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The molecular dynamics method (MD) and the direct simulation Monte Carlo technique
(DSMC) are compared with respect to their capability of simulating vorticity distributions.
The statistical assumptions underlying the evaluation of the collision term by the DSMC are
analyzed. They lead to the nonconservation of angular momentum for the interaction of
particles. Both methods yield equally good results for the Rayleigh—Stokes flow. Using the
_present parameters, however, only the MD simulation shows the generation of vortices for the
flow past an inclined flat plate. This might indicate an effect on the computation of vortical
flows. It is suggested that further systematic studies of the effect of the cell size and particle

dimensions be carried out.

I. INTRODUCTION

The use of increasingly sophisticated satellites, launch
vehicles, and structures in space has been stimulating re-
search on efficient means of transportation among orbits of
different altitudes and inclinations (for an overview see Wal-
berg!). The payload capacity of such vehicles can be in-
creased significantly by using aerodynamic forces during
one or more passes through the atmosphere instead of all-
rocket propulsion, leading to the concept of aero-assisted
orbit transfer vehicles. As can be seen from Fig. 1, these
vehicles will operate under free molecular flow conditions as
well as under transitional and continuum flow conditions;
the various regimes being characterized by the Knudsen
number. Thus there is a need for efficient computational
methods for the solution of Boltzmann’s equation, which
should be able to provide flowfield calculations from small
Knudsen numbers through Knudsen numbers larger than
unity. According to Bird,? for characteristic dimensions
such as those that are of interest in flows around space vehi-
cles, the continuum approach breaks down before significant
fluctuations set in. This leads us to expect structures in the
flowfield even where the Navier-Stokes equations are no
longer valid, so we look for computational methods with
which we can calculate collisionless flows in the high Knud-
sen number limit, as well as structures such as vortices in the
low Knudsen number limit, together with the related forces
and heat transfer rates. The present study investigates the
applicability of both the direct simulation Monte Carlo tech-
nique described by Bird? and the approach first introduced
by Alder and Wainwright?® under the name of molecular dy-
namics. We want to elucidate the advantages and limitations
of these computational methods by simulating flowfields
around bodies of simple geometries for various Knudsen and
Mach numbers. Our interest focuses on the question of
whether or not basic fluid mechanical phenomena such as
boundary layers or vortices can be described correctly.
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Il. MOLECULAR DYNAMICS METHOD VERSUS DIRECT
SIMULATION MONTE CARLO TECHNIQUE

Both methods can be used for the simulation of a gas
governed by the Boltzmann equation

a d a _

(ar tegtF ac)f(r’c’t) Oty
which determines the particle distribution function /. Here r
denotes the space vector, ¢ the velocity vector, and F an
external force acting on the particles. The term on the right-
hand side takes the interaction among these particles into
account. The simulation methods are based on the fact that
this equation can also be formulated for a normalized distri-
bution function, if at the same time the collision cross section
of the particles is normalized correspondingly, so that solu-
tions of the Boltzmann equation become independent of the
number of particles. For a review see, for example, Derzko.*
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FIG. 1. Flight regimes for aero-assisted orbit transfer vehicles.
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This allows us to employ several thousand particles, all mov-
ing with their respective velocities and interacting according
to the potential model chosen instead of the much higher
number encountered in the real flow. In 1957, Alder and
Wainwright? first applied their molecular dynamics meth-
od, and later, Bird® developed a more efficient statistical ap-
proach, which became known as the direct simulation
Monte Carlo technique (DSMC) and has been applied to a
wide variety of free molecular and transitional flows. In the
following, a brief description of both methods is given.

