for the value used by Kopf-Sill and Homsy.

decrease in the propagation velocity caused by the three-
dimensional effects can be understood in terms of the addi-
tional circulation generated along the interface, as a result of
the modification in the pressure jump. Figure 5 shows the
vortex sheet strength corresponding to the two-dimensional
solution as a function of the arclength s, starting from the tip
of the bubble and proceeding in the clockwise direction.
Along with the two-dimensional calculation the additional
vortex sheet strength corresponding to the three-dimension-
al effects was calculated, without taking its effect on the bub-
ble dynamics into account; the result is also shown in Fig. 5.
Thus we can recognize how the three-dimensional effects
would deform the bubble if they were allowed to do so. Fig-
ure 6 depicts the two-dimensional bubble along with the sign
of the three-dimensional circulation along the interface. It is
clearly recognizable that the three-dimensional circulation
has the effect of slowing down the bubble. The sign of the
three-dimensional circulation along the various regions of
the interface can also be easily inferred from Eq. (9). As we
proceed from the tip along the interface in the clockwise
direction, the normal velocity decreases, so — Bd Ca,/dsis

vortex 2o
sheet
strength | 5

J°Xs] THWWE PR NI PR FVRTS PR T P |
0 5 10 15 20 23 30 35 4.0
arclength

FIG. 5. Vortex sheet strength ¥ as a function of the arclength s, where s is
taken in the clockwise direction from the tip of the bubble. Here 1 is the
purely two-dimensional solution and 2 is the leading-order, three-dimen-
sional effect.
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FIG. 6. A sketch of the vortex sheet strength generated by the leading-or-
der, three-dimensional effects. It is obvious that the three-dimensional ef-
fects tend to shorten and widen the bubble. At the same time, they induce a
negative (upstream) velocity both at the front and at the end of the bubble,
thereby slowing it down.

positive. As we approach the rear end, the normal velocity
increases again, so that, because of the sign change in 5, the
resulting circulation remains positive. Since the above is
qualitatively true for all nearly circular bubbles, we expect
the thin film component of the pressure jump to always slow
the bubble down. If the underlying two-dimensional solu-
tion remains the same, Eq. (9) states that for Ca=~Ca, the
effect of the thin film should vary approximately with
€/Ca'’3. This is confirmed by Fig. 7, which shows that even
as an almost circular bubble shape is reached, the bubble
velocity does not approach an asymptotic value as Ca is de-
creased. Hence the plateau that we had observed for the two-
dimensional solution is no longer present.

Whether the bubble flattens or elongates will depend to
alarge extent on the local circulation distribution around the
tip and the tail of the bubble; i.e., it will depend on whether
the three-dimensional effects will be more pronounced at the
tip or the tail. For a steady, almost circular bubble,
dCa, (5s)*>/ds will have approximately the same magni-
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FIG. 7. Propagation velocities for a bubble of a/L = 0.5475 when three-
dimensional effects are taken into account. The purely two-dimensional
data are given for comparison. Here 1: aspect ratio € = 1/130; 2: aspect
ratio € = 1/70; 3: aspect ratio € = 1/30; and 4: two-dimensional data. No-
tice the resulting slowdown of the bubble as ¢ increases. When taking the
leading-order, three-dimensional effects into account, we no longer observe
a plateau for the propagation velocity.
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tude close to the tip and close to the tail. However, since the
magnitude of # for a receding meniscus is less than one-third
of the value for an advancing meniscus, the three-dimension-
al effects close to the tip will be larger than those close to the
tail. As a result, we expect the tip to be decelerated more
efficiently by the thin film effects than the tail, so that the
bubble will flatten, as seen in Fig. 4.