A. Molecular dynamics simulation procedure

The calculation starts with the positioning of a given
number of particles into the control volume. The initial posi-
tions of the particles depend on the physical problem under
consideration, which means that they can be randomly dis-
tributed or prescribed explicitly. Similarly, the initial veloc-
ities are related to the physical problem; they can, for exam-
ple, have a Maxwell distribution generated with the help of a
random number generator. From this point on, the particles
move with their individual velocities, subject to certain
boundary conditions and to the law of interaction among
one another. For an arbitrary particle potential, the calcula-
tion proceeds in very small time steps during which the parti-
cles move according to their velocities and the forces exerted
upon them by the other particles. This force is calculated at
the beginning of each time step, so that small steps are re-
quired. For the special case of a hard sphere potential, which
has been used exclusively in the calculations reported here,
particles do not interact except when their paths approach to
within one diameter. This allows the time step to be as large
as the time span between two subsequent collisions. There-
fore, we must first calculate the time of the next collision in
the flowfield by examining all particle pairs, then advance all
particles up to this time, and finally compute the new veloc-
ities of the two particles involved in the collision by means of
the laws of classical mechanics. When a particle approaches
the boundaries of the control volume, different measures
may be taken, varying according to the physical problem.
The particle can be specularly reflected, which corresponds
to a symmetry boundary condition, or it can be diffusely
reflected, thus simulating a rigid wall. In this case, a new
velocity would be calculated for the particle from the tem-
perature of the wall. We can also apply an accommodation
coefficient, which takes into account the extent to which the
post-collision particle velocity depends on its pre-collision
history. A periodic boundary condition can be simulated by
placing the particle back into the flowfield close to the oppo-
site boundary. Macroscopic quantities can be calculated at
arbitrary times by sampling the properties of the particles.

As Alder and Wainwright already mentioned in their
original paper, improving the computational procedure of
selecting the collision partners and carrying out the colli-
sions leads to a considerable speed-up of the calculation.
Modern vector computers such as the CRAY-1S, on which
all calculations reported here were performed, offer new op-
portunities in this regard (for details see Meiburg>®). The
molecular dynamics simulation procedure has the advan-
tage of being a grid-free method. This allows the treatment of
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relatively complicated configurations, since in principle the
only requirement to be satisfied by the geometry of the con-
trol volume or of a body in the flow is that it must allow us to
calculate the time at which a particle will cross a boundary
when its position and velocity are known. Thus it is easily
feasible to calculate, for example, flows around satellites, as
long as their shapes can be composed of cylinders, cones,
planes, and other basic geometries.

B. Direct simulation Monte Carlo technique (DSMC)

This technique is similar to the molecular dynamics
method in that it computes the trajectories of a large number
of particles and calculates macroscopic quantities by sam-
pling particle properties, but it has the advantage of being
more efficient on electronic computers. It has been success-
fully applied to the simulation of a large variety of rarefied
gas flows. A detailed description is given in Bird.? The
DSMC differs from the molecular dynamics approach in the
way interactions among the particles are treated. The place
and time of a collision are no longer determined by compar-
ing the trajectories of all particles, but by means of a statisti-
cal consideration. The principle steps of the DSMC are as
follows: At the beginning of the calculation, the flowfield is
divided into a net of cells. The particles are positioned into
the cells in the same way as in the molecular dynamics meth-
od. The computation now proceeds in small discrete time
steps At over which the motion of the particles and their
interactions are uncoupled. Within one time step, all parti-
cles are first advanced according to their individual veloc-
ities, with the boundaries taken into account as in the molec-
ular dynamics method. Then in each cell a certain number of
statistical collisions is computed in the following way: From
all the particles in the cell, two are selected randomly, with-
out consideration of their actual positions. Then a “colli-
sion” between these two particles is computed as described
below. It was shown by Bird? that this collision corresponds
to a time increment

Atcon = 2/Nﬂ-d chrel N

for hard sphere particles that have been used exclusively
here. In this equation, &V is the number of particles in the cell,
rd *is the collision cross section of the particles, # represents
the number density, and c,; denotes the relative velocity of
the particles involved in the collision. Further collisions are
carried out until the sum of the time increments Az, has
reached the size of the time step Az for each of the cells. Fora
sufficiently large number of particles per cell, this procedure
yields the correct collision rate. The time step At should be
small compared to the mean collision time, and the cell di-
mensions should be small compared to the mean free path, in
order to yield accurate results.

A problem that arises from the calculation of “statis-
tical collisions™ will be discussed in the following. In general,
the six post-collision velocity components u], vj, w; and
u;, v;, wj of two particles of mass m and pre-collision veloc-
ity components u,, v,, w, and u,, v,, w, undergoing an elastic
collision are completely determined by:

(a) conservation of linear momentum per mass
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particle 1 particle 2

FIG. 2. Particle position and velocity vectors for a binary collision.

Uy tuy =u + Uy U+ =0+0,

wi +w; =w, + wy,
(b) conservation of kinetic energy per mass
u;Z + viZ + wiz + uiz + Uéz+ wéZ
=u +0i +wi +u; +v; +uj,
(c¢) conservation of angular momentum per mass
ry Xej +1;Xe; =1;X¢; + X6,
(d) particle potential ¢
Lo _B__d¢
m m  ds’

where r,, r,, r;, r; are the pre- and post-collision particle
position vectors (Fig. 2) and s is the distance between the
particles. Since in the DSMC we try to calculate a collision
between particles without considering their positions, the
particle potential cannot be used to compute the post-colli-
sion velocities directly. But it can be shown that in a statisti-
cal sense, for the hard sphere particle potential, all directions
are equally probable for the post-collision relative velocity of
the two particles. This leads to the following method of com-
puting collisions in the DSMC. First, the direction of the
post-collision relative velocity is determined by randomly
selecting an azimuthal and a polar angle. Then the four de-
grees of freedom remaining are used to satisfy the conserva-
tion of linear momentum and energy. Now the conservation
of angular momentum can no longer be satisfied. Thus the
DSMC yields both post-collision velocities sketched in Fig. 3

@/ -d-o0—
//0

-——O—-—--

before collision after collision

FIG. 3. Pre- and possible post-collisional velocities of two particles in a cell.
The DSMC does not conserve angular momentum, since both the solid and
the dashed velocity vectors present equally possible post-collisional particle

velocities. .
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with equal probability. This is obviously incorrect, leading
us to suspect that the DSMC might not correctly describe
flowfields in which angular velocities are of importance,
such as vortical flows. The nonconservation of angular mo-
mentum results from the fact that we are trying to calculate
an interaction between two particles without considering
their actual position. As long as this principle is employed,
the effect of violating the law of conservation for angular
momentum will therefore be seen, even for other particle
potentials than the hard sphere. Obviously, the error de-
pends on the distance between the interacting particles, and
since these are always selected from the same cell, the error is
expected to depend on the cell size. In principle, however, it
will remain present even for small cells.

iIl. RESULTS
A. Impulsively started flat plate

As a test example for the two simulation methods de-
scribed above we selected the flow induced by an infinite flat
plate impulsively started from rest in its own plane in a com-
pressible fluid, which had previously been considered by
Bird.? Van Dyke’ treated this problem by means of matched
asymptotic expansions. Becker® generalized the boundary
layer solution with respect to suction and blowing as well as
toa changein the temperature of the plate. If p, is the density
at the wall and y is the distance from the wall we can define
the coordinate transformation

"y
Y= f £ g.
0 Po
For u,, denoting the wall velocity, ¢ the time, and v, indicat-
ing the viscosity at the wall we obtain, for large Reynolds

numbers, the similarity solution for the dimensionless veloc-
ity having the form

u/u,, = erfc 7,
where
n=y/Hv .

Figure 4 compares the numerical results from both a
MD calculation and a DSMC simulation each employing

-— similarity solution .according o van Dyke
301 o o molecular dynamics simulation results
21 x direct Monte Carlo simulation results