As a next step, we investigate the properties of the bub-
ble for approximately the same Ca range but for values of € of
70~ " and 30, Figure 7 shows that the bubble velocity de-
creases as € increases, while its shape becomes a near circle
already at higher values of Ca. Both of these observations are
consistent with Eq. (9), which states that for the same un-
derlying two-dimensional problem, i.e., for the same value of
€2/Ca, and for Ca~Ca,, the slowing effect should vary as ¢/
Ca'/3. For example, a bubble corresponding to Ca = 10~
and € = 130! gives rise to the same two-dimensional prob-
lem as one for Ca = 1.88 X 10~ % and € = 30~". According to
Eq. (9), however, the second bubble should experience ap-
proximately 1.6 X as much of a slowdown as the first one,
which is confirmed by Fig. 7. For small capillary numbers
we observe propagation velocities less than unity, i.e., less
than the average velocity of the viscous phase. Figure 8
shows that both the two-dimensional and three-dimensional
bubbles approach a circular shape as the capillary number
becomes very low. However, while the length of the two-
dimensional bubble decreases in a monotonic fashion, the
inclusion of three-dimensional effects results in a different
behavior: As Ca decreases, the bubble length reaches a mini-
mum before it increases again to the value corresponding toa
circle. In other words, while the two-dimensional bubble as-
sumes only slightly elongated shapes, the inclusion of three-
dimensional effects leads the bubble to evolve from a slightly
elongated shape to a slightly flattened one before it becomes
a near circle. The three-dimensional effects, resulting in the
slowdown and widening of the bubble, apparently are strong
enough in some intermediate capillary number range to
cause the bubble to flatten beyond the circular state. As Cais

bubbie 130
iength 128}
126 - 4

124+

122

1.20 L |

L8|

Lig

e

Erd of

[Ried o

108

106

104k

102

100

L]

LI
w

T
[T

sl

i el 4 | b bttt
10®

0% 10*
Ca

FIG. 8. The bubble lengths for the same parameters as Fig. 7. While the
two-dimensional bubble length decreases monotonically with Ca, the three-
dimensional effects give rise to a minimum bubble length corresponding toa
flattened bubble shape in an intermediate Ca range. The minimum occurs at
higher values of Ca as € increases. For small values of Ca, all bubbles ap-
proach circular shapes.
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lowered further, however, the two-dimensional circulation
tends to dominate the flow and causes the bubble to ap-
proach a circular shape. The minimum in the bubble length
becomes more pronounced as € increases.

We now proceed to simulate a much smaller bubble. We
select our parameters according to Tanveer’s main branch
solutton with, in his notation, ¢=02, a=02,
J=0.050948, U= 1.976 76, and x — x, = 0.254 84. The
ratio of bubble radius to cell half-width nowis 0.127, i.e., we
consider a bubble radius about 4 times smaller than before.
As before, we carry out two-dimensional simulations (the
capillary number is given for € = 130™") as well as three-
dimensional ones, corresponding to aspect ratios of 130, 100,
and 70. Figure 9 shows the variation of the bubble propaga-
tion velocity and the bubble length with Ca for these cases.
While the two-dimensional simulations again indicate the
presence of a plateau for small Ca, the simulations, including
three-dimensional effects, show that the slowdown effect is
much more pronounced for this smaller size bubble. Fur-
thermore, we notice that for small Ca the bubble velocity
varies linearly with log(Ca), the slope being the same for all
three aspect ratios investigated. Again we observe bubble
propagation velocities smaller than the average velocity of
the viscous phase, however, at this time already at higher
capillary numbers. Equation (9) presents the key to under-
standing this behavior: For two steady bubbles of different
sizes but similar shapes and propagation velocities, there will
be a different distribution of 38 Ca,, (s)>/3/3s, since for the
smaller bubble the variation from S Ca,, at the leading men-
iscus to B Ca,, at the trailing meniscus has to occur over a
smaller amount of arclength. However, the integral over the
circulation distribution, corresponding to the three-dimen-
sional effects from the tip to the tail, will be the same for the
two bubbles. Hence in the case of the smaller bubble the
same amount of three-dimensional circulation acts to slow
the bubble down, but over a smaller distance on average. As
a result, the slowing-down effect is more pronounced for the
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FIG. 9. Propagation velocities for a bubble of a/L == 0.127 when three-di-
mensional effects are taken into account. The purely two-dimensional data
are given for comparison. Here 1: aspect ratio € = 1/130; 2: aspect ratio
€ = 1/100; 3: aspect ratio € = 1/70; and 4: two-dimensional data. The slow-
down of the bubble as e increases is more pronounced for this smaller bubble
velocity. For small Ca, the bubble velocity depends linearly on log(Ca), the
slope being the same for all three aspect ratios.
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smaller bubble. Figure 10 shows a behavior of the bubble
length similar to the one observed for the previous case.
While the length of the two-dimensional bubble decreases
monotonically to that of a circle, the three-dimensional bub-
bles exhibit a minimum length for some intermediate value
of Ca. For the same aspect ratio, the smaller bubble reaches
its minimum length at higher values of Ca than the previous-
ly analyzed larger bubble.