20

10+

0 08

gl=t

FIG. 4. Molecular dynamics and direct Monte Carlo simulation results
compared to the exact solution for the impulsively started flat plate,
Re = 85. Here 7 denotes the similarity variable and A indicates the distance
from the wall in mean free paths.
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20 000 particles with the exact solution. We find that, apart
from statistical scatter, the values agree quite well, provided
that the dimension. perpendicular to the plate of the cells in
the DSMC simulation is small enough. As long as that is the
case, then the fact that angular momentum is not conserved
does not have a strong impact on the results. This can be
explained by an analysis of the rate at which #-momentum is
transferred from the wall to the flow. If the cell size is large
compared to the mean free path of the flow, a particle that
has just been reflected from the wall can be selected to collide
with another particle in the same cell but relatively far away,
and with a u-velocity considerably smaller than the velocity
of the wall. Since angular momentum is not conserved, both
particles will, on the average, have the same u-velocity after
the collision. This results in an unrealistic deceleration of the
particle close to the wall. As this particle is likely to hit the
wall much earlier than the one farther away, the rate of
transfer of #-momentum to the flow will be too high. If, on
the other hand, the cell size close to the wall is small com-
pared to the mean free path, a particle that has just been
reflected from the wall will undergo the next collision four or
five cells away from the wall. This in turn means that it is
approximately the same distance from the wall as its colli-
sion partner, so that, on the average, both collision partners
will hit the wall at the same time. Thus it is unimportant
which one of them has the higher, and which one the lower
u-velocity after the collision, so that in this case the conser-
vation of angular momentum is without significance for the
rate of transfer of u-momentum. With the rate of transfer of
momentum being computed accurately, the DSMC can be
expected to yield accurate results for the flowfield described
above.

B. Vortex shedding behind an inclined flat plate

The process of vortex shedding is a classical problem in

fluid mechanics. Experimentalists as well as theoreticians
have carried out numerous investigations to shed light on
different aspects of the problem, such as the generation and
separation of vortices, the stability of vortex streets, the tran-
sition to turbulent wakes, the forces involved, or the possibi-
lities of manipulating or suppressing the shedding process.
For reviews of this topic, see for example, McCroskey,’
Bearman and Graham,'® and Bearman.!' Most studies have
been concerned with the incompressible flow around bodies
of simple geometries, such as circular cylinders, thin flat
plates, rectangular prisms, or cones. For example, Gold-
burg, Florsheim, and Washburn'? have shown that vortex
shedding also occurs in hypersonic flows, so the phenome-
non seems to bear some relevance for the flow around space
vehicles in the upper atmosphere. It is unknown, however, at
which Knudsen numbers we can expect vortex street wakes.
This gives rise to the question as to whether computational
techniques for the solution of the Boltzmann equation—
upon which a calculation of such flowfields must be based—
are able to describe the generation and behavior of vortices.
This in turn is a prerequisite for obtaining correct values for
the related forces such as those acting upon the flaps with
which the Space Shuttle is maneuvered.

As a model problem we studied the flow around a flat
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FIG. 5. Control volume for the simulation of vortex shedding behind an
incline flat plate.

plate at 45° incidence, by means of an MD simulation as well
as a DSMC simulation. The length of the plate d was 60
mean free paths, resulting in a Knudsen number of 0.017.
The Mach number was 0.7, and the Reynolds number based
on the length of the plate was 78. Both experiments and
theoretical considerations suggest that the flow is unstable at
this Reynolds number. The Knudsen number corresponds
to the flow around a flat plate of 0.4 m at an altitude of 100
km. In order to avoid difficulties with the downstream
boundary condition, the plate was impulsively started from
rest and then towed through the three-dimensional control
volume at constant speed, as shown in Fig. 5. Symmetry
conditions were applied at all boundaries, so that no bound-
ary layers form and the blockage effect is less severe than for
a solid wall. Experiments have shown that blockage effects
influence the onset of vortex shedding in incompressible low
Re-number flows (Shair e# al.'?), but it is unknown so far
how important blockage effects are in compressible low Re-
number rarefied flows. When a particle collided with the
plate, it was given a new velocity according to a Maxwellian
distribution formed with the temperature of the plate. This
corresponds to diffuse reflection of the particles at the plate,
i.e., the accomodation coefficient was taken as 1.

The MD calculation was carried out in a fully three-
dimensional way. Because of CPU time and storage con-
straints, the number of particles had to be limited to 40 000
for this simulation, resulting in the relatively large molecular
diameter of 0.753 mean free paths. This means that a frac-
tion of approximately 8.9% of the control volume was occu-
pied by the particles. In contrast to the MD simulation,
which for the calculation of realistic collisions has to consid-
er the positions of the particles in both x, y, and z direction,
the DSMC simulation can be carried out in two dimensions
as a consequence of the fact that it deals with a statistical set
of collisions. The higher computational efficiency of the
DSMC allowed us to employ 210 000 particles for the simu-
lation of the flow past the inclined flat plate. The hard sphere
potential was applied in both cases. The results had to be
smoothed in order to be able to illustrate the flowfield by
means of instantaneous streamlines and lines of constant
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vorticity as well as plots of velocity vectors. These contin-
uum-mechanical data were obtained by averaging the prop-
erties of particles in a net of cells, with the depth of the cells
for the MD simulation being equal to the depth of the control
volume. This means that, although the simulation was car-
ried out in three dimensions, the results discussed in the fol-
lowing were obtained by integrating over the spanwise direc-
tion. In order to give an impression of the direction of the
flow everywhere in the field, we integrated piecewise stream-
lines from a given grid of starting points. Their strong curva-
ture in some regions indicates the presence of vortices,
whereas their length does not have any physical meaning.
The magnitude of the velocity is proportional to the length of
the velocity vectors. Lengths have been nondimensionalized
by the mean free path, and time has been made dimension-
less with the length and the velocity of the plate.

First we will discuss the results of the MD simulation.
Soon after the start of the plate, at time 0.36, the streamlines
in the reference frame moving with the plate clearly follow
the geometry of the plate (Fig. 6). Although the flow seems
to have separated at the top, a vortex is not yet visible. Due to
the inevitable statistical scatter, the exact position of the sep-
aration point cannot yet be recognized. The scatter is respon-
sible for some streamlines’ ending on or leaving from the
plate. The separating streamline at the rear tip has not yet
become tangential to the plate. The velocity vectors show a
strong deceleration of the flow immediately behind the plate.
At time 1.07, we can recognize for the first time a region of
recirculating flow on the upper side of the plate (Fig. 7). The
front stagnation point is close to the tip, and separation oc-
curs immediately behind the upper tip. The vorticity distri-
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FIG. 6. Molecular dynamics simulation: streamlines, velocity vectors, and
contours of constant vorticity at time 0.36.
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FIG. 7. Molecular dynamics simulation: streamlines, velocity vectors, and
contours of constant vorticity at time 1.07.

bution now shows a maximum close to the center of the
vortex. The separating streamline at the lower tip is now
almost tangential to the plate. A little later at time 2.31, we
notice that the vortex has increased in strength with its cen-
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FIG. 8. Molecular dynamics simulation: streamlines, velocity vectors, and
contours of constant vorticity at time 2.31.
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FIG. 9. Molecular dynamics simulation: streamlines, velocity vectors, and
contours of constant vorticity at time 3.19.

ter having moved downstream, thus causing a second region
of recirculating flow to form close to the lower tip (Fig. 8).
At time 3.19, the region has grown to a full vortex, while at
the same time the center of the initial vortex has moved
further downstream. The maxima of the vorticity distribu-
tion again correspond to the centers of the vortices (Fig. 9).
From this point on, periodic vortex shedding can be ob-
served with alternating left-and right-rotating vortices form-
ing behind the tips of the plate and moving downstream. The
Strouhal number formed with the projection of the plate per-
pendicular to the oncoming flow is 0.25. For a Reynolds
number as low as 78, this seems to be too high when com-
pared with experimental results for incompressible flows.
One reason for this discrepancy probably lies in the fact that
the channel is fairly narrow, thus causing a strong accelera-
tion of the flow above and below the plate, which in turn
leads to separation of the vortices before they reach their full
size.

The corresponding two-dimensional DSMC simulation
yielded quite different results. The number of particles per
cell was taken as 20 and the size of the cells came to approxi-l

IXER XX ERR R}
XEXXETRRY}
[ R R RS

- . e e a2

- . e . ow

bhdid
IXZ2X)
[ X2 E X

XXX RS
XX N

80 180 280

X/IN———

FIG. 10. Direct Monte Carlo simulation: streamlines, velocity vectors, and
contours of constant vorticity at time 8.44.

mately 2.9 mean free paths, which is small compared to the
scale of the macroscopic vortices expected to be generated,
but larger than the mean free path. Here too, at time 8.44 the
flow follows the shape of the plate, and the maximum of the
velocity production lies close to the tips of the plate (Fig.
10). However, it “diffuses” very quickly, so that no macro-
scopic vortices can form. The reason for this is believed to lie
partly in the nonconservation of angular momentum. The
vorticity that is continuously being generated at the surface
of the plate as a consequence of the no-slip condition, i.c.,
diffuse reflection, decays in the process of the calculation of
collisions. This means that close to the wall, there is still
enough vorticity to cause local separation and recirculation
of the flow, but the formation and separation of large scale
vortices does not occur.