As explained above, the existence of a minimum bubble
Iength can be understood as the result of the competition
between the two-dimensional and three-dimensional effects.
While the two-dimensional forces favor an elongated bubble
for higher Ca and a near circle for lower values of Ca, the
three-dimensional effects always try to flatten the bubble,
even beyond the stage of a circle. It is then natural to ask
whether there are parameter ranges for Ca and € in which the
three-dimensional forces are able to flatten the advancing
meniscus to such a degree that the two-dimensional forces
can no longer maintain positive curvature everywhere, with
the result of an instability similar to the tip-splitting instabil-
ity of a viscous finger. We did indeed observe such an insta-
bility for the present bubble size at Ca = 10"? and
€ = 1307". Figure 11 shows the evolution of the instability
at various times in a moving reference frame. Starting from a
circular shape, the bubble tip flattens until it reaches nega-
tive curvature and bulges in, thus assuming a shape similar
to the “Tanveer” bubbles observed by Kopf-Sill and Homsy.
However, this instability did not lead to a new steady state in
our simulations; instead it grew until the calculation failed to
converge. Furthermore, we have to point out that although
Ca and € are both small numbers, e~ ' Ca?/?>~6, so that we
are outside of the range of validity of the perturbation expan-
sion on which we based our numerical simulation. In addi-
tion, the condition of equal bubble curvature at the front and
rear stagnation points, for which numerical values for 8 had
been derived, is no longer satisfied. Hence we cannot expect
quantitative agreement with experimental observations.
Nonetheless it is of interest to observe in which direction the
three-dimensional effects tend to shift the stable main
branch solution.
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FIG. 10. The bubble lengths for the same parameters as Fig. 9. Again we
observe a minimum in the bubble length if three-dimensional effects are
taken into account. However, for this smaller bubble, the minimum occurs
at higher values of Ca. As before, all bubbles approach circular shapes or
small values of Ca.
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FIG. 11. Fora/L = 0.127, ¢ = 130~ !, and Ca = 1072 the bubble develops
a splitting instability similar to the tip splitting of viscous fingers. Shownin a
moving reference frame are the bubble shapes at times 0.02, 1.0, 1.26, 1.5,
1.76, 2.0, 2.26, 2.5, and 2.76. While the above parameter values lie outside
the range of validity of the perturbation expansion, we can conclude that the
three-dimensional effects promote the evolution of a tip-splitting instability.
This provides a possible explanation for the emergence of experimentally
observed “Tanveer” bubbles.

As discussed above, the additional circulation induced
by the three-dimensional effects leads to a slowdown of the
bubble tip and the bubble tail, which is compatible with our
observation that it can lead to a tip-splitting instability. It is
then logical to ask whether, in a similar way, the three-di-
mensional effects can lead to a slowdown of the bubble’s rear
meniscus and thus result in the formation of short or long
tails, as observed by Kopf-Sill and Homsy. We examined a
few bubble shapes concerning this possibility, but even at-
tempts to trigger the instability by artificially slowing down
the rear meniscus for a short time interval did not yield any
such bubble shapes.

IV. DISCUSSION

We have presented numerical simulations for the propa-
gation of bubbles in Hele-Shaw cells with and without three-
dimensional effects. For the purely two-dimensional case
our results converge to Tanveer’s main branch solution with
high accuracy. In agreement with his solutions, our simula-
tions yield only elongated bubbles with propagation veloc-
ities larger than the average velocity of the viscous phase. We
never observed the evolution of a steady-state two-dimen-
sional bubble corresponding to the extraordinary branch or
to one of the Romero—Vanden-Broeck branches, even if the
initial conditions for the simulations were close to these
steady-state solutions. Thus our time-dependent numerical
simulations are consistent with Tanveer’s results concerning
the stability of steady-state solutions.

Subsequently we modified our numerical algorithm to
include the leading-order effects of the thin film on the pres-
sure jump across the interface. For the two bubble sizes in-
vestigated, the additional circulation created by the leading-
order, three-dimensional correction leads to a widening and
shortening of the bubble as well as to a reduction of its propa-
gation velocity, which can immediately be understood in
terms of the dynamics of the additional circulation. The
slowdown is most pronounced for the smaller bubble. While
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the purely two-dimensional simulations had shown the exis-
tence of a plateau for the propagation velocity as Ca reached
very small values, such a plateau was not observed when we
included three-dimensional effects. Instead, the bubble ve-
locity kept decreasing with the capillary number. In particu-
lar, we observed propagation velocities lower than the aver-
age fluid velocity. While the velocity does not level off in the
parameter ranges investigated here, it is expected to reach a
plateau as Ca becomes very small.