The difference between the MD and the DSMC results
is further reflected in the streamline pattern of the whole
flowfield at the end of each calculation. The pattern obtained
from the MD calculation (Fig. 11) clearly shows the wavi-
ness of the wake indicating the presence of vortices moving
downstream from the plate. The corresponding pattern of

FIG. 11. Molecular dynamics simulation:
streamline pattern at time 6.55.
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FIG. 12. Direct Monte Carlo simulation:
streamline pattern at time 8.44.

the DSMC simulation (Fig. 12), on the other hand, does not
show this waviness.

The degree to which angular momentum and vorticity
are being “‘diffused” in the process of carrying out the colli-
sions obviously can depend on the cell size as well as on the
number and size of the particles used. The early destruction
of angular momentum in the regions of high shear behind the
tips of the plate might be reduced by using a locally refined
mesh. The relatively large particle diameter in the MD simu-
lation, on the other hand, results in the molecules’ occupying
a considerable fraction of the control volume, which could
cause some dense gas effects and thus influence the diffusion
of vorticity at the scale of the particle size. Therefore, a syste-
matic study of the effect of the cell size in the DSMC on the
nonconservation of angular momentum and vorticity should
be carried out, and the influence of the number and size of
particles on both the DSMC and the MD results presented
here should be checked. It would be convenient to define a
simpler test problem for this purpose, since on presently
available computers it would be too costly to reduce the cell
size used in the DSMC by a factor of, say, 10 and keep the
number of particles per cell constant. This systematic study
might help to clarify to what degree the loss of angular mo-
mentum depends on the numerical parameters such as the
cell size and the number of particles. Even if the loss of angu-
lar momentum can be reduced by a large amount by using
much smaller cells, the fact that a certain number of particles
per cell has to be maintained could considerably reduce the
numerical efficiency of the DSMC as compared to the MD
for some transitional flows. This is of interest for future ap-
plications, which will certainly include calculations of flow-
fields around bodies in regimes where the mean free path is
small compared to the dimensions of the body.

IV. CONCLUSIONS

Within the present study, two numerical methods for
the simulation of Boltzmann’s equation—the molecular dy-
namics method and the direct simulation Monte Carlo tech-
nique—have been compared with respect to their capability
of calculating flows with strong gradients in the vorticity
distribution. The goal was to study the effect of the statistical
assumptions underlying the evaluation of the collision term
in the Boltzmann equation by the DSMC technique, which
lead to the nonconservation of angular momentum for the
interaction of particles. Both methods yielded satisfactory
results for the Rayleigh—Stokes problem. For the numerical
parameters investigated here, however, the DSMC calcula-
tion for the flow past an inclined flat plate did not show
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periodic vortex shedding, whereas the MD simulation re-
sulted in a vortex street, as was demonstrated by means of
streamline-, vorticity-, and velocity-vector plots. The differ-
ence in the results is believed to be related to the loss of
angular momentum on the particle level during the process
of carrying out the collisions. Further work on a simpler test
problem should be carried out in order to systematically in-
vestigate the effect of the cell size as well as the number and
size of the particles on the loss of angular momentum and
vorticity. Such a study would not only help to answer the
question whether or not the DSMC in its present version has
principle problems in simulating vortical flows, but would
also allow conclusions with regard to the computational effi-
ciency of both methods, which might favor the MD for some
transitional flow problems if the DSMC requires cells that
are too small. For large Knudsen number flows, however,
there seems to be no doubt that, due to its higher numerical
efficiency, the DSMC is to be preferred.

A possible next step may be the development of a hybrid
scheme that is based on the MD approach where vortices are
expected, and that works with the DSMC everywhere else.
This would allow a combination of the advantages of both
methods.
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