The limited range of validity of the perturbation expan-
sion on which our simulations are based does not allow us to
make quantitative comparisons with the experiments of
Kopf-Sill and Homsy. However, we note that in all but one
of their series of experiments they observe a general trend of
decreasing bubble velocities as Ca is reduced. Furthermore,
their experiments do not indicate a lower bound for the ve-
locity as Ca decreases, also in qualitative agreement with out
simulations. Our numerically obtained bubble shapes agree
qualitatively with the experiments of Kopf-Sill and Homsy
only insofar as both show near circles for low Ca (with the
exception of their series 5) and elongated bubbles for higher
Ca. If flattened bubbles were seen in the experiments, they
always appeared in between the near circles and the elongat-
ed bubbles, in agreement with our simulations.

The simulations allowed us to explain the existence of
flattened bubbles as a result of the competition between two-
and three-dimensional effects. This leads to the question of
whether there are parameter ranges for which the three-di-
mensional effects would be strong enough to overcome the
two-dimensional forces and cause a splitting instability. We
did observe such a splitting instability, however, only for
parameter values outside the range of validity of the pertur-
bation expansion. We conclude that the leading-order,
three-dimensional effects promote the tip-splitting instabil-
ity without being large enough to explain the experimental
observation of “Tanveer” bubbles.

In this context it is interesting to note the following fact:
for constant surface tension and bubble size, the inclusion of
three-dimensional effects results in a shorter, wider, and
slower bubble. That, on the other hand, is exactly how the
Romero—Vanden-Broeck branch differs from the main
branch; it also describes shorter, wider, and slower bubbles.
As a result, it appears possible that by including three-di-
mensional effects, we cause the main branch solution to be-
come unstable with respect to the tip instability mode of the
Romero-Vanden-Broeck branch found by Tanveer and
Saffman.?> We did not observe any steady-state solutions
with negative tip curvature, and hence we assume that three-
dimensional effects, other than the leading-order ones on the
pressure jump, must be responsible for the stabilization of
the experimentally observed bubbles of this nature.

In our numerical simulations we never observed any in-
stabilities that would resemble the short tail and the long tail
bubbles found by Kopf-Sill and Homsy. These instability
modes affect the bubble tail and appear to be related to the
least stable modes found by Tanveer and Saffman for bub-
bles corresponding to the main branch solution. Comparison
of the experiments and stability theory suggests that the
three-dimensional effects destabilize the main branch solu-
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tion and cause the least stable mode to become unstable. This
is compatible with our calculations, which show that the
leading-order, three-dimensional effects induce an upstream
velocity at the rear meniscus of the bubble. In a way similar
to the tip instability discussed above, once this instability has
developed a certain finite amplitude, the bubble becomes sta-
bilized and reaches a steady state. Most likely, an analysis of
the full three-dimensional flow will be necessary to explain
this nonlinear stability. On the basis of our numerical simu-
lations we cannot fully explain the destabilization of the
main branch solutions with respect to the bubble tail insta-
bility.

Hence, taken together, experiments, stability theory,
and numerical simulations indicate that three-dimensional
effects can cause the main branch solution to become unsta-
ble in at least two different ways: (i) they can shift the main
branch solution toward the Romero—Vanden-Broeck
branch and thus result in instability with respect to the sym-
metric and antisymmetric tip instability modes of this
branch, and (ii) they can cause the least stable mode of the
main branch to become unstable and result in a bubble tail
instability. For both the symmetric tip instability and the tail
instability a new stable bubble shape is reached after the in-
stability has achieved a certain finite amplitude. However, so
far there are no indications for stable antisymmetric bubbles.
As a result, it appears that there are at least three different
parameter regions in which different steady state shapes can
exist for a bubble of a certain size. In this way, it would be
possible to explain the dramatic transitions between differ-
ent classes of bubble shapes recorded by Kopf-Sill and
Homsy. Overlap of these different regions of stability could
account for the hysteresis effects they observe. It is obvious
that the present numerical simulations can at best provide

946 Phys. Fluids A, Vol. 1, No. 6, June 1989

some qualitative information, since they only include the
leading-order, three-dimensional effects. It is expected that
fully three-dimensional simulations will be able to contrib-
ute greatly to further understanding.
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